Quinta-feira, fevereiro 17 2011 21: 59

Anatomia e Fisiologia

Classifique este artigo
(8 votos)

As células nervosas são as unidades funcionais do sistema nervoso. Acredita-se que o sistema nervoso tenha dez bilhões dessas células, chamadas neurônios e glia, a glia estando presente em maior número do que os neurônios.

o neurônio

A Figura 1 é um diagrama idealizado de um neurônio com suas três características estruturais mais importantes: o corpo celular, os dendritos e o terminal axônico.

Figura 1. A anatomia do neurônio

NER020F1

Os dendritos são processos finamente ramificados que surgem perto do corpo celular de um neurônio. Os dendritos recebem efeitos excitatórios ou inibitórios por meio de mensageiros químicos chamados neurotransmissores. O citoplasma é o material do corpo celular no qual as organelas - incluindo o núcleo da célula - e outras inclusões são encontradas Figura 2. O núcleo contém a cromatina da célula, ou material genético.

 

 

 

 

 

 

 

 

 

 

Figura 2. As organelas

NER020F2

O núcleo da célula nervosa é atípico em comparação com o de outras células vivas, pois, embora contenha o material genético ácido desoxirribonucléico (DNA), o DNA não está envolvido no processo de divisão celular; ou seja, após atingirem a maturidade, as células nervosas não se dividem. (Uma exceção a essa regra são os neurônios da mucosa nasal (epitélio olfatório).) O núcleo é rico em ácido ribonucléico (RNA), necessário para a síntese de proteínas. Três tipos de proteínas foram identificadas: proteínas citosólicas, que formam os elementos fibrilares da célula nervosa; proteínas intracondriais, que geram energia para a atividade celular; e proteínas que formam membranas e produtos secretores. Os neurônios são agora concebidos como células secretoras modificadas. Grânulos de secreção são formados, armazenados em vesículas sinápticas e posteriormente liberados como substâncias neurotransmissoras, os mensageiros químicos entre as células nervosas.

Os elementos fibrilares, que formam o esqueleto do neurônio, participam da função trófica do neurônio, atuando como veículos de transmissão. O transporte axonal pode ser anterógrado (corpo celular ao terminal axônico) e retrógrado (terminal axônico ao corpo celular). Do mais grosso ao mais fino, três tipos de elementos fibrilares são reconhecidos: microtúbulos, neurofilamentos e microfilamentos.

Células da glia

Em contraste com os neurônios, as células gliais não carregam, por si mesmas, mensagens elétricas. Existem dois tipos de células gliais: as macróglia e os votos de microglia. A macroglia é um nome dado a pelo menos três tipos de células: astrócitos, oligodendrócitos e células ependimárias. As células microgliais são principalmente células necrófagas para remover detritos após a ocorrência de dano neural ou infecção.

As células gliais também têm características microscópicas e ultramicroscópicas distintas. As células gliais suportam fisicamente os neurônios, mas uma série de propriedades fisiológicas também estão começando a ser compreendidas. Entre as interações neurônio-glia mais importantes está o papel da célula glial em fornecer nutrientes aos neurônios, removendo fragmentos de neurônios após sua morte e, mais importante, contribuindo para o processo de comunicação química. As células gliais, em nítido contraste com os neurônios, podem se dividir e, assim, se reproduzir. Os tumores do sistema nervoso, por exemplo, resultam de uma reprodução anormal das células da glia.

Mielina

O que aparece na observação macroscópica do tecido neural como “substância cinzenta” e “substância branca” tem uma base microscópica e bioquímica. Microscopicamente, a substância cinzenta contém os corpos celulares neuronais, enquanto a substância branca é onde se encontram as fibras neurais ou axônios. A aparência “branca” se deve a uma bainha – composta por uma substância gordurosa chamada mielina – que recobre essas fibras. A mielina dos nervos periféricos origina-se da membrana da célula de Schwann que envolve o axônio. A mielina das fibras no sistema nervoso central é fornecida pelas membranas dos oligodendrócitos (uma variedade de células gliais). Os oligodendrócitos geralmente mielinizam vários axônios, enquanto a célula de Schwann está associada a apenas um axônio. Existe uma descontinuidade da bainha de mielina - designada como nódulos de Ranvier - entre células de Schwann contínuas ou oligodendrócitos. Estima-se que na via motora central mais longa, até 2,000 células de Schwann formem a cobertura de mielina. A mielina, cujo papel é facilitar a propagação do potencial de ação, pode ser um alvo específico de agentes neurotóxicos. Uma classificação morfológica das substâncias neurotóxicas descreve alterações neuropatológicas características da mielina como mielinopatias.

Função Trófica do Neurônio

As funções normais do neurônio incluem síntese de proteínas, transporte axonal, geração e condução do potencial de ação, transmissão sináptica e formação e manutenção da mielina. Algumas das funções tróficas básicas do neurônio foram descritas já no século 19, seccionando os axônios (axotomia). Entre os processos descobertos, um dos mais importantes foi a degeneração walleriana — em homenagem a Waller, o fisiologista inglês que a descreveu.

