Quinta-feira, Março 10 2011 17: 05

Reconhecimento de perigos

Classifique este artigo
(6 votos)

Um risco no local de trabalho pode ser definido como qualquer condição que possa afetar adversamente o bem-estar ou a saúde das pessoas expostas. O reconhecimento de perigos em qualquer atividade ocupacional envolve a caracterização do local de trabalho através da identificação de agentes perigosos e grupos de trabalhadores potencialmente expostos a esses perigos. Os perigos podem ser de origem química, biológica ou física (ver tabela 1). Alguns perigos no ambiente de trabalho são fáceis de reconhecer, por exemplo, irritantes, que têm um efeito irritante imediato após a exposição da pele ou inalação. Outros não são tão fáceis de reconhecer - por exemplo, produtos químicos formados acidentalmente e sem propriedades de alerta. Alguns agentes como metais (por exemplo, chumbo, mercúrio, cádmio, manganês), que podem causar ferimentos após vários anos de exposição, podem ser fáceis de identificar se você estiver ciente do risco. Um agente tóxico pode não constituir um perigo em baixas concentrações ou se ninguém estiver exposto. Básico para o reconhecimento de perigos são a identificação de possíveis agentes no local de trabalho, o conhecimento sobre os riscos à saúde desses agentes e a conscientização sobre possíveis situações de exposição.

Tabela 1. Perigos de agentes químicos, biológicos e físicos.

Tipo de perigo

Descrição

Exemplos

QUÍMICA

PERIGOS

 

Os produtos químicos entram no corpo principalmente por inalação, absorção pela pele ou ingestão. O efeito tóxico pode ser agudo, crônico ou ambos.,

 

Corrosão

Os produtos químicos corrosivos realmente causam destruição do tecido no local de contato. Pele, olhos e sistema digestivo são as partes do corpo mais comumente afetadas.

Ácidos e álcalis concentrados, fósforo

Irritação

Os irritantes causam inflamação dos tecidos onde se depositam. Irritantes da pele podem causar reações como eczema ou dermatite. Irritantes respiratórios graves podem causar falta de ar, respostas inflamatórias e edema.

Pele: ácidos, álcalis, solventes, óleos Respiratório: aldeídos, pós alcalinos, amônia, dióxido de nitrogênio, fosgênio, cloro, bromo, ozônio

Reações alérgicas

Alérgenos químicos ou sensibilizantes podem causar reações alérgicas respiratórias ou cutâneas.

Pele: colofonia (colofônia), formaldeído, metais como cromo ou níquel, alguns corantes orgânicos, endurecedores epóxi, terebintina

Respiratório: isocianatos, corantes reativos a fibras, formaldeído, muitos pós de madeira tropical, níquel

 

Asfixia

Os asfixiantes exercem seus efeitos interferindo na oxigenação dos tecidos. Os asfixiantes simples são gases inertes que diluem o oxigênio atmosférico disponível abaixo do nível necessário para sustentar a vida. Atmosferas deficientes em oxigênio podem ocorrer em tanques, porões de navios, silos ou minas. A concentração de oxigênio no ar nunca deve ser inferior a 19.5% em volume. Os asfixiantes químicos impedem o transporte de oxigênio e a oxigenação normal do sangue ou impedem a oxigenação normal dos tecidos.

Asfixiantes simples: metano, etano, hidrogénio, hélio

Asfixiantes químicos: monóxido de carbono, nitrobenzeno, cianeto de hidrogênio, sulfeto de hidrogênio

 

Câncer

Carcinógenos humanos conhecidos são produtos químicos que demonstraram claramente causar câncer em humanos. Prováveis ​​carcinógenos humanos são produtos químicos que demonstraram claramente causar câncer em animais ou cuja evidência não é definitiva em humanos. A fuligem e os alcatrões de hulha foram os primeiros produtos químicos suspeitos de causar câncer.

Conhecido: benzeno (leucemia); cloreto de vinilo (angiosarcoma hepático); 2-naftilamina, benzidina (cancro da bexiga); amianto (câncer de pulmão, mesotelioma); pó de madeira (adenocarcinoma do seio nasal ou nasal) Provável: formaldeído, tetracloreto de carbono, dicromatos, berílio

Reprodutivo

efeitos

 

Tóxicos reprodutivos interferem no funcionamento reprodutivo ou sexual de um indivíduo.

Manganês, dissulfeto de carbono, monometil e éteres etílicos de etilenoglicol, mercúrio

 

Tóxicos de desenvolvimento são agentes que podem causar um efeito adverso na descendência de pessoas expostas; por exemplo, defeitos congênitos. Produtos químicos embriotóxicos ou fetotóxicos podem causar abortos espontâneos ou abortos espontâneos.

Compostos orgânicos de mercúrio, monóxido de carbono, chumbo, talidomida, solventes

Sistêmico

venenos

 

Venenos sistêmicos são agentes que causam danos a determinados órgãos ou sistemas do corpo.

Cérebro: solventes, chumbo, mercúrio, manganês

Sistema nervoso periférico: n-hexano, chumbo, arsênico, dissulfeto de carbono

Sistema de formação de sangue: benzeno, éteres de etileno glicol

Rins: cádmio, chumbo, mercúrio, hidrocarbonetos clorados

Pulmões: sílica, amianto, pó de carvão (pneumoconiose)

 

 

 

 

BIOLÓGICO

PERIGOS

 

Os perigos biológicos podem ser definidos como poeiras orgânicas provenientes de diferentes fontes de origem biológica, como vírus, bactérias, fungos, proteínas de animais ou substâncias de plantas, como produtos de degradação de fibras naturais. O agente etiológico pode ser derivado de um organismo viável ou de contaminantes ou constituir um componente específico da poeira. Os perigos biológicos são agrupados em agentes infecciosos e não infecciosos. Perigos não infecciosos podem ser divididos em organismos viáveis, toxinas biogênicas e alérgenos biogênicos.

