A função pulmonar pode ser medida de várias maneiras. No entanto, o objetivo das medições deve estar claro antes do exame, para que os resultados sejam interpretados corretamente. Neste artigo abordaremos o exame de função pulmonar com especial atenção ao campo ocupacional. É importante lembrar as limitações em diferentes medições da função pulmonar. Efeitos agudos temporários na função pulmonar podem não ser perceptíveis em caso de exposição a poeira fibrogênica como quartzo e amianto, mas efeitos crônicos na função pulmonar após exposição prolongada (> 20 anos) podem ser. Isso se deve ao fato de que os efeitos crônicos ocorrem anos após a poeira ser inalada e depositada nos pulmões. Por outro lado, efeitos temporários agudos de poeira orgânica e inorgânica, bem como mofo, fumaça de soldagem e exaustão de motor, são adequados para estudo. Isso se deve ao fato de que o efeito irritativo dessas poeiras ocorrerá após algumas horas de exposição. Efeitos agudos ou crônicos na função pulmonar também podem ser percebidos em casos de exposição a concentrações de gases irritantes (dióxido de nitrogênio, aldeídos, ácidos e cloretos ácidos) nas proximidades de valores-limite de exposição bem documentados, especialmente se o efeito for potencializado por contaminação do ar por partículas .
As medições da função pulmonar devem ser seguras para os indivíduos examinados e o equipamento de função pulmonar deve ser seguro para o examinador. Um resumo dos requisitos específicos para diferentes tipos de equipamentos de função pulmonar está disponível (por exemplo, Quanjer et al. 1993). Obviamente, o equipamento deve ser calibrado de acordo com padrões independentes. Isso pode ser difícil de conseguir, especialmente quando o equipamento computadorizado está sendo usado. O resultado do teste de função pulmonar depende tanto do sujeito quanto do examinador. Para obter resultados satisfatórios do exame, os técnicos devem ser bem treinados, capazes de instruir o paciente com cuidado e também incentivá-lo a realizar o teste corretamente. O examinador também deve ter conhecimento sobre as vias aéreas e pulmões para interpretar corretamente os resultados dos registros.
Recomenda-se que os métodos utilizados tenham uma reprodutibilidade razoavelmente alta entre e dentro dos indivíduos. A reprodutibilidade pode ser medida como o coeficiente de variação, ou seja, o desvio padrão multiplicado por 100 dividido pelo valor médio. Valores abaixo de 10% em medições repetidas no mesmo sujeito são considerados aceitáveis.
Para determinar se os valores medidos são patológicos ou não, eles devem ser comparados com equações de previsão. Normalmente as equações de predição para variáveis espirométricas são baseadas em idade e estatura, estratificadas por sexo. Os homens têm, em média, valores de função pulmonar mais elevados do que as mulheres, da mesma idade e altura. A função pulmonar diminui com a idade e aumenta com a altura. Um indivíduo alto terá, portanto, maior volume pulmonar do que um indivíduo baixo da mesma idade. O resultado das equações de previsão pode diferir consideravelmente entre diferentes populações de referência. A variação de idade e estatura na população de referência também influenciará os valores previstos. Isso significa, por exemplo, que uma equação de predição não deve ser usada se a idade e/ou a altura do sujeito examinado estiverem fora dos intervalos da população que é a base da equação de predição.
Fumar também diminui a função pulmonar e o efeito pode ser potencializado em indivíduos expostos ocupacionalmente a agentes irritantes. A função pulmonar costumava ser considerada não patológica se os valores obtidos estivessem dentro de 80% do valor previsto, derivado de uma equação de predição.
Medidas
As medições da função pulmonar são realizadas para julgar a condição dos pulmões. As medições podem referir-se a volumes pulmonares medidos únicos ou múltiplos ou às propriedades dinâmicas das vias aéreas e dos pulmões. Este último é geralmente determinado por meio de manobras dependentes de esforço. As condições dos pulmões também podem ser examinadas em relação à sua função fisiológica, ou seja, capacidade de difusão, resistência e complacência das vias aéreas (ver abaixo).