A degeneração walleriana oferece uma boa oportunidade para descrever alterações bem conhecidas em organelas como resultado de dano traumático ou tóxico. Entre parênteses, os termos usados ​​para descrever a degeneração walleriana produzida por axotomia traumática são os mesmos usados ​​para descrever alterações decorrentes de agentes neurotóxicos. No nível celular, as alterações neuropatológicas resultantes do dano tóxico ao tecido neural são muito mais complexas do que aquelas que ocorrem como resultado do dano traumático. Apenas recentemente foram observadas alterações em neurônios afetados por agentes neurotóxicos.

Vinte e quatro horas após o corte do axônio, a característica mais marcante é o inchaço de ambos os lados do trauma mecânico. O inchaço resulta do acúmulo de fluidos e elementos membranosos em ambos os lados do local da lesão. Essas mudanças não são diferentes daquelas observadas em uma estrada de mão dupla inundada pela chuva com veículos parados em ambos os lados da área inundada. Nesta analogia, os veículos parados são o inchaço. Depois de alguns dias, ocorre a regeneração dos axônios revestidos - isto é, aqueles cobertos por mielina. Os brotos crescem a partir do toco proximal, movendo-se a uma taxa de 1 a 3 mm por dia. Em condições favoráveis, os brotos atingem o coto distal (mais distante do corpo celular). Quando a renervação – união dos cotos – é concluída, as características básicas da transmissão normal foram restabelecidas. O corpo celular do neurônio lesado sofre profundas alterações estruturais na síntese proteica e no transporte axonal.

Se a neurobiologia molecular é considerada uma disciplina jovem, a neurobiologia dos processos neurotóxicos é ainda mais jovem e ainda está em sua infância. É verdade que a base molecular da ação de muitas neurotoxinas e agentes farmacológicos é agora bem compreendida. Mas, com algumas exceções notáveis ​​(por exemplo, chumbo, metilmercúrio, acrilamida), a base molecular da toxicidade da grande maioria dos agentes ambientais e neurotóxicos é desconhecida. É por isso que, em vez de descrever a neurobiologia molecular de um grupo seleto de agentes neurotóxicos ocupacionais e ambientais, ainda somos forçados a nos referir às estratégias e exemplos comparativamente abundantes da neurofarmacologia clássica ou do trabalho na fabricação de medicamentos modernos.

Neurotransmissores

Um neurotransmissor é uma substância química que, ao ser liberada dos terminais axônicos pelo potencial de ação, produz a mudança momentânea no potencial elétrico quando outra fibra nervosa é estimulada. Os neurotransmissores estimulam ou inibem neurônios adjacentes ou órgãos efetores, como músculos e glândulas. Neurotransmissores conhecidos e suas vias neurais estão agora sendo intensamente estudados, e novos estão sendo constantemente descobertos. Alguns distúrbios neurológicos e psiquiátricos são agora considerados causados ​​por alterações químicas na neurotransmissão - por exemplo, miastenia grave, doença de Parkinson, certas formas de distúrbios afetivos, como depressão, distorção grave dos processos de pensamento, como na esquizofrenia e doença de Alzheimer. Embora tenham sido publicados excelentes relatos isolados sobre o efeito de vários agentes neurotóxicos ambientais e ocupacionais na neurotransmissão, o corpo de conhecimento é escasso em comparação com o existente para doenças neuropsiquiátricas. Os estudos farmacológicos de drogas manufaturadas requerem uma compreensão de como as drogas afetam a neurotransmissão. A fabricação de medicamentos e a pesquisa de neurotransmissão estão, portanto, intimamente relacionadas. As novas visões da ação das drogas foram resumidas por Feldman e Quenzer (1984).

Os efeitos dos agentes neurotóxicos na neurotransmissão são caracterizados por onde eles agem no sistema nervoso, seus receptores químicos, o curso temporal de seus efeitos, se os agentes neurotóxicos facilitam, bloqueiam ou inibem a neurotransmissão, ou se os agentes neurotóxicos alteram a terminação ou remoção do ação farmacológica do neurotransmissor.

Uma dificuldade experimentada pelos neurocientistas é a necessidade de vincular processos conhecidos que ocorrem no nível molecular no neurônio com eventos no nível celular, o que por sua vez pode explicar como ocorrem as mudanças neuropsicológicas normais e patológicas, como claramente afirmado a seguir, que a um em grande medida ainda se aplica: “(A) no nível molecular, muitas vezes é possível uma explicação da ação de uma droga; no nível celular, uma explicação às vezes é possível, mas no nível comportamental, nossa ignorância é abismal” (Cooper, Bloom e Roth 1986).