 

Riscos infecciosos

As doenças ocupacionais por agentes infecciosos são relativamente incomuns. Trabalhadores em risco incluem funcionários de hospitais, trabalhadores de laboratório, fazendeiros, trabalhadores de matadouros, veterinários, zeladores de zoológicos e cozinheiros. A suscetibilidade é muito variável (por exemplo, pessoas tratadas com drogas imunodepressoras terão alta sensibilidade).

Hepatite B, tuberculose, antraz, brucela, tétano, chlamydia psittaci, salmonela

Organismos viáveis ​​e toxinas biogênicas

Organismos viáveis ​​incluem fungos, esporos e micotoxinas; As toxinas biogênicas incluem endotoxinas, aflatoxinas e bactérias. Os produtos do metabolismo bacteriano e fúngico são complexos e numerosos e afetados pela temperatura, umidade e tipo de substrato em que crescem. Quimicamente, podem consistir em proteínas, lipoproteínas ou mucopolissacarídeos. Exemplos são bactérias e fungos Gram positivos e Gram negativos. Trabalhadores em risco incluem trabalhadores de fábricas de algodão, trabalhadores de cânhamo e linho, trabalhadores de tratamento de esgoto e lodo, trabalhadores de silos de grãos.

Bissinose, “febre dos grãos”, doença do legionário

alérgenos biogênicos

Os alérgenos biogênicos incluem fungos, proteínas de origem animal, terpenos, ácaros de armazenamento e enzimas. Uma parte considerável dos alérgenos biogênicos na agricultura provém de proteínas da pele animal, pêlos de peles e proteínas do material fecal e da urina. Os alérgenos podem ser encontrados em muitos ambientes industriais, como processos de fermentação, produção de medicamentos, padarias, produção de papel, processamento de madeira (serrarias, produção, manufatura), bem como em biotecnologia (produção de enzimas e vacinas, cultura de tecidos) e especiarias Produção. Em pessoas sensibilizadas, a exposição aos agentes alérgicos pode induzir sintomas alérgicos como rinite alérgica, conjuntivite ou asma. A alveolite alérgica é caracterizada por sintomas respiratórios agudos como tosse, calafrios, febre, dor de cabeça e dores musculares, podendo levar à fibrose pulmonar crônica.

Asma ocupacional: lã, peles, grão de trigo, farinha, cedro vermelho, alho em pó

Alveolite alérgica: doença do agricultor, bagaçose, “doença dos criadores de pássaros”, febre do umidificador, sequoiose

 

RISCOS FÍSICOS

 

 

Ruído

O ruído é considerado como qualquer som indesejado que possa afetar adversamente a saúde e o bem-estar de indivíduos ou populações. Os aspectos dos perigos do ruído incluem energia total do som, distribuição de frequência, duração da exposição e ruído impulsivo. A acuidade auditiva geralmente é afetada primeiro com uma perda ou queda em 4000 Hz, seguida por perdas na faixa de frequência de 2000 a 6000 Hz. O ruído pode resultar em efeitos agudos como problemas de comunicação, diminuição da concentração, sonolência e, consequentemente, interferência no desempenho do trabalho. A exposição a altos níveis de ruído (geralmente acima de 85 dBA) ou ruído impulsivo (cerca de 140 dBC) durante um período de tempo significativo pode causar perda auditiva temporária e crônica. A perda auditiva permanente é a doença ocupacional mais comum nos pedidos de indenização.

Fundições, carpintaria, fábricas têxteis, metalomecânica

vibração

A vibração tem vários parâmetros em comum com a frequência do ruído, amplitude, duração da exposição e se é contínua ou intermitente. O método de operação e a habilidade do operador parecem desempenhar um papel importante no desenvolvimento dos efeitos nocivos da vibração. O trabalho manual com ferramentas elétricas está associado a sintomas de distúrbios circulatórios periféricos conhecidos como “fenômeno de Raynaud” ou “dedos brancos induzidos por vibração” (VWF). As ferramentas vibratórias também podem afetar o sistema nervoso periférico e o sistema músculo-esquelético com redução da força de preensão, dor lombar e distúrbios degenerativos nas costas.

Máquinas contratadas, carregadeiras de mineração, empilhadeiras, ferramentas pneumáticas, motosserras

Ionizante

radiação

 

O efeito crônico mais importante da radiação ionizante é o câncer, incluindo a leucemia. A superexposição de níveis comparativamente baixos de radiação tem sido associada à dermatite da mão e efeitos no sistema hematológico. Processos ou atividades que podem dar exposição excessiva à radiação ionizante são muito restritos e regulamentados.

Reatores nucleares, tubos de raios X médicos e odontológicos, aceleradores de partículas, radioisótopos

Não ionizante

radiação

 

A radiação não ionizante consiste em radiação ultravioleta, radiação visível, infravermelho, lasers, campos eletromagnéticos (microondas e radiofrequência) e radiação de baixa frequência extrema. A radiação infravermelha pode causar catarata. Lasers de alta potência podem causar danos aos olhos e à pele. Há uma preocupação crescente sobre a exposição a baixos níveis de campos eletromagnéticos como causa de câncer e como causa potencial de resultados reprodutivos adversos entre as mulheres, especialmente devido à exposição a unidades de exibição de vídeo. A questão sobre um nexo causal com o câncer ainda não foi respondida. Revisões recentes do conhecimento científico disponível geralmente concluem que não há associação entre o uso de VDUs e resultados reprodutivos adversos.

