Domingo, janeiro 16 2011 18: 53

Teste de Toxicidade In Vitro

Classifique este artigo
(3 votos)

O surgimento de tecnologias sofisticadas em biologia molecular e celular estimulou uma evolução relativamente rápida nas ciências da vida, incluindo a toxicologia. Com efeito, o foco da toxicologia está mudando de animais inteiros e populações de animais inteiros para as células e moléculas de animais individuais e humanos. Desde meados da década de 1980, os toxicologistas começaram a empregar essas novas metodologias para avaliar os efeitos dos produtos químicos nos sistemas vivos. Como uma progressão lógica, tais métodos estão sendo adaptados para fins de teste de toxicidade. Esses avanços científicos trabalharam em conjunto com fatores sociais e econômicos para efetuar mudanças na avaliação da segurança do produto e do risco potencial.

Os fatores econômicos estão especificamente relacionados ao volume de materiais que devem ser testados. Uma infinidade de novos cosméticos, produtos farmacêuticos, pesticidas, produtos químicos e produtos domésticos é introduzida no mercado todos os anos. Todos esses produtos devem ser avaliados quanto à sua toxicidade potencial. Além disso, há um acúmulo de produtos químicos já em uso que não foram adequadamente testados. A enorme tarefa de obter informações de segurança detalhadas sobre todos esses produtos químicos usando métodos tradicionais de testes em animais inteiros seria dispendiosa em termos de dinheiro e tempo, se ao menos pudesse ser realizada.

Há também questões sociais relacionadas à saúde e segurança pública, bem como a crescente preocupação pública com o uso de animais para testes de segurança de produtos. No que diz respeito à segurança humana, grupos de interesse público e de defesa do meio ambiente exerceram pressão significativa sobre as agências governamentais para aplicar regulamentos mais rigorosos sobre produtos químicos. Um exemplo recente disso foi um movimento de alguns grupos ambientalistas para proibir o cloro e compostos contendo cloro nos Estados Unidos. Uma das motivações para uma ação tão extrema reside no fato de que a maioria desses compostos nunca foi adequadamente testada. Do ponto de vista toxicológico, o conceito de proibir toda uma classe de diversos produtos químicos com base apenas na presença de cloro é cientificamente infundado e irresponsável. No entanto, é compreensível que, do ponto de vista do público, haja alguma garantia de que os produtos químicos liberados no meio ambiente não representam um risco significativo à saúde. Tal situação ressalta a necessidade de métodos mais eficientes e rápidos para avaliar a toxicidade.

A outra preocupação social que impactou a área de testes de toxicidade é o bem-estar animal. O número crescente de grupos de proteção animal em todo o mundo expressou considerável oposição ao uso de animais inteiros para testes de segurança de produtos. Campanhas ativas foram travadas contra fabricantes de cosméticos, produtos domésticos e de cuidados pessoais e farmacêuticos na tentativa de interromper os testes em animais. Tais esforços na Europa resultaram na aprovação da Sexta Emenda à Diretiva 76/768/EEC (Diretiva de Cosméticos). A consequência desta Diretiva é que os produtos cosméticos ou ingredientes cosméticos que foram testados em animais após 1º de janeiro de 1998 não podem ser comercializados na União Européia, a menos que métodos alternativos sejam insuficientemente validados. Embora esta Diretiva não tenha jurisdição sobre a venda de tais produtos nos Estados Unidos ou em outros países, ela afetará significativamente as empresas que possuem mercados internacionais que incluem a Europa.

O conceito de alternativas, que constitui a base para o desenvolvimento de outros testes além dos animais inteiros, é definido pelos três Rs: redução no número de animais utilizados; refinamento de protocolos para que os animais experimentem menos estresse ou desconforto; e substituição dos atuais testes em animais com testes in vitro (ou seja, testes feitos fora do animal vivo), modelos de computador ou teste em vertebrados inferiores ou espécies de invertebrados. Os três Rs foram introduzidos em um livro publicado em 1959 por dois cientistas britânicos, WMS Russell e Rex Burch, Os Princípios da Técnica Experimental Humanitária. Russell e Burch afirmaram que a única maneira pela qual resultados científicos válidos podem ser obtidos é por meio do tratamento humano dos animais, e acreditavam que métodos deveriam ser desenvolvidos para reduzir o uso de animais e, finalmente, substituí-los. Curiosamente, os princípios delineados por Russell e Burch receberam pouca atenção até o ressurgimento do movimento de bem-estar animal em meados da década de 1970. Hoje o conceito dos três Rs está muito na vanguarda no que diz respeito à pesquisa, testes e educação.

