A toxicologia genética, por definição, é o estudo de como os agentes químicos ou físicos afetam o intrincado processo da hereditariedade. Os produtos químicos genotóxicos são definidos como compostos capazes de modificar o material hereditário das células vivas. A probabilidade de um determinado produto químico causar danos genéticos inevitavelmente depende de várias variáveis, incluindo o nível de exposição do organismo ao produto químico, a distribuição e retenção do produto químico uma vez que entra no corpo, a eficiência da ativação metabólica e/ou sistemas de desintoxicação em tecidos-alvo e a reatividade do produto químico ou de seus metabólitos com macromoléculas críticas dentro das células. A probabilidade de que o dano genético cause doença depende, em última análise, da natureza do dano, da capacidade da célula de reparar ou amplificar o dano genético, da oportunidade de expressar qualquer alteração induzida e da capacidade do corpo de reconhecer e suprimir a multiplicação de células aberrantes.
Em organismos superiores, a informação hereditária é organizada em cromossomos. Os cromossomos consistem em filamentos fortemente condensados de DNA associado a proteínas. Dentro de um único cromossomo, cada molécula de DNA existe como um par de cadeias longas e não ramificadas de subunidades de nucleotídeos ligadas entre si por ligações fosfodiéster que unem o carbono 5 de uma porção de desoxirribose ao carbono 3 da próxima (figura 1). Além disso, uma das quatro bases nucleotídicas diferentes (adenina, citosina, guanina ou timina) está ligada a cada subunidade de desoxirribose como contas em um cordão. Tridimensionalmente, cada par de fitas de DNA forma uma dupla hélice com todas as bases voltadas para o interior da espiral. Dentro da hélice, cada base está associada à sua base complementar na fita de DNA oposta; a ligação de hidrogênio dita o emparelhamento forte e não covalente de adenina com timina e guanina com citosina (figura 1). Como a sequência de bases nucleotídicas é complementar em todo o comprimento da molécula de DNA duplex, ambas as fitas carregam essencialmente a mesma informação genética. De fato, durante a replicação do DNA, cada fita serve como modelo para a produção de uma nova fita parceira.
Figura 1. A organização (a) primária, (b) secundária e (c) terciária da informação hereditária humana
Usando o RNA e uma série de proteínas diferentes, a célula decifra a informação codificada pela sequência linear de bases dentro de regiões específicas do DNA (genes) e produz proteínas que são essenciais para a sobrevivência celular básica, bem como para o crescimento e diferenciação normais. Em essência, os nucleotídeos funcionam como um alfabeto biológico usado para codificar os aminoácidos, os blocos de construção das proteínas.
Quando nucleotídeos incorretos são inseridos ou nucleotídeos são perdidos, ou quando nucleotídeos desnecessários são adicionados durante a síntese de DNA, o erro é chamado de mutação. Estima-se que ocorra menos de uma mutação para cada 109 nucleotídeos incorporados durante a replicação normal das células. Embora as mutações não sejam necessariamente prejudiciais, as alterações que causam inativação ou superexpressão de genes importantes podem resultar em uma variedade de distúrbios, incluindo câncer, doenças hereditárias, anormalidades do desenvolvimento, infertilidade e morte embrionária ou perinatal. Muito raramente, uma mutação pode levar a uma maior sobrevida; tais ocorrências são a base da seleção natural.
Embora alguns produtos químicos reajam diretamente com o DNA, a maioria requer ativação metabólica. No último caso, intermediários eletrofílicos, como epóxidos ou íons de carbono, são responsáveis por induzir lesões em uma variedade de sítios nucleofílicos dentro do material genético (figura 2). Em outros casos, a genotoxicidade é mediada por subprodutos da interação do composto com lipídios intracelulares, proteínas ou oxigênio.
Figura 2. Bioativação de: a) benzo(a)pireno; e b) N-nitrosodimetilamina
Devido à sua relativa abundância nas células, as proteínas são o alvo mais frequente da interação tóxica. No entanto, a modificação do DNA é de maior preocupação devido ao papel central desta molécula na regulação do crescimento e diferenciação através de múltiplas gerações de células.
No nível molecular, os compostos eletrofílicos tendem a atacar o oxigênio e o nitrogênio no DNA. Os locais mais propensos à modificação estão ilustrados na figura 3. Embora os oxigênios dentro dos grupos fosfato no esqueleto do DNA também sejam alvos para modificação química, acredita-se que o dano às bases seja biologicamente mais relevante, uma vez que esses grupos são considerados os principais elementos na molécula de DNA.
Figura 3. Locais primários de danos ao DNA induzidos quimicamente
Os compostos que contêm uma porção eletrofílica normalmente exercem genotoxicidade pela produção de mono-adutos no DNA. Da mesma forma, os compostos que contêm duas ou mais porções reativas podem reagir com dois centros nucleofílicos diferentes e, assim, produzir reticulações intra ou intermoleculares no material genético (figura 4). As ligações cruzadas entre fitas DNA-DNA e DNA-proteína podem ser particularmente citotóxicas, pois podem formar blocos completos para a replicação do DNA. Por razões óbvias, a morte de uma célula elimina a possibilidade de ela sofrer mutação ou transformação neoplásica. Agentes genotóxicos também podem atuar induzindo quebras no esqueleto fosfodiéster, ou entre bases e açúcares (produzindo sítios abásicos) no DNA. Essas quebras podem ser resultado direto da reatividade química no local danificado ou podem ocorrer durante o reparo de um dos tipos de lesão de DNA mencionados acima.
Figura 4. Vários tipos de dano ao complexo proteína-DNA
Nos últimos trinta a quarenta anos, várias técnicas foram desenvolvidas para monitorar o tipo de dano genético induzido por vários produtos químicos. Tais ensaios são descritos em detalhes em outras partes deste capítulo e enciclopédia.