Radiação ultravioleta: soldagem e corte a arco; Cura UV de tintas, colas, pinturas, etc.; desinfecção; controle de produto

Radiação infra-vermelha: fornos, sopro de vidro

lasers: comunicações, cirurgia, construção

 

 

 

Identificação e Classificação de Perigos

Antes de qualquer investigação de higiene ocupacional ser realizada, o objetivo deve ser claramente definido. O objetivo de uma investigação de higiene ocupacional pode ser identificar possíveis perigos, avaliar os riscos existentes no local de trabalho, comprovar o cumprimento de requisitos regulamentares, avaliar medidas de controle ou avaliar a exposição em relação a uma pesquisa epidemiológica. Este artigo é restrito a programas voltados à identificação e classificação de perigos no ambiente de trabalho. Muitos modelos ou técnicas foram desenvolvidos para identificar e avaliar perigos no ambiente de trabalho. Eles diferem em complexidade, desde listas de verificação simples, pesquisas preliminares de higiene industrial, matrizes de exposição no trabalho e estudos de perigo e operacionalidade até perfis de exposição no trabalho e programas de vigilância do trabalho (Renes 1978; Gressel e Gideon 1991; Holzner, Hirsh e Perper 1993; Goldberg et al . 1993; Bouyer e Hémon 1993; Panett, Coggon e Acheson 1985; Tait 1992). Nenhuma técnica é uma escolha clara para todos, mas todas as técnicas têm partes que são úteis em qualquer investigação. A utilidade dos modelos também depende da finalidade da investigação, tamanho do local de trabalho, tipo de produção e atividade, bem como da complexidade das operações.

A identificação e classificação de perigos podem ser divididas em três elementos básicos: caracterização do local de trabalho, padrão de exposição e avaliação de perigos.

caracterização do local de trabalho

Um local de trabalho pode ter de alguns funcionários até vários milhares e ter diferentes atividades (por exemplo, fábricas, canteiros de obras, prédios de escritórios, hospitais ou fazendas). Em um local de trabalho, diferentes atividades podem ser localizadas em áreas especiais, como departamentos ou seções. Em um processo industrial, diferentes etapas e operações podem ser identificadas à medida que a produção é acompanhada desde as matérias-primas até os produtos acabados.

Informações detalhadas devem ser obtidas sobre processos, operações ou outras atividades de interesse, para identificar os agentes utilizados, incluindo matérias-primas, materiais manipulados ou adicionados no processo, produtos primários, intermediários, produtos finais, produtos de reação e subprodutos. Aditivos e catalisadores em um processo também podem ser de interesse para identificar. Matéria-prima ou material agregado identificado apenas pelo nome comercial deve ser avaliado quanto à composição química. Informações ou fichas de dados de segurança devem estar disponíveis no fabricante ou fornecedor.

Algumas etapas de um processo podem ocorrer em um sistema fechado sem ninguém exposto, exceto durante o trabalho de manutenção ou falha do processo. Esses eventos devem ser reconhecidos e devem ser tomadas precauções para evitar a exposição a agentes perigosos. Outros processos ocorrem em sistemas abertos, com ou sem exaustão local. Deve ser fornecida uma descrição geral do sistema de ventilação, incluindo sistema de exaustão local.

Sempre que possível, os perigos devem ser identificados no planejamento ou projeto de novas plantas ou processos, quando as mudanças podem ser feitas em um estágio inicial e os perigos podem ser antecipados e evitados. Condições e procedimentos que podem se desviar do projeto pretendido devem ser identificados e avaliados no estado do processo. O reconhecimento de perigos também deve incluir emissões para o ambiente externo e materiais residuais. Locais de instalação, operações, fontes de emissão e agentes devem ser agrupados de forma sistemática para formar unidades reconhecíveis na análise posterior de exposição potencial. Em cada unidade, operações e agentes devem ser agrupados de acordo com os efeitos à saúde dos agentes e estimativa das quantidades emitidas para o ambiente de trabalho.

Padrões de exposição

As principais vias de exposição para agentes químicos e biológicos são a inalação e absorção dérmica ou incidentalmente por ingestão. O padrão de exposição depende da frequência de contato com os perigos, intensidade da exposição e tempo de exposição. As tarefas de trabalho devem ser examinadas sistematicamente. É importante não apenas estudar os manuais de trabalho, mas observar o que realmente acontece no local de trabalho. Os trabalhadores podem estar expostos diretamente como resultado da execução efetiva de tarefas ou indiretamente expostos porque estão localizados na mesma área geral ou local da fonte de exposição. Pode ser necessário começar concentrando-se em tarefas de trabalho com alto potencial de causar danos, mesmo que a exposição seja de curta duração. Operações não rotineiras e intermitentes (por exemplo, manutenção, limpeza e mudanças nos ciclos de produção) devem ser consideradas. Tarefas e situações de trabalho também podem variar ao longo do ano.