Em resumo, o desenvolvimento de metodologias de testes in vitro foi influenciado por uma variedade de fatores que convergiram nos últimos dez a 20 anos. É difícil determinar se algum desses fatores isoladamente teria um efeito tão profundo nas estratégias de teste de toxicidade.

Conceito de testes de toxicidade in vitro

Esta seção se concentrará apenas nos métodos in vitro para avaliar a toxicidade, como uma das alternativas aos testes em animais inteiros. Alternativas adicionais não animais, como modelagem por computador e relações quantitativas entre estrutura e atividade, são discutidas em outros artigos deste capítulo.

Os estudos in vitro são geralmente conduzidos em células ou tecidos animais ou humanos fora do corpo. In vitro significa literalmente “em vidro” e refere-se a procedimentos realizados em material vivo ou componentes de material vivo cultivados em placas de Petri ou em tubos de ensaio sob condições definidas. Estes podem ser contrastados com estudos in vivo, ou aqueles realizados “no animal vivo”. Embora seja difícil, se não impossível, projetar os efeitos de uma substância química em um organismo complexo quando as observações estão confinadas a um único tipo de células em uma placa, os estudos in vitro fornecem uma quantidade significativa de informações sobre a toxicidade intrínseca também como mecanismos celulares e moleculares de toxicidade. Além disso, eles oferecem muitas vantagens em relação aos estudos in vivo, pois geralmente são menos caros e podem ser conduzidos em condições mais controladas. Além disso, apesar de ainda ser necessário um pequeno número de animais para obter células para culturas in vitro, esses métodos podem ser considerados alternativas de redução (uma vez que são usados ​​muito menos animais em comparação com estudos in vivo) e alternativas de refinamento (porque eliminam a necessidade submeter os animais às consequências tóxicas adversas impostas pelos experimentos in vivo).

Para interpretar os resultados dos testes de toxicidade in vitro, determinar sua utilidade potencial na avaliação da toxicidade e relacioná-los com o processo toxicológico geral in vivo, é necessário entender qual parte do processo toxicológico está sendo examinada. Todo o processo toxicológico consiste em eventos que se iniciam com a exposição do organismo a um agente físico ou químico, progridem por meio de interações celulares e moleculares e, por fim, se manifestam na resposta de todo o organismo. Os testes in vitro são geralmente limitados à parte do processo toxicológico que ocorre no nível celular e molecular. Os tipos de informação que podem ser obtidos a partir de estudos in vitro incluem vias de metabolismo, interação de metabólitos ativos com alvos celulares e moleculares e desfechos tóxicos potencialmente mensuráveis ​​que podem servir como biomarcadores moleculares para exposição. Em uma situação ideal, o mecanismo de toxicidade de cada produto químico decorrente da exposição à manifestação no organismo seria conhecido, de forma que as informações obtidas nos testes in vitro pudessem ser totalmente interpretadas e relacionadas à resposta de todo o organismo. No entanto, isso é virtualmente impossível, uma vez que relativamente poucos mecanismos toxicológicos completos foram elucidados. Assim, os toxicologistas se deparam com uma situação na qual os resultados de um teste in vitro não podem ser usados ​​como uma previsão totalmente precisa da toxicidade in vivo porque o mecanismo é desconhecido. No entanto, frequentemente durante o processo de desenvolvimento de um teste in vitro, componentes do(s) mecanismo(s) celular e molecular de toxicidade são elucidados.

Uma das principais questões não resolvidas em torno do desenvolvimento e implementação de testes in vitro está relacionada à seguinte consideração: eles devem ser mecanicistas ou basta que sejam descritivos? É indiscutivelmente melhor, do ponto de vista científico, utilizar apenas testes baseados em mecanismos como substitutos para testes in vivo. No entanto, na ausência de conhecimento mecanicista completo, a perspectiva de desenvolver testes in vitro para substituir completamente os testes com animais inteiros em um futuro próximo é quase nula. Isso não exclui, no entanto, o uso de tipos de ensaios mais descritivos como ferramentas de triagem precoce, o que é o caso atualmente. Essas telas resultaram em uma redução significativa no uso de animais. Portanto, até que mais informações mecanísticas sejam geradas, pode ser necessário empregar, de forma mais limitada, testes cujos resultados simplesmente se correlacionam bem com os obtidos in vivo.