Os principais componentes do sistema nervoso

O conhecimento dos principais componentes do sistema nervoso é essencial para a compreensão das manifestações neuropsicológicas gerais da doença neurotóxica, a justificativa para o uso de técnicas específicas para a avaliação das funções do sistema nervoso e a compreensão dos mecanismos farmacológicos da ação neurotóxica. Do ponto de vista funcional, o sistema nervoso pode ser dividido em dois grandes compartimentos: sistema nervoso somático transmite informações sensoriais (toque, temperatura, dor e posição dos membros - mesmo quando os olhos estão fechados) dos segmentos corporais e carrega as vias neurais que inervam e controlam o movimento dos músculos esqueléticos, como os dos braços, dedos, pernas e dedos do pé. o sistema nervoso visceral controla os órgãos internos que normalmente não estão sob a influência dos vasos sanguíneos, a dilatação e constrição das pupilas dos olhos e assim por diante.

Do ponto de vista anatômico, quatro componentes principais precisam ser identificados: o do sistema nervoso central, sistema nervoso periférico incluindo nervos cranianos, o sistema autonômico e os votos de sistema neuroendócrino.

O sistema nervoso central

O sistema nervoso central contém o cérebro e a medula espinhal Figura 3. O cérebro fica na cavidade do crânio e é protegido pelas meninges. É dividido em três componentes principais; em ordem ascendente - isto é, da parte caudal (cauda) para a porção cervical (cabeça) do sistema nervoso - eles são o rombencéfalo (também chamado de rombencéfalo), o mesencéfalo (o mescéfalo) e o prosencéfalo (o proscencéfalo).

Figura 3. As divisões central e periférica do sistema nervoso

NER020F5

O cérebro posterior

Os três principais componentes do rombencéfalo são a medula oblonga, a ponte e a figura 4 do cerebelo.

Figura 4. O cérebro mostrado de lado.

NER020F7

A medula oblongata contém estruturas neurais que controlam a frequência cardíaca e a respiração, às vezes alvos de agentes neurotóxicos e drogas que causam a morte. Localizada entre o bulbo e o mesencéfalo, a ponte (ponte) recebe seu nome do grande número de fibras que atravessam sua face anterior em direção aos hemisférios cerebelares. O cerebelo — em latim, pequeno cérebro — tem uma aparência caracteristicamente ondulada. O cerebelo recebe informações sensoriais e envia mensagens motoras essenciais para a coordenação motora. É responsável (entre outras funções) pela execução de movimentos finos. Essa programação - ou programação - requer o tempo adequado de entradas sensoriais e respostas motoras. O cerebelo é frequentemente alvo de numerosos agentes neurotóxicos – por exemplo, bebidas alcoólicas, muitos solventes industriais, chumbo – que afetam as respostas motoras.

O mesencéfalo

O mesencéfalo é uma parte estreita do cérebro que conecta o mesencéfalo ao prosencéfalo. As estruturas do mesencéfalo são o aqueduto cerebral, o tectum, os pedúnculos cerebrais, a substância negra e o núcleo vermelho. O aqueduto cerebral é um canal que liga o terceiro ao quarto ventrículos (cavidades do cérebro cheias de líquido); o líquido cefalorraquidiano (CSF) flui através desta abertura.

O prosencéfalo

Esta parte do cérebro é subdividida em diencéfalo (“entre o cérebro”) e o cérebro. As principais regiões do diencéfalo são o tálamo e o hipotálamo. “Tálamo” significa “quarto interno”. Os tálamos são formados por agrupamentos neuronais, chamados núcleos, que possuem cinco funções principais:

  • receber informações sensoriais e enviá-las para áreas primárias do córtex cerebral
  • enviando informações sobre o movimento em andamento para as áreas motoras do córtex cerebral
  • enviando informações sobre a atividade do sistema límbico para áreas do córtex cerebral relacionadas a esse sistema
  • enviando informações sobre a atividade intratalâmica para áreas de associação do córtex cerebral
  • enviando informações da atividade de formação reticular do tronco cerebral para áreas amplas do córtex cerebral.

 

O nome hipotálamo significa “sob o tálamo”. Ele forma a base do terceiro ventrículo, um importante ponto de referência para a geração de imagens do cérebro. O hipotálamo é uma estrutura neural complexa e diminuta responsável por muitos aspectos do comportamento, como impulsos biológicos básicos, motivação e emoção. É o elo entre o sistema nervoso e o sistema neuroendócrino, a ser analisado a seguir. A glândula pituitária (também chamada de hipófise) está ligada por neurônios aos núcleos hipotalâmicos. Está bem estabelecido que as células nervosas hipotalâmicas desempenham muitas funções neurossecretoras. O hipotálamo está ligado a muitas outras regiões importantes do cérebro, incluindo o rinencéfalo - o córtex primitivo originalmente associado ao olfato - e o sistema límbico, incluindo o hipocampo.