Dentro do mesmo cargo, a exposição ou aceitação pode diferir porque alguns trabalhadores usam equipamentos de proteção e outros não. Em grandes fábricas, o reconhecimento de perigos ou uma avaliação qualitativa de perigos raramente pode ser realizado para cada trabalhador. Portanto, os trabalhadores com tarefas de trabalho semelhantes devem ser classificados no mesmo grupo de exposição. As diferenças nas tarefas de trabalho, técnicas de trabalho e tempo de trabalho resultarão em exposições consideravelmente diferentes e devem ser consideradas. As pessoas que trabalham ao ar livre e aquelas que trabalham sem ventilação de exaustão local demonstraram ter uma variabilidade diária maior do que os grupos que trabalham em ambientes fechados com ventilação de exaustão local (Kromhout, Symanski e Rappaport 1993). Processos de trabalho, agentes inscritos naquele processo/função ou diferentes tarefas dentro de um cargo podem ser usados, em vez do cargo, para caracterizar grupos com exposição semelhante. Dentro dos grupos, os trabalhadores potencialmente expostos devem ser identificados e classificados quanto aos agentes perigosos, vias de exposição, efeitos dos agentes na saúde, frequência de contato com os perigos, intensidade e tempo de exposição. Diferentes grupos de exposição devem ser classificados de acordo com os agentes perigosos e a exposição estimada, a fim de determinar os trabalhadores em maior risco.

Avaliação qualitativa de perigos

Possíveis efeitos à saúde de agentes químicos, biológicos e físicos presentes no local de trabalho devem ser baseados em uma avaliação de pesquisas epidemiológicas, toxicológicas, clínicas e ambientais disponíveis. Informações atualizadas sobre riscos à saúde de produtos ou agentes usados ​​no local de trabalho devem ser obtidas em revistas de saúde e segurança, bancos de dados sobre toxicidade e efeitos na saúde e literatura científica e técnica relevante.

As Fichas de Dados de Segurança do Material (MSDSs) devem, se necessário, ser atualizadas. As folhas de dados documentam as porcentagens de ingredientes perigosos juntamente com o identificador químico do Chemical Abstracts Service, o número CAS e o valor-limite (TLV), se houver. Eles também contêm informações sobre riscos à saúde, equipamentos de proteção, ações preventivas, fabricante ou fornecedor e assim por diante. Às vezes, os ingredientes relatados são bastante rudimentares e precisam ser complementados com informações mais detalhadas.

Dados monitorados e registros de medições devem ser estudados. Agentes com TLVs fornecem orientação geral para decidir se a situação é aceitável ou não, embora deva haver tolerância para possíveis interações quando os trabalhadores são expostos a vários produtos químicos. Dentro e entre diferentes grupos de exposição, os trabalhadores devem ser classificados de acordo com os efeitos dos agentes presentes na saúde e a exposição estimada (por exemplo, desde efeitos leves à saúde e baixa exposição até efeitos graves à saúde e alta exposição estimada). Aqueles com os mais altos escalões merecem a maior prioridade. Antes do início de qualquer atividade de prevenção, pode ser necessário realizar um programa de monitoramento da exposição. Todos os resultados devem ser documentados e facilmente atingíveis. Um esquema de trabalho é ilustrado na figura 1.

Figura 1. Elementos de avaliação de risco

IHY010F3

Nas investigações de higiene ocupacional, os perigos para o ambiente externo (por exemplo, poluição e efeito estufa, bem como efeitos na camada de ozônio) também podem ser considerados.

Agentes Químicos, Biológicos e Físicos

Os perigos podem ser de origem química, biológica ou física. Nesta seção e na tabela 1, uma breve descrição dos vários perigos será fornecida juntamente com exemplos de ambientes ou atividades onde eles serão encontrados (Casarett 1980; Congresso Internacional de Saúde Ocupacional 1985; Jacobs 1992; Leidel, Busch e Lynch 1977; Olishifski 1988; Rylander 1994). Informações mais detalhadas serão encontradas em outras partes deste enciclopédia.

Agentes químicos

Os produtos químicos podem ser agrupados em gases, vapores, líquidos e aerossóis (poeiras, fumos, névoas).

gases

Os gases são substâncias que podem ser alteradas para o estado líquido ou sólido apenas pelos efeitos combinados do aumento da pressão e diminuição da temperatura. O manuseio de gases sempre implica risco de exposição, a menos que sejam processados ​​em sistemas fechados. Os gases em recipientes ou tubos de distribuição podem vazar acidentalmente. Em processos com altas temperaturas (por exemplo, operações de soldagem e exaustão de motores) serão formados gases.

Vapores

Os vapores são a forma gasosa de substâncias que normalmente estão no estado líquido ou sólido à temperatura ambiente e à pressão normal. Quando um líquido evapora, ele se transforma em gás e se mistura com o ar circundante. Um vapor pode ser considerado como um gás, onde a concentração máxima de um vapor depende da temperatura e da pressão de saturação da substância. Qualquer processo envolvendo combustão irá gerar vapores ou gases. As operações de desengorduramento podem ser realizadas por desengorduramento em fase de vapor ou limpeza por imersão com solventes. Atividades de trabalho como carregar e misturar líquidos, pintura, pulverização, limpeza e lavagem a seco podem gerar vapores nocivos.

líquidos

Os líquidos podem consistir de uma substância pura ou de uma solução de duas ou mais substâncias (por exemplo, solventes, ácidos, álcalis). Um líquido armazenado em um recipiente aberto evaporará parcialmente na fase gasosa. A concentração na fase de vapor no equilíbrio depende da pressão de vapor da substância, de sua concentração na fase líquida e da temperatura. Operações ou atividades com líquidos podem ocasionar respingos ou outros contatos com a pele, além de vapores nocivos.

Poeiras

As poeiras consistem em partículas inorgânicas e orgânicas, que podem ser classificadas como inaláveis, torácicas ou respiráveis, dependendo do tamanho das partículas. A maioria das poeiras orgânicas tem origem biológica. Poeiras inorgânicas serão geradas em processos mecânicos como moagem, serragem, corte, trituração, triagem ou peneiramento. As poeiras podem ser dispersadas quando o material empoeirado é manuseado ou levantado por movimentos de ar do tráfego. O manuseio de materiais secos ou em pó por pesagem, enchimento, carga, transporte e embalagem gerará poeira, assim como atividades como isolamento e trabalho de limpeza.