Testes in vitro para citotoxicidade

Nesta seção, serão descritos vários testes in vitro que foram desenvolvidos para avaliar o potencial citotóxico de um produto químico. Na maior parte, esses testes são fáceis de realizar e a análise pode ser automatizada. Um teste in vitro comumente usado para citotoxicidade é o ensaio de vermelho neutro. Este ensaio é feito em células em cultura e, para a maioria das aplicações, as células podem ser mantidas em placas de cultura que contêm 96 pequenos poços, cada um com 6.4 mm de diâmetro. Uma vez que cada poço pode ser utilizado para uma única determinação, esta disposição pode acomodar múltiplas concentrações do produto químico em estudo, bem como controlos positivos e negativos com um número suficiente de réplicas para cada um. Após o tratamento das células com várias concentrações do produto químico de teste variando em pelo menos duas ordens de grandeza (por exemplo, de 0.01 mM a 1 mM), bem como produtos químicos de controle positivo e negativo, as células são lavadas e tratadas com vermelho neutro, um corante que pode ser captado e retido apenas por células vivas. O corante pode ser adicionado após a remoção do produto químico em estudo para determinar os efeitos imediatos, ou pode ser adicionado várias vezes após a remoção do produto químico em estudo para determinar os efeitos cumulativos ou retardados. A intensidade da cor em cada poço corresponde ao número de células vivas naquele poço. A intensidade da cor é medida por um espectrofotômetro que pode ser equipado com um leitor de placas. O leitor de placas é programado para fornecer medições individuais para cada um dos 96 poços da placa de cultura. Essa metodologia automatizada permite que o investigador execute rapidamente um experimento de concentração-resposta e obtenha dados estatisticamente úteis.

Outro ensaio relativamente simples para citotoxicidade é o teste MTT. O MTT (brometo de 3[4,5-dimetiltiazol-2-il]-2,5-difeniltetrazólio) é um corante de tetrazólio que é reduzido por enzimas mitocondriais a uma cor azul. Apenas as células com mitocôndrias viáveis ​​manterão a capacidade de realizar esta reação; portanto, a intensidade da cor está diretamente relacionada ao grau de integridade mitocondrial. Este é um teste útil para detectar compostos citotóxicos gerais, bem como aqueles agentes que visam especificamente as mitocôndrias.

A medição da atividade da lactato desidrogenase (LDH) também é usada como um ensaio de base ampla para citotoxicidade. Esta enzima está normalmente presente no citoplasma de células vivas e é liberada no meio de cultura celular através de membranas celulares permeáveis ​​de células mortas ou moribundas que foram adversamente afetadas por um agente tóxico. Pequenas quantidades de meio de cultura podem ser removidas em vários momentos após o tratamento químico das células para medir a quantidade de LDH liberada e determinar o tempo de toxicidade. Embora o ensaio de liberação de LDH seja uma avaliação muito geral da citotoxicidade, é útil porque é fácil de realizar e pode ser feito em tempo real.

Existem muitos novos métodos sendo desenvolvidos para detectar danos celulares. Métodos mais sofisticados empregam sondas fluorescentes para medir uma variedade de parâmetros intracelulares, como liberação de cálcio e mudanças no pH e potencial de membrana. Em geral, essas sondas são muito sensíveis e podem detectar alterações celulares mais sutis, reduzindo assim a necessidade de usar a morte celular como ponto final. Além disso, muitos desses ensaios fluorescentes podem ser automatizados pelo uso de placas de 96 poços e leitores de placas fluorescentes.

Uma vez que os dados tenham sido coletados em uma série de produtos químicos usando um desses testes, as toxicidades relativas podem ser determinadas. A toxicidade relativa de um produto químico, conforme determinado em um teste in vitro, pode ser expressa como a concentração que exerce um efeito de 50% na resposta final de células não tratadas. Esta determinação é referida como CE50 (Eeficaz Cconcentração para 50% das células) e pode ser usado para comparar toxicidades de diferentes produtos químicos in vitro. (Um termo semelhante usado na avaliação da toxicidade relativa é IC50, indicando a concentração de uma substância química que causa uma inibição de 50% de um processo celular, por exemplo, a capacidade de absorver o vermelho neutro.) Não é fácil avaliar se a toxicidade relativa in vitro das substâncias químicas é comparável à sua relativa em toxicidades in vivo, uma vez que existem muitos fatores de confusão no sistema in vivo, como toxicocinética, metabolismo, reparação e mecanismos de defesa. Além disso, como a maioria desses ensaios mede os pontos finais de citotoxicidade geral, eles não são baseados em mecanismos. Portanto, a concordância entre as toxicidades relativas in vitro e in vivo é simplesmente correlativa. Apesar das inúmeras complexidades e dificuldades em extrapolar de in vitro para in vivo, esses testes in vitro estão se mostrando muito valiosos porque são simples e baratos de realizar e podem ser usados ​​como telas para sinalizar drogas ou produtos químicos altamente tóxicos em estágios iniciais de desenvolvimento.