As medidas relativas à capacidade ventilatória são obtidas por espirometria. A manobra respiratória é geralmente realizada como uma inspiração máxima seguida de uma expiração máxima, capacidade vital (VC, medida em litros). Devem ser feitos pelo menos três registros tecnicamente satisfatórios (isto é, esforço total de inspiração e expiração e nenhum vazamento observado), e o valor mais alto relatado. O volume pode ser medido diretamente por um selo de água ou um sino de baixa resistividade, ou medido indiretamente por pneumotacografia (ou seja, integração de um sinal de fluxo ao longo do tempo). É importante observar aqui que todos os volumes pulmonares medidos devem ser expressos em BTPS, ou seja, temperatura corporal e pressão ambiente saturada com vapor de água.
A capacidade vital expirada forçada (CVF, em litros) é definida como uma medida de CV realizada com um esforço expiratório máximo forçado. Devido à simplicidade do teste e ao equipamento relativamente barato, o expirograma forçado tornou-se um teste útil na monitorização da função pulmonar. No entanto, isso resultou em muitas gravações ruins, cujo valor prático é discutível. Para realizar registros satisfatórios, a diretriz atualizada para a coleta e uso do expirograma forçado, publicada pela American Thoracic Society em 1987, pode ser útil.
Os fluxos instantâneos podem ser medidos em curvas de fluxo-volume ou fluxo-tempo, enquanto os fluxos ou tempos médios são derivados do espirograma. As variáveis associadas que podem ser calculadas a partir do expirograma forçado são o volume expirado forçado em um segundo (VEF1, em litros por segundo), em porcentagem de CVF (FEV1%), pico de fluxo (PEF, l/s), fluxos máximos a 50% e 75% da capacidade vital forçada (MEF50 e MEF25, respectivamente). Uma ilustração da derivação do FEV1 do expirograma forçado é descrito na figura 1. Em indivíduos saudáveis, as taxas de fluxo máximo em grandes volumes pulmonares (ou seja, no início da expiração) refletem principalmente as características de fluxo das grandes vias aéreas, enquanto aquelas em pequenos volumes pulmonares (ou seja, o final de expiração) são geralmente consideradas para refletir as características das pequenas vias aéreas, figura 2. Nestas o fluxo é laminar, enquanto nas grandes vias aéreas pode ser turbulento.
Figura 1. Espirograma expiratório forçado mostrando a derivação do VEF1 e CVF de acordo com o princípio da extrapolação.
Figura 2. Curva fluxo-volume mostrando a derivação do pico de fluxo expiratório (PFE), fluxos máximos a 50% e 75% da capacidade vital forçada (e
, respectivamente).
O PFE também pode ser medido por um pequeno dispositivo portátil, como o desenvolvido por Wright em 1959. Uma vantagem desse equipamento é que o sujeito pode realizar medições seriadas, por exemplo, no local de trabalho. Para obter gravações úteis, no entanto, é necessário instruir bem os sujeitos. Além disso, deve-se ter em mente que as medidas de PFE com, por exemplo, um medidor de Wright e as medidas por espirometria convencional não devem ser comparadas devido às diferentes técnicas de sopro.
As variáveis espirométricas CV, CVF e VEF1 mostram uma variação razoável entre indivíduos onde idade, altura e sexo costumam explicar 60 a 70% da variação. Distúrbios restritivos da função pulmonar resultarão em valores mais baixos para CV, CVF e VEF1. As medidas dos fluxos durante a expiração apresentam grande variação individual, pois os fluxos medidos são dependentes do esforço e do tempo. Isso significa, por exemplo, que um indivíduo terá um fluxo extremamente alto em caso de diminuição do volume pulmonar. Por outro lado, o fluxo pode ser extremamente baixo em caso de volume pulmonar muito alto. No entanto, o fluxo geralmente diminui em caso de doença obstrutiva crônica (por exemplo, asma, bronquite crônica).
Figura 3. Esquema principal do equipamento para determinação da capacidade pulmonar total (CPT) pela técnica de diluição do hélio.
A proporção do volume residual (VR), ou seja, o volume de ar que ainda está nos pulmões após uma expiração máxima, pode ser determinada pela diluição dos gases ou pela pletismografia corporal. A técnica de diluição gasosa requer equipamentos menos complicados e, portanto, mais conveniente para uso em estudos realizados no local de trabalho. Na figura 3, o princípio da técnica de diluição de gás foi delineado. A técnica é baseada na diluição de um gás indicador em um circuito de reinalação. O gás indicador deve ser pouco solúvel nos tecidos biológicos para que não seja absorvido pelos tecidos e sangue no pulmão. O hidrogênio foi inicialmente usado, mas por sua capacidade de formar misturas explosivas com o ar foi substituído pelo hélio, que é facilmente detectado por meio do princípio da condutividade térmica.