Vapores

Os fumos são partículas sólidas vaporizadas a alta temperatura e condensadas em pequenas partículas. A vaporização é frequentemente acompanhada por uma reação química, como a oxidação. As partículas únicas que compõem uma fumaça são extremamente finas, geralmente menores que 0.1 μm, e geralmente se agregam em unidades maiores. Exemplos são vapores de soldagem, corte a plasma e operações similares.

Brumas

As névoas são gotículas de líquido suspensas geradas pela condensação do estado gasoso para o estado líquido ou pela quebra de um líquido em um estado disperso por respingos, espuma ou atomização. Exemplos são névoas de óleo de operações de corte e retificação, névoas ácidas de galvanoplastia, névoas ácidas ou alcalinas de operações de decapagem ou névoas de spray de tinta de operações de pulverização.

 

Voltar

Leia 14942 vezes Última modificação em Quinta-feira, Maio 26 2022 15: 14

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de Higiene Ocupacional

Abraham, MH, GS Whiting, Y Alarie et al. 1990. Ligação de hidrogênio 12. Um novo QSAR para irritação do trato respiratório superior por produtos químicos transportados pelo ar em camundongos. Atividade Estrutural Quant Relativa 9:6-10.

Adkins, LE et ai. 1990. Carta ao Editor. Appl Occup Environ Hyg 5(11):748-750.

Alarie, Y. 1981. Análise de resposta à dose em estudos com animais: Predição de respostas humanas. Saúde Ambiental Persp 42:9-13.

Conferência Americana de Higienistas Industriais Governamentais (ACGIH). 1994. 1993-1994 Valores Limite para Substâncias Químicas e Agentes Físicos e Índices Biológicos de Exposição. Cincinnati: ACGIH.

—. 1995. Documentação de valores limite. Cincinnati: ACGIH.

Baetjer, AM. 1980. Os primeiros dias da higiene industrial: sua contribuição para os problemas atuais. Am Ind Hyg Assoc J 41:773-777.

Bailer, JC, EAC Crouch, R Shaikh e D Spiegelman. 1988. One-hit models of carcinogenesis: Conservative or not? Análise de risco 8:485-490.

Bogers, M, LM Appelman, VJ Feron, et al. 1987. Efeitos do perfil de exposição na toxicidade por inalação de tetracloreto de carbono em ratos machos. J Appl Toxicol 7:185-191.

Boleij, JSM, E Buringh, D Heederik e H Kromhour. 1995. Higiene Ocupacional para Agentes Químicos e Biológicos. Amsterdã: Elsevier.

Bouyer, J e D Hémon. 1993. Estudando o desempenho de uma matriz de exposição de trabalho. Int J Epidemiol 22(6) Supl. 2:S65-S71.

Bowditch, M, DK Drinker, P Drinker, HH Haggard e A Hamilton. 1940. Código para concentrações seguras de certas substâncias tóxicas comuns usadas na indústria. J Ind Hyg Toxicol 22:251.

Burdorf, A. 1995. Certification of Occupational Hygienists—A Survey of Existing Schemes Around the World. Estocolmo: Associação Internacional de Higiene Ocupacional (IOHA).

Ônibus, JS e JE Gibson. 1994. Mecanismos de defesa do organismo à exposição a tóxicos. Em Patty's Industrial Hygiene and Toxicology, editado por RL Harris, L Cralley e LV Cralley. Nova York: Wiley.

Butterworth, BE e T Slaga. 1987. Nongenotoxic Mechanisms in Carcinogenesis: Banbury Report 25. Cold Spring Harbor, Nova York: Cold Spring Harbor Laboratory.

Calabrese, EJ. 1983. Princípios de Extrapolação Animal. Nova York: Wiley.

Casarett, LJ. 1980. In Casarett and Doull's Toxicology: The Basic Science of Poisons, editado por J Doull, CD Klaassen e MO Amdur. Nova York: Macmillan.

Castleman, BI e GE Ziem. 1988. Influência Corporativa nos Valores-Limite. Am J Ind Med 13(5).

Checkoway, H e CH Rice. 1992. Médias ponderadas no tempo, picos e outros índices de exposição em epidemiologia ocupacional. Am J Ind Med 21:25-33.

Comité Europeu de Normalização (CEN). 1994. Workplace Atmoshperes—Guidance for the Assessment of Exposure to Chemical Agents for Comparison With Limit Values ​​and Measurement Strategy. EN 689, elaborado pelo CEN Technical Committee 137. Bruxelas: CEN.

Cook, WA. 1945. Concentrações máximas permitidas de contaminantes industriais. Ind Med 14(11):936-946.

—. 1986. Limites de exposição ocupacional — em todo o mundo. Akron, Ohio: Associação Americana de Higiene Industrial (AIHA).

Cooper, WC. 1973. Indicadores de suscetibilidade a produtos químicos industriais. J Occup Med 15(4):355-359.

Milho, M. 1985. Estratégias para amostragem de ar. Scand J Work Environ Health 11:173-180.

Dinardi, SR. 1995. Métodos de Cálculo para Higiene Industrial. Nova York: Van Nostrand Reinhold.

Doull, J. 1994. A Abordagem e Prática ACGIH. Appl Occup Environ Hyg 9(1):23-24.

Dourson, MJ e JF Stara. 1983. História regulatória e suporte experimental de fatores de incerteza (segurança). Regul Toxicol Pharmacol 3:224-238.