A replicação incorreta de "microlesões", como mono-adutos, locais abásicos ou quebras de fita simples, pode resultar em substituições de pares de bases de nucleotídeos ou na inserção ou exclusão de fragmentos de polinucleotídeos curtos no DNA cromossômico. Em contraste, “macrolesões”, como adutos volumosos, ligações cruzadas ou quebras de fita dupla podem desencadear o ganho, perda ou rearranjo de pedaços relativamente grandes de cromossomos. De qualquer forma, as consequências podem ser devastadoras para o organismo, pois qualquer um desses eventos pode levar à morte celular, perda de função ou transformação maligna das células. Exatamente como o dano ao DNA causa câncer é amplamente desconhecido. Atualmente, acredita-se que o processo pode envolver ativação inadequada de proto-oncogenes, como meu c e a ras, e/ou inativação de genes supressores de tumor recentemente identificados, como p53. A expressão anormal de qualquer tipo de gene anula os mecanismos celulares normais para controlar a proliferação e/ou diferenciação celular.
A preponderância da evidência experimental indica que o desenvolvimento de câncer após a exposição a compostos eletrofílicos é um evento relativamente raro. Isso pode ser explicado, em parte, pela capacidade intrínseca da célula de reconhecer e reparar o DNA danificado ou pela falha das células com DNA danificado em sobreviver. Durante o reparo, a base danificada, nucleotídeo ou trecho curto de nucleotídeos ao redor do local danificado é removido e (usando a fita oposta como modelo) um novo pedaço de DNA é sintetizado e inserido no lugar. Para ser eficaz, o reparo do DNA deve ocorrer com grande precisão antes da divisão celular, antes das oportunidades de propagação da mutação.
Estudos clínicos demonstraram que pessoas com defeitos hereditários na capacidade de reparar DNA danificado frequentemente desenvolvem câncer e/ou anormalidades de desenvolvimento em idade precoce (tabela 1). Esses exemplos fornecem fortes evidências que ligam o acúmulo de danos ao DNA a doenças humanas. Da mesma forma, os agentes que promovem a proliferação celular (como o acetato de tetradecanoilforbol) geralmente aumentam a carcinogênese. Para esses compostos, o aumento da probabilidade de transformação neoplásica pode ser consequência direta da diminuição do tempo disponível para a célula realizar o reparo adequado do DNA.
Tabela 1. Distúrbios hereditários propensos ao câncer que parecem envolver defeitos no reparo do DNA
Síndrome | Sintomas | Fenótipo celular |
Ataxia Telangiectasia | Deterioração neurológica Imunodeficiência Alta incidência de linfoma |
Hipersensibilidade à radiação ionizante e a certos agentes alquilantes. Replicação desregulada do DNA danificado (pode indicar tempo reduzido para o reparo do DNA) |
síndrome de Bloom | Anormalidades de desenvolvimento Lesões na pele exposta Alta incidência de tumores do sistema imunológico e do trato gastrointestinal |
Alta frequência de aberrações cromossômicas Ligação defeituosa de quebras associadas ao reparo do DNA |
Anemia de Fanconi | Retardo de crescimento Alta incidência de leucemia |
Hipersensibilidade a agentes de reticulação Alta frequência de aberrações cromossômicas Reparo defeituoso de ligações cruzadas no DNA |
Câncer de cólon hereditário sem polipose | Alta incidência de câncer de cólon | Defeito no reparo do DNA incompatível (quando a inserção do nucleotídeo errado ocorre durante a replicação) |
Xeroderma pigmentoso | Alta incidência de epitelioma em áreas expostas da pele Comprometimento neurológico (em muitos casos) |
Hipersensibilidade à luz ultravioleta e a muitos carcinógenos químicos Defeitos no reparo por excisão e/ou replicação do DNA danificado |
As primeiras teorias sobre como os produtos químicos interagem com o DNA remontam a estudos conduzidos durante o desenvolvimento do gás mostarda para uso em guerra. Uma compreensão maior surgiu dos esforços para identificar agentes anticancerígenos que interromperiam seletivamente a replicação de células tumorais que se dividem rapidamente. O aumento da preocupação pública com os perigos em nosso meio ambiente levou a pesquisas adicionais sobre os mecanismos e consequências da interação química com o material genético. Exemplos de vários tipos de produtos químicos que exercem genotoxicidade são apresentados na tabela 2.
Tabela 2. Exemplos de produtos químicos que exibem genotoxicidade em células humanas
Classe de produto químico | Exemplo | Fonte de exposição | Provável lesão genotóxica |
Aflatoxinas | Aflatoxina B1 | Comida contaminada | Adutos de DNA volumosos |
Aminas aromáticas | 2-Acetilaminofluoreno | Ambiental | Adutos de DNA volumosos |
Aziridina quinonas | Mitomicina C | quimioterapia para câncer | Mono-adutos, ligações cruzadas entre fitas e quebras de fita simples no DNA. |
Hidrocarbonetos clorados | Cloreto de vinilo | Ambiental | Mono-adutos no DNA |
Metais e compostos metálicos | Cisplatina | quimioterapia para câncer | Ambas as ligações cruzadas intra e intercadeias no DNA |
compostos de níquel | Ambiental | Mono-adutos e quebras de fita simples no DNA | |
Mostardas Nitrogenadas | Ciclofosfamida | quimioterapia para câncer | Mono-adutos e ligações cruzadas entre fitas no DNA |
Nitrosaminas | N-nitrosodimetilamina | Comida contaminada | Mono-adutos no DNA |
Hidrocarbonetos aromáticos policíclicos | Benzo (a) pireno | Ambiental | Adutos de DNA volumosos |