O sujeito e o aparelho formam um sistema fechado, e a concentração inicial do gás é assim reduzida quando ele é diluído no volume de gás nos pulmões. Após o equilíbrio, a concentração do gás indicador é a mesma nos pulmões e no aparelho, e a capacidade residual funcional (CRF) pode ser calculada por meio de uma equação de diluição simples. O volume do espirômetro (incluindo a adição da mistura de gases no espirômetro) é denotado por VS, VL é o volume do pulmão, Fi é a concentração inicial de gás e Ff é a concentração final.
CRF = VL = [(VS · Fi) / Ff] - VS
Duas a três manobras de VC são realizadas para fornecer uma base confiável para o cálculo do TLC (em litros). As subdivisões dos diferentes volumes pulmonares estão descritas na figura 4.
Figura 4. Espirograma rotulado para mostrar as subdivisões da capacidade total.
Devido à mudança nas propriedades elásticas das vias aéreas, o VR e a CRF aumentam com a idade. Nas doenças obstrutivas crônicas, geralmente observam-se valores aumentados de VR e CRF, enquanto a CV está diminuída. No entanto, em indivíduos com áreas pulmonares mal ventiladas - por exemplo, indivíduos com enfisema - a técnica de diluição de gás pode subestimar VR, CRF e também CPT. Isso se deve ao fato de que o gás indicador não se comunicará com vias aéreas fechadas e, portanto, a diminuição na concentração do gás indicador fornecerá valores erroneamente pequenos.
Figura 5. Um esboço principal do registro do fechamento das vias aéreas e da inclinação do platô alveolar (%).
Medidas de fechamento de vias aéreas e distribuição de gás nos pulmões podem ser obtidas em uma mesma manobra pela técnica de lavagem de respiração única, figura 5. O equipamento consiste em um espirômetro conectado a um sistema bag-in-box e um registrador para medições contínuas da concentração de nitrogênio. A manobra é realizada por meio de uma inspiração máxima de oxigênio puro da bolsa. No início da expiração, a concentração de nitrogênio aumenta em decorrência do esvaziamento do espaço morto do sujeito, contendo oxigênio puro. A expiração continua com o ar das vias aéreas e alvéolos. Finalmente, o ar dos alvéolos, contendo 20 a 40% de nitrogênio, é expirado. Quando a expiração das partes basais dos pulmões aumenta, a concentração de nitrogênio aumentará abruptamente em caso de fechamento das vias aéreas em regiões pulmonares dependentes, figura 5. Esse volume acima do VD, no qual as vias aéreas se fecham durante uma expiração, geralmente é expresso como volume de fechamento (CV) em percentual de VC (CV%). A distribuição do ar inspirado nos pulmões é expressa como a inclinação do platô alveolar (%N2 ou fase III, %N2/eu). É obtido tomando-se a diferença da concentração de nitrogênio entre o ponto em que 30% do ar é expirado e o ponto de fechamento das vias aéreas, dividindo-se pelo volume correspondente.
O envelhecimento, bem como os distúrbios obstrutivos crônicos, resultarão em valores aumentados para CV% e fase III. No entanto, nem mesmo indivíduos saudáveis apresentam uma distribuição uniforme de gases nos pulmões, resultando em valores ligeiramente elevados para a fase III, ou seja, 1 a 2% de N2/eu. As variáveis CV% e fase III são consideradas para refletir as condições nas pequenas vias aéreas periféricas com diâmetro interno de cerca de 2 mm. Normalmente, as vias aéreas periféricas contribuem com uma pequena parte (10 a 20%) da resistência total das vias aéreas. Alterações bastante extensas que não são detectáveis por testes de função pulmonar convencionais, como a espirometria dinâmica, podem ocorrer, por exemplo, como resultado de uma exposição a substâncias irritantes no ar nas vias aéreas periféricas. Isso sugere que a obstrução das vias aéreas começa nas pequenas vias aéreas. Os resultados dos estudos também mostraram alterações no CV% e na fase III antes de ocorrer qualquer alteração da espirometria dinâmica e estática. Essas alterações iniciais podem entrar em remissão quando a exposição a agentes perigosos cessar.