Droz, PO. 1991. Quantificação de resultados concomitantes de monitoramento biológico e de ar. Appl Ind Hyg 6:465-474.

—. 1992. Quantificação da variabilidade biológica. Ann Occup Health 36:295-306.

Fieldner, AC, SH Katz e SP Kenney. 1921. Máscaras de gás para gases encontrados no combate a incêndios. Boletim No. 248. Pittsburgh: USA Bureau of Mines.

Finklea, J.A. 1988. Valores-limite limiares: uma análise oportuna. Am J Ind Med 14:211-212.

Finley, B, D Proctor e DJ Paustenbach. 1992. Uma alternativa para a concentração de referência de inalação proposta pela USEPA para cromo hexavalente e trivalente. Regul Toxicol Pharmacol 16:161-176.

Fiserova-Bergerova, V. 1987. Desenvolvimento do uso de BEIs e sua implementação. Appl Ind Hyg 2(2):87-92.

Flury, F e F Zernik. 1931. Schadliche Gase, Dampfe, Nebel, Rauch-und Staubarten. Berlim: Springer.

Goldberg, M, H Kromhout, P Guénel, AC Fletcher, M Gérin, DC Glass, D Heederik, T Kauppinen e A Ponti. 1993. Matrizes de exposições de trabalho na indústria. Int J Epidemiol 22(6) Supl. 2:S10-S15.

Gressel, MG e JA Gideon. 1991. Uma visão geral das técnicas de avaliação de riscos de processos. Am Ind Hyg Assoc J 52(4):158-163.

Henderson, Y e HH Haggard. 1943. Gases nocivos e os princípios da respiração influenciando sua ação. Nova York: Reinhold.

Hickey, JLS e PC Reist. 1979. Ajustando os limites de exposição ocupacional para trabalho clandestino, horas extras e exposições ambientais. Am Ind Hyg Assoc J 40:727-734.

Hodgson, JT e RD Jones. 1990. Mortalidade de um grupo de mineiros de estanho 1941-1986. Br J Ind Med 47:665-676.

Holzner, CL, RB Hirsh e JB Perper. 1993. Gerenciando informações de exposição no local de trabalho. Am Ind Hyg Assoc J 54(1):15-21.

Houba, R, D Heederik, G Doekes e PEM van Run. 1996. Relação de sensibilização de exposição para alérgenos de alfa-amilase na indústria de panificação. Am J Resp Crit Care Med 154(1):130-136.

Congresso Internacional de Saúde Ocupacional (ICOH). 1985. Palestras convidadas do XXI Congresso Internacional de Saúde Ocupacional, Dublin. Scand J Work Environ Health 11(3):199-206.

Jacobs, RJ. 1992. Estratégias de reconhecimento de agentes biológicos no ambiente de trabalho e possibilidades de padronização de agentes biológicos. Primeira Conferência Internacional de Ciência da IOHA, Bruxelas, Bélgica, 7 a 9 de dezembro de 1992.

Jahr, J. 1974. Base dose-resposta para definir um valor limite de limiar de quartzo. Arch Environ Health 9:338-340.

Kane, LE e Y Alarie. 1977. Irritação sensorial ao formaldeído e acroleína durante exposições únicas e repetidas em fábricas. Am Ind Hyg Assoc J 38:509-522.

Kobert, R. 1912. As menores quantidades de gases industriais nocivos que são tóxicos e as quantidades que podem ser suportadas. Comp Pract Toxicol 5:45.

Kromhout, H, E Symanski e SM Rappaport. 1993. Avaliação abrangente de componentes de exposição ocupacional a agentes químicos dentro e entre trabalhadores. Ann Occup Hyg 37:253-270.

La Nier, ME. 1984. Valores Limite Limiares: Discussão e Índice de 35 Anos com Recomendações (TLVs: 1946-81). Cincinnati: ACGIH.

Lehmann, KB. 1886. Experimentelle Studien über den Einfluss Technisch und Hygienisch Wichtiger Gase und Dampfe auf Organismus: Ammoniak und Salzsauregas. Arco Hyg 5:1-12.

Lehmann, KB e F Flury. 1938. Toxikologie und Hygiene der Technischen Losungsmittel. Berlim: Springer.

Lehmann, KB e L Schmidt-Kehl. 1936. Die 13 Wichtigsten Chlorkohlenwasserstoffe der Fettreihe vom Standpunkt der Gewerbehygiene. Arch Hyg Bakteriol 116:131-268.

Leidel, NA, KA Busch e JR Lynch. 1977. NIOSH Occupational Exposure Sampling Strategy Manuel. Washington, DC: NIOSH.

Leung, HW e DJ Paustenbach. 1988a. Definição de limites de exposição ocupacional para ácidos e bases orgânicos irritantes com base em suas constantes de dissociação de equilíbrio. Appl Ind Hyg 3:115-118.

—. 1988b. Aplicação da farmacocinética para derivar índices de exposição biológica a partir de valores-limite. Amer Ind Hyg Assoc J 49:445-450.

Leung, HW, FJ Murray e DJ Paustenbach. 1988. Um limite de exposição ocupacional proposto para 2, 3, 7, 8 - TCDD. Amer Ind Hyg Assoc J 49:466-474.

Lundberg, P. 1994. Abordagens nacionais e internacionais para o estabelecimento de padrões ocupacionais na Europa. Appl Occup Environ Hyg 9:25-27.

Lynch, JR. 1995. Medição da exposição do trabalhador. Em Patty's Industrial Hygiene and Toxicology, editado por RL Harris, L Cralley e LV Cralley. Nova York: Wiley.