O córtex cerebral é o maior componente do cérebro, consistindo de dois hemisférios cerebrais conectados por uma massa de substância branca chamada corpo caloso. O córtex cerebral é a camada superficial de cada hemisfério cerebral. Sulcos profundos no córtex cerebral - os sulcos central e lateral Figura 4 - são tomados como pontos de referência para separar as regiões anatômicas do cérebro. O lobo frontal situa-se à frente do sulco central. O lobo parietal começa na parte de trás do sulco central e fica próximo ao lobo occipital, que ocupa a porção posterior do cérebro. O lobo temporal começa bem dentro da dobra do sulco lateral e se estende até os aspectos ventrais dos hemisférios cerebrais. Dois componentes importantes do cérebro são os gânglios da base e o sistema límbico.

Os gânglios da base são núcleos - isto é, aglomerados de células nervosas - localizados no centro do cérebro. Os gânglios da base compreendem os principais centros do sistema motor extrapiramidal. (O sistema piramidal, ao qual o termo é contrastado, está envolvido no controle voluntário do movimento.) O sistema extrapiramidal é afetado seletivamente por muitos agentes neurotóxicos (por exemplo, manganês). Nas últimas duas décadas, importantes descobertas foram feitas sobre o papel que esses núcleos desempenham em várias doenças degenerativas neurais (por exemplo, doença de Parkinson, coreia de Huntington).

O sistema límbico é composto de estruturas neurais complicadas que se ramificam em várias direções e estabelecem conexões com muitas regiões “antigas” do cérebro, particularmente com o hipotálamo. Está envolvido no controle da expressão emocional. Acredita-se que o hipocampo seja uma estrutura onde ocorrem muitos processos de memória.

A medula espinhal

A medula espinhal é uma estrutura esbranquiçada situada dentro do canal vertebral. É dividido em quatro regiões: cervical, torácica, lombar e sacro-coccixeal. As duas características mais facilmente reconhecíveis da medula espinhal são a substância cinzenta que contém os corpos celulares dos neurônios e a substância branca que contém os axônios mielinizados dos neurônios. A região ventral da substância cinzenta da medula espinhal contém células nervosas que regulam a função motora; a região média da medula espinhal torácica está associada a funções autonômicas. A porção dorsal recebe informações sensoriais dos nervos espinhais.

O Sistema Nervoso Periférico

O sistema nervoso periférico inclui aqueles neurônios que estão fora do sistema nervoso central. O termo periférico descreve a distribuição anatômica desse sistema, mas funcionalmente é artificial. Os corpos celulares das fibras motoras periféricas, por exemplo, estão localizados no sistema nervoso central. Em neurotoxicologia experimental, clínica e epidemiológica, o termo sistema nervoso periférico (PNS) descreve um sistema que é seletivamente vulnerável aos efeitos de agentes tóxicos e que é capaz de se regenerar.

Os nervos espinhais

As raízes ventrais e dorsais são onde os nervos periféricos entram e saem da medula espinhal ao longo de sua extensão. As vértebras adjacentes contêm aberturas para permitir que as fibras das raízes que formam os nervos espinhais saiam do canal espinhal. Existem 31 pares de nervos espinhais, que são nomeados de acordo com a região da coluna vertebral à qual estão associados: 8 cervicais, 12 torácicos, 5 lombares, 5 sacrais e 1 coccixeal. Um metámero é uma região do corpo inervada por um nervo espinhal figura 5.

Figura 5. A distribuição segmentar dos nervos espinais (os metámeros).

NER020F9

Examinando cuidadosamente as funções motoras e sensoriais dos metámeros, os neurologistas podem inferir a localização das lesões onde ocorreu o dano.

 

 

 

 

 

 

 

Tabela 1. Nomes e principais funções de cada par de nervos cranianos

Nervo1 Conduz impulsos Funções
I. Olfativo Do nariz ao cérebro Sentido de olfato
II. Ótico Do olho ao cérebro Visão
III. Oculomotor Do cérebro aos músculos oculares Movimentos oculares
XNUMX. Troclear Do cérebro aos músculos oculares externos Movimentos oculares
V. Trigêmeo
(ou trifacial)
Da pele e membrana mucosa da cabeça e dos dentes ao cérebro; também do cérebro aos músculos da mastigação Sensações da face, couro cabeludo e dentes; movimentos de mastigação
VI. abducente Do cérebro aos músculos oculares externos Virando os olhos para fora
VII. Facial Das papilas gustativas da língua ao cérebro; do cérebro aos músculos do rosto Sentido do paladar; contração dos músculos da expressão facial
VIII. Acústico De orelha a cérebro Audição; senso de equilíbrio
IX. glossofaríngeo Da garganta e papilas gustativas da língua ao cérebro; também do cérebro aos músculos da garganta e glândulas salivares Sensações de garganta, paladar, movimentos de deglutição, secreção de saliva
X. Vago Da garganta, laringe e órgãos nas cavidades torácica e abdominal ao cérebro; também do cérebro aos músculos da garganta e aos órgãos nas cavidades torácica e abdominal Sensações da garganta, laringe e órgãos torácicos e abdominais; deglutição, produção de voz, desaceleração dos batimentos cardíacos, aceleração do peristaltismo
XI. Acessório espinhal Do cérebro a certos músculos do ombro e pescoço Movimentos do ombro; movimentos de rotação da cabeça
XII. hipoglosso Do cérebro aos músculos da língua Movimentos da língua