O fator de transferência do pulmão (mmol/min; kPa) é uma expressão da capacidade de difusão do transporte de oxigênio para os capilares pulmonares. O fator de transferência pode ser determinado usando técnicas de respiração única ou múltipla; a técnica de respiração única é considerada a mais adequada em estudos no local de trabalho. O monóxido de carbono (CO) é usado porque a contrapressão do CO é muito baixa no sangue periférico, em contraste com a do oxigênio. Supõe-se que a absorção de CO segue um modelo exponencial, e essa suposição pode ser usada para determinar o fator de transferência para o pulmão.
Determinação de TLCO (fator de transferência medido com CO) é realizada por meio de uma manobra respiratória incluindo uma expiração máxima, seguida de uma inspiração máxima de uma mistura gasosa contendo monóxido de carbono, hélio, oxigênio e nitrogênio. Após um período de apneia, é feita uma expiração máxima, refletindo o conteúdo no ar alveolar, Figura 10. O hélio é usado para a determinação do volume alveolar (VA). Assumindo que a diluição de CO é a mesma do hélio, a concentração inicial de CO, antes do início da difusão, pode ser calculada. TLCO é calculado de acordo com a equação abaixo, onde k depende das dimensões dos termos componentes, t é o tempo efetivo para prender a respiração e log é o logaritmo de base 10. O volume inspirado é denotado Vi e as frações F de CO e hélio são representados por i e a para inspirado e alveolar, respectivamente.
TLCO = k Vi (Fa,Ele/Fi,He) registro (Fi,CO Fa,He/Fa, CO Fi,Ele) (t)-1
Figura 6. Um esboço principal do registro do fator de transferência
O tamanho de TLCO dependerá de uma variedade de condições - por exemplo, a quantidade de hemoglobina disponível, o volume de alvéolos ventilados e capilares pulmonares perfundidos e sua relação entre si. Valores para TLCO diminuem com a idade e aumentam com a atividade física e aumento dos volumes pulmonares. diminuiu TLCO serão encontrados em doenças pulmonares restritivas e obstrutivas.
A complacência (l/kPa) é uma função, inter alia, da propriedade elástica dos pulmões. Os pulmões têm uma tendência intrínseca de colaborar - isto é, de colapsar. A capacidade de manter os pulmões alongados dependerá do tecido pulmonar elástico, da tensão superficial nos alvéolos e da musculatura brônquica. Por outro lado, a parede torácica tende a se expandir em volumes pulmonares de 1 a 2 litros acima do nível da CRF. Em volumes pulmonares mais altos, a força deve ser aplicada para expandir ainda mais a parede torácica. No nível da CRF, a tendência correspondente nos pulmões é equilibrada pela tendência de expansão. O nível de CRF é, portanto, denotado pelo nível de repouso do pulmão.
A complacência do pulmão é definida como a variação do volume dividida pela variação da pressão transpulmonar, ou seja, a diferença entre as pressões na boca (atmosférica) e no pulmão, como resultado de uma manobra respiratória. As medições da pressão no pulmão não são facilmente realizadas e, portanto, são substituídas por medições da pressão no esôfago. A pressão no esôfago é quase igual à pressão no pulmão e é medida com um fino cateter de polietileno com um balão cobrindo os 10 cm distais. Durante as manobras inspiratórias e expiratórias, as mudanças de volume e pressão são registradas por meio de um espirômetro e transdutor de pressão, respectivamente. Quando as medições são realizadas durante a respiração corrente, a complacência dinâmica pode ser medida. A complacência estática é obtida quando uma manobra lenta de VC é realizada. Neste último caso, as medidas são realizadas em um pletismógrafo corporal e a expiração é interrompida intermitentemente por meio de um obturador. No entanto, as medições de complacência são difíceis de realizar ao examinar os efeitos da exposição na função pulmonar no local de trabalho, e essa técnica é considerada mais apropriada no laboratório.
Uma complacência diminuída (elasticidade aumentada) é observada na fibrose. Para causar uma mudança no volume, grandes mudanças na pressão são necessárias. Por outro lado, observa-se uma alta complacência, por exemplo, no enfisema como resultado da perda de tecido elástico e, portanto, também da elasticidade no pulmão.