Maslansky, CJ e SP Maslansky. 1993. Instrumentação de Monitoramento de Ar. Nova York: Van Nostrand Reinhold.

Menzel, DB. 1987. Modelagem farmacocinética fisiológica. Environ Sci Technol 21:944-950.

Miller, FJ e JH Overton. 1989. Questões críticas em dosimetria intra e interespécies de ozônio. Em Atmospheric Ozone Research and Its Policy Implications, editado por T Schneider, SD Lee, GJR Wolters e LD Grant. Amsterdã: Elsevier.

Academia Nacional de Ciências (NAS) e Conselho Nacional de Pesquisa (NRC). 1983. Avaliação de Riscos no Governo Federal: Gerenciando o Processo. Washington, DC: NAS.

Conselho Nacional de Segurança (NSC). 1926. Relatório Final do Comitê do Setor Químico e da Borracha sobre o Benzeno. Washington, DC: National Bureau of Casualty and Surety Underwriters.

Ness, SA. 1991. Monitoramento do Ar para Exposições Tóxicas. Nova York: Van Nostrand Reinhold.

Nielsen, GD. 1991. Mecanismos de ativação do receptor sensorial irritante. CRC Rev Toxicol 21:183-208.

Nollen, SD. 1981. A semana de trabalho compactada: vale a pena o esforço? Eng Eng: 58-63.

Nollen, SD e VH Martin. 1978. Horários alternativos de trabalho. Parte 3: A semana de trabalho compactada. Nova York: AMACOM.

Olishifski, JB. 1988. Aspectos administrativos e clínicos no capítulo Higiene Industrial. Em Medicina Ocupacional: Princípios e Aplicações Práticas, editado por C Zenz. Chicago: Anuário Médico.

Panett, B, D Coggon e ED Acheson. 1985. Matriz de exposição do trabalho para uso em estudos populacionais na Inglaterra e no País de Gales. Br J Ind Med 42:777-783.

Park, C e R Snee. 1983. Avaliação de risco quantitativo: Estado da arte para a carcinogênese. Fund Appl Toxicol 3:320-333.

Patty, FA. 1949. Higiene Industrial e Toxicologia. vol. II. Nova York: Wiley.

Paustenbach, DJ. 1990a. Avaliação de risco à saúde e prática de higiene industrial. Am Ind Hyg Assoc J 51:339-351.

—. 1990b. Limites de exposição ocupacional: seu papel crítico na medicina preventiva e gestão de riscos. Am Ind Hyg Assoc J 51:A332-A336.

—. 1990c. O que o processo de avaliação de risco nos diz sobre os TLVs? Apresentado na Conferência Conjunta de 1990 sobre Higiene Industrial. Vancouver, BC, 24 de outubro.

—. 1994. Limites de exposição ocupacional, farmacocinética e turnos de trabalho incomuns. Em Higiene Industrial e Toxicologia de Patty. Vol. IIIa (4ª ed.). Nova York: Wiley.

—. 1995. A prática da avaliação de riscos à saúde nos Estados Unidos (1975-1995): Como os Estados Unidos e outros países podem se beneficiar dessa experiência. Avaliação de Risco Hum Ecol 1:29-79.

—. 1997. O programa da OSHA para atualizar os limites de exposição permissíveis (PELs): A avaliação de risco pode ajudar a “mover a bola para frente”? Risco em Perspectivas 5(1):1-6. Escola de Saúde Pública da Universidade de Harvard.

Paustenbach, DJ e RR Langner. 1986. Definição de limites de exposição corporativa: estado da arte. Am Ind Hyg Assoc J 47:809-818.

Peto, J, H Seidman e IJ Selikoff. 1982. Mortalidade por mesotelioma em trabalhadores do amianto: implicações para modelos de carcinogênese e avaliação de risco. Br J Câncer 45:124-134.

Comissão de Prevenção da Ftísica. 1916. Relatório dos Mineiros. Joanesburgo: Comitê de Prevenção de Phthisis.

Post, WK, D Heederik, H Kromhout e D Kromhout. 1994. Exposições ocupacionais estimadas por uma matriz de exposição profissional específica da população e taxa de incidência de 25 anos de doença pulmonar crônica não específica (CNSLD): The Zutphen Study. Eur Resp J 7:1048-1055.

Ramazinni, B. 1700. De Morbis Atrificum Diatriba [Doenças dos Trabalhadores]. Chicago: The Univ. da Chicago Press.

Rappaport, SM. 1985. Suavização da variabilidade da exposição no receptor: Implicações para os padrões de saúde. Ann Occup Hyg 29:201-214.

—. 1991. Avaliação de exposições de longo prazo a substâncias tóxicas no ar. Ann Occup Hyg 35:61-121.

—. 1995. Interpretação dos níveis de exposição a agentes químicos. Em Patty's Industrial Hygiene and Toxicology, editado por RL Harris, L Cralley e LV Cralley. Nova York: Wiley.

Rappaport, SM, E Symanski, JW Yager e LL Kupper. 1995. A relação entre monitoramento ambiental e marcadores biológicos na avaliação da exposição. Environ Health Persp 103 Supl. 3:49-53.

Renés, LE. 1978. A pesquisa de higiene industrial e pessoal. Em Patty's Industrial Hygiene and Toxicology, editado por GD Clayton e FE Clayton. Nova York: Wiley.

Roach, SA. 1966. Uma base mais racional para programas de amostragem de ar. Am Ind Hyg Assoc J 27:1-12.

—. 1977. Uma base mais racional para programas de amostragem de ar. Am Ind Hyg Assoc J 20:67-84.