1 A primeira letra das palavras da frase a seguir são as primeiras letras dos nomes dos nervos cranianos: “Nos topos minúsculos do Velho Olimpo, um finlandês e um alemão viram alguns saltos”. Muitas gerações de estudantes usaram esta ou uma frase semelhante para ajudá-los a lembrar os nomes dos nervos cranianos.

 

Os nervos cranianos

Tronco cerebral é um termo abrangente que designa a região do sistema nervoso que inclui o bulbo, a ponte e o mesencéfalo. O tronco cerebral é uma continuação da medula espinhal para cima e para frente (ventralmente). É nessa região que a maioria dos nervos cranianos fazem suas saídas e entradas. Existem 12 pares de nervos cranianos; A Tabela 1 descreve o nome e a função principal de cada par e a Figura 6 mostra a entrada e saída de alguns nervos cranianos no cérebro.

Figura 6. O cérebro mostrado de baixo com a entrada e saída de muitos nervos cranianos.

NER020F8

O Sistema Nervoso Autônomo

O sistema nervoso autônomo é a parte do sistema nervoso que controla a atividade dos componentes viscerais do corpo humano. É chamado de “autônomo” porque executa suas funções automaticamente, o que significa que seu funcionamento não pode ser facilmente controlado à vontade. Do ponto de vista anatômico, o sistema autônomo possui dois componentes principais: o sistema nervoso simpático e o parassimpático. Os nervos simpáticos que controlam a atividade visceral surgem das porções torácica e lombar da medula espinal; nervos parassimpáticos originam-se do tronco encefálico e da porção sacral da medula espinhal.

Do ponto de vista fisiológico, não se pode fazer uma única generalização que se aplique à maneira pela qual os sistemas nervosos simpático e parassimpático controlam os diferentes órgãos do corpo. Na maioria dos casos, os órgãos viscerais são inervados por ambos os sistemas, e cada tipo tem um efeito oposto em um sistema de freios e contrapesos. O coração, por exemplo, é inervado por nervos simpáticos cuja excitação produz uma aceleração do batimento cardíaco e por nervos parassimpáticos cuja excitação produz uma desaceleração do batimento cardíaco. Qualquer sistema pode estimular ou inibir os órgãos que inerva. Em outros casos, os órgãos são predominantemente ou exclusivamente controlados por um ou outro sistema. Uma função vital do sistema nervoso autônomo é a manutenção da homeostase (estado estável de equilíbrio) e para a adaptação do corpo animal ao seu ambiente externo. A homeostase é o estado de equilíbrio das funções corporais alcançado por um processo ativo; o controle da temperatura corporal, água e eletrólitos são exemplos de processos homeostáticos.

Do ponto de vista farmacológico, não existe um único neurotransmissor associado às funções simpática ou parassimpática, como se acreditava. A velha visão de que a acetilcolina era o transmissor predominante do sistema autônomo teve que ser abandonada quando novas classes de neurotransmissores e neuromoduladores foram encontradas (por exemplo, dopamina, serotonina, purinas e vários neuropeptídeos).

Os neurocientistas reviveram recentemente o ponto de vista comportamental do sistema nervoso autônomo. O sistema nervoso autônomo está envolvido na reação instintiva de luta ou fuga ainda presente nos seres humanos, que é, em grande parte, a base das reações fisiológicas causadas pelo estresse. As interações entre o sistema nervoso e as funções imunológicas são possíveis através do sistema nervoso autônomo. As emoções que se originam do sistema nervoso autônomo podem ser expressas por meio dos músculos esqueléticos.

O controle autonômico dos músculos lisos

Os músculos das vísceras - exceto o coração - são os músculos lisos. O músculo cardíaco tem características de músculo esquelético e liso. Assim como os músculos esqueléticos, os músculos lisos também contêm as duas proteínas actina e, em proporções menores, miosina. Ao contrário dos músculos esqueléticos, eles não apresentam a organização regular dos sarcolemas, a unidade contrátil da fibra muscular. O coração é o único que pode gerar atividade miogênica - mesmo depois que suas inervações neurais foram cortadas, ele pode se contrair e relaxar por várias horas sozinho.