A resistência nas vias aéreas depende essencialmente do raio e comprimento das vias aéreas, mas também da viscosidade do ar. A resistência das vias aéreas (RL em (kPa/l) /s), pode ser determinado pelo uso de um espirômetro, transdutor de pressão e um pneumotacógrafo (para medir o fluxo). As medições também podem ser realizadas usando um pletismógrafo corporal para registrar as mudanças no fluxo e na pressão durante as manobras ofegantes. Pela administração de um medicamento destinado a causar broncoconstrição, podem ser identificados indivíduos sensíveis, como resultado de suas vias aéreas hiper-reativas. Indivíduos com asma geralmente têm valores aumentados para RL.
Efeitos agudos e crônicos da exposição ocupacional na função pulmonar
A medição da função pulmonar pode ser usada para revelar um efeito de exposição ocupacional nos pulmões. O exame pré-emprego da função pulmonar não deve ser usado para excluir indivíduos em busca de emprego. Isso ocorre porque a função pulmonar de indivíduos saudáveis varia dentro de amplos limites e é difícil traçar um limite abaixo do qual se pode afirmar com segurança que o pulmão é patológico. Outra razão é que o ambiente de trabalho deve ser bom o suficiente para permitir que até mesmo indivíduos com leve comprometimento da função pulmonar trabalhem com segurança.
Os efeitos crônicos nos pulmões em indivíduos expostos ocupacionalmente podem ser detectados de várias maneiras. As técnicas são projetadas para determinar os efeitos históricos, no entanto, e são menos adequadas para servir como diretrizes para prevenir o comprometimento da função pulmonar. Um projeto de estudo comum é comparar os valores reais em indivíduos expostos com os valores de função pulmonar obtidos em uma população de referência sem exposição ocupacional. Os sujeitos de referência podem ser recrutados nos mesmos locais de trabalho (ou próximos) ou na mesma cidade.
A análise multivariada tem sido usada em alguns estudos para avaliar as diferenças entre os sujeitos expostos e os correspondentes não expostos. Os valores de função pulmonar em indivíduos expostos também podem ser padronizados por meio de uma equação de referência baseada nos valores de função pulmonar em indivíduos não expostos.
Outra abordagem é estudar a diferença entre os valores de função pulmonar em trabalhadores expostos e não expostos após ajuste para idade e estatura com o uso de valores de referência externos, calculados por meio de uma equação de predição baseada em indivíduos saudáveis. A população de referência também pode ser combinada com os indivíduos expostos de acordo com grupo étnico, sexo, idade, altura e hábitos tabágicos, a fim de controlar ainda mais os fatores que influenciam.
O problema é, no entanto, decidir se uma diminuição é grande o suficiente para ser classificada como patológica, quando valores de referência externos estão sendo usados. Embora os instrumentos dos estudos devam ser portáteis e simples, deve-se atentar tanto para a sensibilidade do método escolhido para detectar pequenas anomalias em vias aéreas e pulmões quanto para a possibilidade de combinação de diferentes métodos. Há indícios de que indivíduos com sintomas respiratórios, como dispneia de esforço, correm maior risco de apresentar um declínio acelerado da função pulmonar. Isso significa que a presença de sintomas respiratórios é importante e, portanto, não deve ser negligenciada.
O sujeito também pode ser acompanhado por espirometria, por exemplo, uma vez por ano, durante vários anos, a fim de alertar contra o desenvolvimento de doenças. Existem limitações, no entanto, uma vez que isso será muito demorado e a função pulmonar pode ter se deteriorado permanentemente quando a diminuição pode ser observada. Esta abordagem, portanto, não deve ser uma desculpa para o atraso na execução de medidas destinadas a diminuir as concentrações nocivas de poluentes atmosféricos.
Finalmente, os efeitos crônicos na função pulmonar também podem ser estudados examinando as mudanças individuais na função pulmonar em indivíduos expostos e não expostos ao longo de vários anos. Uma vantagem do desenho do estudo longitudinal é que a variabilidade intersujeitos é eliminada; no entanto, o projeto é considerado demorado e caro.