Roach, SA e SM Rappaport. 1990. Mas eles não são limiares: uma análise crítica da documentação dos valores-limite limiares. Am J Ind Med 17:727-753.

Rodricks, JV, A Brett e G Wrenn. 1987. Decisões de risco significativas em agências reguladoras federais. Regul Toxicol Pharmacol 7:307-320.

Rosen, G. 1993. Uso combinado PIMEX de instrumentos de amostragem de ar e filmagem de vídeo: experiência e resultados durante seis anos de uso. Appl Occup Environ Hyg 8(4).

Rylander, R. 1994. Agentes causadores de doenças relacionadas à poeira orgânica: Anais de um workshop internacional, Suécia. Am J Ind Med 25:1-11.

Sayers, RR. 1927. Toxicologia de gases e vapores. Em Tabelas Críticas Internacionais de Dados Numéricos, Física, Química e Toxicologia. Nova York: McGraw-Hill.

Schrenk, HH. 1947. Interpretação dos limites permitidos. Am Ind Hyg Assoc Q 8:55-60.

Seiler, J.P. 1977. Limites aparentes e reais: Um estudo de dois mutagênicos. In Progress in Genetic Toxicology, editado por D Scott, BA Bridges e FH Sobels. Nova York: Elsevier Biomedical.

Seixas, NS, TG Robins e M Becker. 1993. Uma nova abordagem para a caracterização da exposição cumulativa para o estudo da doença ocupacional crônica. Am J Epidemiol 137:463-471.

Smith, RG e JB Olishifski. 1988. Toxicologia industrial. Em Fundamentos de Higiene Industrial, editado por JB Olishifski. Chicago: Conselho Nacional de Segurança.

SMITH, TJ. 1985. Desenvolvimento e aplicação de um modelo para estimar os níveis de poeira alveolar e intersticial. Ann Occup Hyg 29:495-516.

—. 1987. Avaliação da exposição para epidemiologia ocupacional. Am J Ind Med 12:249-268.

Smith, HF. 1956. Comunicação aprimorada: padrão higiênico para inalação diária. Am Ind Hyg Assoc Q 17:129-185.

Stokinger, HE. 1970. Critérios e procedimentos para avaliar as respostas tóxicas a produtos químicos industriais. Em Níveis Admissíveis de Substâncias Tóxicas no Ambiente de Trabalho. Genebra: OIT.

—. 1977. O caso de TLVs cancerígenos continua forte. Occup Health Safety 46 (março-abril): 54-58.

—. 1981. Valores-limite: Parte I. Dang Prop Ind Mater Rep (maio-junho):8-13.

Stott, WT, RH Reitz, AM Schumann e PG Watanabe. 1981. Eventos genéticos e não genéticos em neoplasia. Food Cosmet Toxicol 19:567-576.

SUTER, AH. 1993. Ruído e conservação da audição. Manual de Conservação Auditiva. Milwaukee, Wisc: Conselho de Credenciamento em Conservação Auditiva Ocupacional.

Tait, K. 1992. O Sistema Especializado de Avaliação de Exposição no Local de Trabalho (WORK SPERT). Am Ind Hyg Assoc J 53(2):84-98.

Tarlau, ES. 1990. Higiene industrial sem limites. Um editorial convidado. Am Ind Hyg Assoc J 51:A9-A10.

Travis, CC, SA Richter, EA Crouch, R Wilson e E Wilson. 1987. Gerenciamento de risco de câncer: Uma revisão de 132 decisões reguladoras federais. Environ Sci Technol 21(5):415-420.

Watanabe, PG, RH Reitz, AM Schumann, MJ McKenna e PJ Gehring. 1980. Implicações dos mecanismos de tumorigenicidade para avaliação de risco. Em The Scientific Basis of Toxicity Assessment, editado por M Witschi. Amsterdã: Elsevier.

Wegman, DH, EA Eisen, SR Woskie e X Hu. 1992. Medindo a exposição para o estudo epidemiológico de efeitos agudos. Am J Ind Med 21:77-89.

WEIL, CS. 1972. Estatísticas versus fatores de segurança e julgamento científico na avaliação da segurança para o homem. Toxicol Appl Pharmacol 21:454-463.

Wilkinson, CF. 1988. Sendo mais realista sobre a carcinogênese química. Environ Sci Technol 9:843-848.

Wong, O. 1987. Um estudo de mortalidade em toda a indústria de trabalhadores químicos expostos ocupacionalmente ao benzeno. II Análises dose-resposta. Br J Ind Med 44:382-395.

Comissão Mundial sobre Meio Ambiente e Desenvolvimento (WCED). 1987. Nosso Futuro Comum. Relatório Brundtland. Oxford: OUP.

Organização Mundial da Saúde (OMS). 1977. Métodos usados ​​no estabelecimento de níveis permitidos na exposição ocupacional a agentes nocivos. Relatório Técnico No. 601. Genebra: Organização Internacional do Trabalho (OIT).

—. 1992a. Nosso Planeta, Nossa Saúde. Relatório da Comissão de Saúde e Meio Ambiente da OMS. Genebra: OMS.

—. 1992b. Higiene Ocupacional na Europa: Desenvolvimento da Profissão. European Occupational Health Series No. 3. Copenhagen: Escritório Regional da OMS para a Europa.

Zielhuis, RL e van der FW Kreek. 1979a. Cálculos de um fator de segurança na definição de níveis permitidos de saúde para exposição ocupacional. Uma proposta. I. Int Arch Occup Environ Health 42:191-201.

Ziem, GE e BI Castleman. 1989. Valores-limite limiares: Perspectiva histórica e prática atual. J Occup Med 13:910-918.