O acoplamento neuromuscular nos músculos lisos difere daquele dos músculos esqueléticos. Nos músculos esqueléticos, a junção neuromuscular é a ligação entre o nervo e as fibras musculares. No músculo liso, não há junção neuromuscular; as terminações nervosas entram no músculo, espalhando-se em todas as direções. Os eventos elétricos dentro do músculo liso, portanto, são muito mais lentos do que aqueles nos músculos esqueléticos. Finalmente, o músculo liso tem a característica única de exibir contrações espontâneas, como a exibida pelo intestino. Em grande parte, o sistema nervoso autônomo regula a atividade espontânea dos músculos lisos.

Os componentes centrais do sistema nervoso autônomo

O principal papel do sistema nervoso autônomo é regular a atividade dos músculos lisos, do coração, das glândulas do trato digestivo, das glândulas sudoríparas, das glândulas supra-renais e de outras glândulas endócrinas. O sistema nervoso autônomo tem um componente central – o hipotálamo, localizado na base do cérebro – onde muitas funções autônomas são integradas. Mais importante ainda, os componentes centrais do sistema autônomo estão diretamente envolvidos na regulação de impulsos biológicos (regulação de temperatura, fome, sede, sexo, micção, defecação e assim por diante), motivação, emoção e, em grande medida, em funções “psicológicas”. como humores, afetos e sentimentos.

Sistema Neuroendócrino

As glândulas são os órgãos do sistema endócrino. Elas são chamadas de glândulas endócrinas porque suas mensagens químicas são entregues dentro do corpo, diretamente na corrente sanguínea (em contraste com as glândulas exócrinas, como as glândulas sudoríparas, cujas secreções aparecem na superfície externa do corpo). O sistema endócrino fornece controle lento, mas duradouro, sobre órgãos e tecidos por meio de mensageiros químicos chamados hormônios. Os hormônios são os principais reguladores do metabolismo corporal. Mas, por causa das ligações íntimas entre os sistemas nervoso central, periférico e autônomo, o sistema neuroendócrino—um termo que capta ligações tão complexas—é agora concebido como um poderoso modificador da estrutura e função do corpo humano e do comportamento.

Os hormônios foram definidos como mensageiros químicos que são liberados das células na corrente sanguínea para exercer sua ação nas células-alvo a alguma distância. Até recentemente, os hormônios eram distinguidos dos neurotransmissores, discutidos acima. Os últimos são mensageiros químicos liberados dos neurônios em uma sinapse entre os terminais nervosos e outro neurônio ou um efetor (ou seja, músculo ou glândula). No entanto, com a descoberta de que os neurotransmissores clássicos, como a dopamina, também podem atuar como hormônios, a distinção entre neurotransmissores e hormônios tornou-se cada vez menos clara. Assim, com base em considerações puramente anatômicas, os hormônios derivados das células nervosas podem ser chamados de neuro-hormônios. Do ponto de vista funcional, o sistema nervoso pode ser pensado como um verdadeiro sistema neurossecretor.

O hipotálamo controla as funções endócrinas através de uma ligação com a glândula pituitária (também chamada de hipófise, uma pequena glândula localizada na base do cérebro). Até meados da década de 1950, as glândulas endócrinas eram vistas como um sistema separado governado pela glândula pituitária, muitas vezes chamada de “glândula mestra”. Nessa época, foi avançada uma hipótese neurovascular que estabeleceu o papel funcional dos fatores hipotalâmicos/hipofisários no controle da função endócrina. Nessa visão, o hipotálamo endócrino fornece a via neuroendócrina comum final no controle do sistema endócrino. Agora está firmemente estabelecido que o próprio sistema endócrino é regulado pelo sistema nervoso central, bem como pelas entradas endócrinas. Desta forma, neuroendocrinologia é agora um termo apropriado para descrever a disciplina que estuda os papéis integrados recíprocos dos sistemas nervoso e endócrino no controle dos processos fisiológicos.

Com o aumento da compreensão da neuroendocrinologia, as divisões originais estão se desfazendo. O hipotálamo, localizado acima e conectado à glândula pituitária, é o elo entre os sistemas nervoso e endócrino, e muitas de suas células nervosas desempenham funções secretoras. Também está ligado a outras regiões importantes do cérebro, incluindo o rinencéfalo – o córtex primitivo originalmente associado ao olfato ou ao olfato – e o sistema límbico, associado às emoções. É no hipotálamo que são produzidos os hormônios liberados pela hipófise posterior. O hipotálamo também produz substâncias que são chamadas de hormônios liberadores e inibidores. Estes atuam na adeno-hipófise, fazendo com que ela potencialize ou iniba a produção de hormônios da hipófise anterior, que atuam sobre as glândulas localizadas em outras regiões (tireoide, córtex adrenal, ovários, testículos e outras).

 

Voltar

Leia 18820 vezes Última modificação em terça, 11 outubro 2011 20:41

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências do sistema nervoso

Amaducci, L, C Arfaioli, D Inzitari e M Marchi. 1982. Esclerose múltipla entre trabalhadores de calçados e couro: Uma pesquisa epidemiológica em Florença. Acta Neurol Scand 65:94-103.