Indivíduos suscetíveis também podem ser identificados comparando sua função pulmonar com e sem exposição durante os turnos de trabalho. A fim de minimizar os possíveis efeitos das variações diurnas, a função pulmonar é medida na mesma hora do dia em uma ocasião não exposta e outra exposta. A condição não exposta pode ser obtida, por exemplo, movendo ocasionalmente o trabalhador para uma área não contaminada ou pelo uso de um respirador adequado durante todo o turno ou, em alguns casos, realizando medições da função pulmonar na tarde do dia de folga do trabalhador.
Uma preocupação especial é que efeitos repetidos e temporários podem resultar em efeitos crônicos. Uma diminuição temporária aguda da função pulmonar pode ser não apenas um indicador de exposição biológica, mas também um preditor de uma diminuição crônica da função pulmonar. A exposição a poluentes atmosféricos pode resultar em efeitos agudos perceptíveis na função pulmonar, embora os valores médios dos poluentes atmosféricos medidos estejam abaixo dos valores-limite higiênicos. Surge então a questão de saber se esses efeitos são realmente prejudiciais a longo prazo. Esta questão é difícil de responder diretamente, especialmente porque a poluição do ar nos locais de trabalho geralmente tem uma composição complexa e a exposição não pode ser descrita em termos de concentrações médias de compostos individuais. O efeito de uma exposição ocupacional também se deve, em parte, à sensibilidade do indivíduo. Isso significa que alguns sujeitos reagirão mais cedo ou em maior grau do que outros. A base fisiopatológica subjacente para uma diminuição aguda e temporária da função pulmonar não é totalmente compreendida. A reação adversa à exposição a um contaminante irritante do ar é, no entanto, uma medida objetiva, em contraste com experiências subjetivas como sintomas de origem diferente.
A vantagem de detectar alterações precoces nas vias aéreas e nos pulmões causadas por poluentes atmosféricos perigosos é óbvia – a exposição predominante pode ser reduzida para prevenir doenças mais graves. Portanto, um objetivo importante a esse respeito é usar as medições de efeitos temporários agudos na função pulmonar como um sistema de alerta precoce sensível que pode ser usado ao estudar grupos de trabalhadores saudáveis.
Monitoramento de Irritantes
A irritação é um dos critérios mais frequentes para definir valores-limite de exposição. No entanto, não é certo que o cumprimento de um limite de exposição baseado em irritação proteja contra irritação. Deve-se considerar que um limite de exposição para um contaminante do ar geralmente contém pelo menos duas partes - um limite de média ponderada no tempo (TWAL) e um limite de exposição de curto prazo (STEL), ou pelo menos regras para exceder a média ponderada no tempo limite, “limites de excursão”. No caso de substâncias altamente irritantes, como dióxido de enxofre, acroleína e fosgênio, é importante limitar a concentração mesmo durante períodos muito curtos e, portanto, tem sido prática comum fixar valores-limite de exposição ocupacional na forma de limites máximos, com um período de amostragem tão curto quanto as instalações de medição permitirem.
Os valores-limite médios ponderados pelo tempo para um dia de oito horas combinados com regras para excursão acima desses valores são fornecidos para a maioria das substâncias na lista de valores-limite (TLV) da Conferência Americana de Higienistas Industriais Governamentais (ACGIH). A lista TLV de 1993-94 contém a seguinte declaração sobre os limites de excursão para exceder os valores limite:
“Para a grande maioria das substâncias com um TLV-TWA, não há dados toxicológicos suficientes disponíveis para justificar um STEL = limite de exposição de curto prazo). No entanto, as excursões acima do TLV-TWA devem ser controladas mesmo quando o TWA de oito horas estiver dentro dos limites recomendados.”
Medições de exposição de contaminantes do ar conhecidos e comparação com valores-limite de exposição bem documentados devem ser realizadas rotineiramente. Existem, no entanto, muitas situações em que a determinação do cumprimento dos valores-limite de exposição não é suficiente. Este é o caso nas seguintes circunstâncias (entre outras):
- quando o valor limite é muito alto para proteção contra irritação
- quando o irritante é desconhecido
- quando o irritante é uma mistura complexa e não há indicador adequado conhecido.
Conforme defendido acima, a medição dos efeitos agudos e temporários na função pulmonar pode ser usada nesses casos como um alerta contra a superexposição a irritantes.