Raiva, KW. 1990. Pesquisa neurocomportamental no local de trabalho: resultados, métodos sensíveis, baterias de teste e a transição dos dados de laboratório para a saúde humana. Neurotoxicology 11:629-720.

Anger, WK, MG Cassitto, Y Liang, R Amador, J Hooisma, DW Chrislip, D Mergler, M Keifer e J Hörtnagel. 1993. Comparação do desempenho de três continentes na bateria de testes básicos neurocomportamentais (NCTB) recomendada pela OMS. Environ Res 62:125-147.

Arlien-Søborg, P. 1992. Solvent Neurotoxicity. Boca Ratón: CRC Press.
Armon, C, LT Kurland, JR Daube e PC O'Brian. 1991. Correlatos epidemiológicos da esclerose lateral amiotrófica esporádica. Neurology 41:1077-1084.

Axelson, O. 1996. Para onde vamos na neuroepidemiologia ocupacional? Scand J Work Environ Health 22: 81-83.

Axelson, O, M Hane e C Hogstedt. 1976. Um estudo de referência de caso sobre distúrbios neuropsiquiátricos entre trabalhadores expostos a solventes. Scand J Work Environ Health 2:14-20.

Bowler, R, D Mergler, S Rauch, R Harrison e J Cone. 1991. Distúrbios afetivos e de personalidade entre ex-trabalhadoras de microeletrônica. J Clin Psychiatry 47:41-52.

Brackbill, RM, N Maizlish e T Fischbach. 1990. Risco de incapacidade neuropsiquiátrica entre pintores nos Estados Unidos. Scand J Work Environ Health 16:182-188.

Campbell, AMG, ER Williams e D Barltrop. 1970. Doença do neurônio motor e exposição ao chumbo. J Neurol Neurosurg Psychiatry 33:877-885.

Cherry, NM, FP Labrèche e JC McDonald. 1992. Danos cerebrais orgânicos e exposição ocupacional a solventes. Br J Ind Med 49:776-781.

Chio, A, A Tribolo e D Schiffer. 1989. Doença do neurônio motor e exposição à cola. Lancet 2:921.

Cooper, JR, FE Bloom e RT Roth. 1986. A Base Bioquímica da Neurofarmacologia. Nova York: Oxford Univ. Imprensa.

Dehart, RL. 1992. Sensibilidade química múltipla - O que é? Múltiplas sensibilidades químicas. Adenda a: Marcadores biológicos em imunotoxicologia. Washington, DC: National Academy Press.

FELDMAN, RG. 1990. Efeitos de toxinas e agentes físicos no sistema nervoso. Em Neurology in Clinical Practice, editado por WG Bradley, RB Daroff, GM Fenichel e CD Marsden. Stoneham, Massachusetts: Butterworth.

Feldman, RG e LD Quenzer. 1984. Fundamentos de Neuropsicofarmacologia. Sunderland, Massachusetts: Sinauer Associates.

Flodin, U, B Söderfeldt, H Noorlind-Brage, M Fredriksson e O Axelson. 1988. Esclerose múltipla, solventes e animais de estimação: Um estudo de referência de caso. Arch Neurol 45:620-623.

Fratiglioni L, A Ahlbom, M Viitanen e B Winblad. 1993. Fatores de risco para a doença de Alzheimer de início tardio: um estudo caso-controle baseado na população. Ann Neurol 33:258-66.

Goldsmith, JR, Y Herishanu, JM Abarbanel e Z Weinbaum. 1990. Agrupamento de pontos da doença de Parkinson para etiologia ambiental. Arch Environ Health 45:88-94.

Graves, AB, CM van Duijn, V Chandra, L Fratiglioni, A Heyman, AF Jorm, et al. 1991. Exposição ocupacional a solventes e chumbo como fatores de risco para a doença de Alzheimer: Uma reanálise colaborativa de estudos de caso-controle. Int J Epidemiol 20 Supl. 2:58-61.

Grönning, M, G Albrektsen, G Kvåle, B Moen, JA Aarli e H Nyland. 1993. Solventes orgânicos e esclerose múltipla. Acta Neurol Scand 88:247-250.

Gunnarsson, LG, L Bodin, B Söderfeldt e O Axelson. 1992. Um estudo de caso-controle da doença do neurônio motor: sua relação com a hereditariedade e exposições ocupacionais, particularmente solventes. Br J Ind Med 49:791-798.

Hänninen, H e K Lindstrom. 1979. Bateria de Testes Neurocomportamentais do Instituto de Saúde Ocupacional. Helsinque: Instituto de Saúde Ocupacional.

Hagberg, M, H Morgenstem e M Kelsh. 1992. Impacto das ocupações e tarefas de trabalho na prevalência da síndrome do túnel do carpo. Scand J Work Environ Health 18:337-345.

Hart, DE. 1988. Toxicologia Neuropsicológica: Identificação e Avaliação de Síndromes Neurotóxicas Humanas. Nova York: Pergamon Press.