Nos casos (2) e (3), efeitos agudos e temporários na função pulmonar também podem ser aplicados ao testar a eficiência de medidas de controle para diminuir a exposição à contaminação do ar ou em investigações científicas, por exemplo, ao atribuir efeitos biológicos a componentes do ar contaminantes. Seguem-se vários exemplos nos quais efeitos agudos e temporários da função pulmonar foram empregados com sucesso em investigações de saúde ocupacional.
Estudos de efeitos agudos e temporários da função pulmonar
A diminuição temporária da função pulmonar relacionada ao trabalho durante um turno de trabalho foi registrada em trabalhadores do algodão no final de 1950. Mais tarde, vários autores relataram alterações agudas e temporárias relacionadas ao trabalho da função pulmonar em trabalhadores têxteis e de cânhamo, mineiros de carvão, trabalhadores expostos a diisocianato de tolueno, bombeiros, trabalhadores de processamento de borracha, moldadores e coremakers, soldadores, enceradores de esqui, trabalhadores expostos a poeira orgânica e irritantes em tintas à base de água.
No entanto, também existem vários exemplos em que as medições antes e depois da exposição, geralmente durante um turno, falharam em demonstrar quaisquer efeitos agudos, apesar de uma alta exposição. Isso provavelmente se deve ao efeito da variação circadiana normal, principalmente nas variáveis da função pulmonar, dependendo do tamanho do calibre das vias aéreas. Assim, a diminuição temporária dessas variáveis deve exceder a variação circadiana normal para ser reconhecida. O problema pode ser contornado, no entanto, medindo a função pulmonar na mesma hora do dia em cada ocasião do estudo. Ao usar o funcionário exposto como seu próprio controle, a variação interindividual diminui ainda mais. Os soldadores foram estudados dessa maneira e, embora a diferença média entre os valores de CVF não expostos e expostos fosse inferior a 3% em 15 soldadores examinados, essa diferença foi significativa no nível de confiança de 95% com um poder de mais de 99%.
Os efeitos transitórios reversíveis nos pulmões podem ser usados como um indicador de exposição de componentes irritantes complicados. No estudo citado acima, as partículas no ambiente de trabalho foram cruciais para os efeitos irritantes nas vias aéreas e nos pulmões. As partículas foram removidas por um respirador composto por um filtro combinado com um capacete de soldagem. Os resultados indicaram que os efeitos nos pulmões foram causados pelas partículas nos fumos de soldagem e que o uso de um respirador particulado pode prevenir esse efeito.
A exposição à exaustão de diesel também causa efeitos irritantes mensuráveis nos pulmões, mostrados como uma diminuição aguda e temporária da função pulmonar. Filtros mecânicos montados nos canos de escapamento de caminhões usados em operações de carregamento por estivadores aliviavam distúrbios subjetivos e reduziam a diminuição aguda e temporária da função pulmonar observada quando nenhuma filtração era feita. Os resultados indicam, portanto, que a presença de partículas no ambiente de trabalho desempenha um papel no efeito irritativo nas vias aéreas e nos pulmões, e que é possível avaliar o efeito por meio de medições de alterações agudas na função pulmonar.
Uma multiplicidade de exposições e um ambiente de trabalho em constante mudança podem apresentar dificuldades em discernir a relação causal dos diferentes agentes existentes em um ambiente de trabalho. O cenário de exposição em serrarias é um exemplo esclarecedor. Não é possível (por exemplo, por razões econômicas) realizar medições de exposição de todos os agentes possíveis (terpenos, poeira, mofo, bactérias, endotoxinas, micotoxinas, etc.) neste ambiente de trabalho. Um método viável pode ser acompanhar o desenvolvimento da função pulmonar longitudinalmente. Em um estudo com trabalhadores de serraria no departamento de corte de madeira, a função pulmonar foi examinada antes e depois de uma semana de trabalho, e nenhuma diminuição estatisticamente significativa foi encontrada. No entanto, um estudo de acompanhamento realizado alguns anos depois revelou que os trabalhadores que realmente tiveram uma diminuição numérica na função pulmonar durante uma semana de trabalho também tiveram um declínio acelerado de longo prazo na função pulmonar. Isso pode indicar que indivíduos vulneráveis podem ser detectados medindo as mudanças na função pulmonar durante uma semana de trabalho.