Hawkes, CH, JB Cavanagh e AJ Fox. 1989. Doença do neurônio motor: um distúrbio secundário à exposição a solventes? Lancet 1:73-76.

Howard, JK. 1979. Uma pesquisa clínica de trabalhadores da formulação de paraquat. Br J Ind Med 36:220-223.

Hutchinson, LJ, RW Amsler, JA Lybarger e W Chappell. 1992. Baterias de Teste Neurocomportamentais para Uso em Estudos de Campo de Saúde Ambiental. Atlanta: Agência para Substâncias Tóxicas e Registro de Doenças (ATSDR).

Johnson, BL. 1987. Prevenção de Doenças Neurotóxicas em Populações Trabalhadoras. Chichester: Wiley.

Kandel, ER, HH Schwartz e TM Kessel. 1991. Princípios de Ciências Neurais. Nova York: Elsevier.

Kukull, WA, EB Larson, JD Bowen, WC McCormick, L Teri, ML Pfanschmidt, et al. 1995. A exposição a solventes como um fator de risco para a doença de Alzheimer: um estudo de caso-controle. Am J Epidemiol 141:1059-1071.

Landtblom, AM, U Flodin, M Karlsson, S Pålhagen, O Axelson e B Söderfeldt. 1993. Esclerose múltipla e exposição a solventes, radiação ionizante e animais. Scand J Work Environ Health 19:399-404.

Landtblom, AM, U Flodin, B Söderfeldt, C Wolfson e O Axelson. 1996. Solventes orgânicos e esclerose múltipla: Uma síntese das evidências do cimento. Epidemiologia 7: 429-433.

Maizlish, D e O Feo. 1994. Alteraciones neuropsicológicas en trabajadores expuestos a neurotóxicos. Salud de los Trabajadores 2:5-34.

Mergler, D. 1995. Neurofisiologia comportamental: medidas quantitativas de toxicidade sensorial. Em Neurotoxicologia: Abordagens e Métodos, editado por L Chang e W Slikker. Nova York: Academic Press.

O'Donoghue, JL. 1985. Neurotoxicidade de produtos químicos industriais e comerciais. vol. I & II. Boca Ratón: CRC Press.

Sassine, MP, D Mergler, F Larribe e S Bélanger. 1996. Déterioration de la santé mentale chez des travailleurs exposés au styrène. Rev epidmiol med soc santé publ 44:14-24.

Semchuk, KM, EJ Love e RG Lee. 1992. Doença de Parkinson e exposição ao trabalho agrícola e pesticidas químicos. Neurology 42:1328-1335.

Seppäläinen, AMH. 1988. Abordagens neurofisiológicas para a detecção de neurotoxicidade precoce em humanos. Crit Rev Toxicol 14:245-297.

Sienko, DG, JD Davis, JA Taylor e BR Brooks. 1990. Esclerose lateral amiotrófica: Um estudo de caso-controle após a detecção de um agrupamento em uma pequena comunidade de Wisconsin. Arch Neurol 47:38-41.

Simonsen, L, H Johnsen, SP Lund, E Matikainen, U Midtgård e A Wennberg. 1994. Avaliação de dados de neurotoxicidade: Uma abordagem metodológica para a classificação de substâncias químicas neurotóxicas. Scand J Work Environ Health 20:1-12.

Sobel, E, Z Davanipour, R Sulkava, T Erkinjuntti, J Wikström, VW Henderson, et al. 1995. Ocupações com exposição a campos eletromagnéticos: um possível fator de risco para a doença de Alzheimer. Am J Epidemiol 142:515-524.

Spencer, PS e HH Schaumburg. 1980. Neurotoxicologia Experimental e Clínica. Baltimore: Williams & Wilkins.

Tanner, CM. 1989. O papel das toxinas ambientais na etiologia da doença de Parkinson. Trends Neurosci 12:49-54.

Urie, RL. 1992. Proteção pessoal contra exposição a materiais perigosos. Em Toxicologia de Materiais Perigosos: Princípios Clínicos de Saúde Ambiental, editado por JB Sullivan e GR Krieger. Baltimore: Williams & Wilkins.

Organização Mundial da Saúde (OMS). 1978. Princípios e Métodos de Avaliação da Toxicidade de Produtos Químicos, Parte 1 e 2. EHC, No. 6, Parte 1 e 2. Genebra: OMS.

Organização Mundial da Saúde e Conselho Nórdico de Ministros. 1985. Efeitos Crônicos de Solventes Orgânicos Sobre o Sistema Nervoso Central e Critérios de Diagnóstico. EHC, No. 5. Genebra: OMS.

Zayed, J, G Ducic, G Campanella, JC Panisset, P André, H Masson, et al. 1990. Facteurs environnementaux dans l'étiologie de la maladie de Parkinson. Can J Neurol Sci 17:286-291.