Toxicidade do Órgão Alvo

Testes in vitro também podem ser usados ​​para avaliar a toxicidade de órgãos-alvo específicos. Há uma série de dificuldades associadas ao planejamento de tais testes, sendo a mais notável a incapacidade dos sistemas in vitro de manter muitas das características do órgão in vivo. Frequentemente, quando as células são retiradas de animais e colocadas em cultura, elas tendem a degenerar rapidamente e/ou a se desdiferenciar, ou seja, perdem suas funções de órgãos e se tornam mais genéricas. Isso representa um problema, pois em um curto período de tempo, geralmente alguns dias, as culturas não são mais úteis para avaliar os efeitos específicos de uma toxina em órgãos.

Muitos desses problemas estão sendo superados por causa dos recentes avanços na biologia molecular e celular. A informação que é obtida sobre o ambiente celular in vivo pode ser utilizada na modulação das condições de cultura in vitro. Desde meados da década de 1980, novos fatores de crescimento e citocinas foram descobertos, e muitos deles estão agora disponíveis comercialmente. A adição desses fatores às células em cultura ajuda a preservar sua integridade e também pode ajudar a reter funções mais diferenciadas por períodos de tempo mais longos. Outros estudos básicos ampliaram o conhecimento das necessidades nutricionais e hormonais das células em cultura, para que novos meios possam ser formulados. Avanços recentes também foram feitos na identificação de matrizes extracelulares naturais e artificiais nas quais as células podem ser cultivadas. A cultura de células nessas diferentes matrizes pode ter efeitos profundos em sua estrutura e função. Uma grande vantagem derivada desse conhecimento é a capacidade de controlar intrincadamente o ambiente das células em cultura e examinar individualmente os efeitos desses fatores nos processos celulares básicos e em suas respostas a diferentes agentes químicos. Em suma, esses sistemas podem fornecer uma grande visão sobre os mecanismos de toxicidade específicos do órgão.

Muitos estudos de toxicidade de órgãos-alvo são conduzidos em células primárias, que por definição são isoladas recentemente de um órgão e geralmente exibem um tempo de vida finito em cultura. Existem muitas vantagens em ter culturas primárias de um único tipo de célula de um órgão para avaliação de toxicidade. De uma perspectiva mecanicista, tais culturas são úteis para estudar alvos celulares específicos de uma substância química. Em alguns casos, dois ou mais tipos de células de um órgão podem ser cultivados juntos, e isso oferece uma vantagem adicional de poder observar as interações célula-célula em resposta a uma toxina. Alguns sistemas de co-cultura para pele foram projetados de modo que formem uma estrutura tridimensional semelhante à pele in vivo. Também é possível co-cultivar células de diferentes órgãos – por exemplo, fígado e rim. Esse tipo de cultura seria útil para avaliar os efeitos específicos das células renais de uma substância química que deve ser bioativada no fígado.

As ferramentas biológicas moleculares também desempenharam um papel importante no desenvolvimento de linhagens celulares contínuas que podem ser úteis para testes de toxicidade de órgãos-alvo. Estas linhas celulares são geradas por transfecção de ADN em células primárias. No procedimento de transfecção, as células e o DNA são tratados de forma que o DNA possa ser absorvido pelas células. O DNA geralmente é de um vírus e contém um gene ou genes que, quando expressos, permitem que as células se tornem imortalizadas (ou seja, capazes de viver e crescer por longos períodos de tempo em cultura). O DNA também pode ser manipulado de modo que o gene imortalizador seja controlado por um promotor induzível. A vantagem desse tipo de construção é que as células se dividirão apenas quando receberem o estímulo químico apropriado para permitir a expressão do gene imortalizador. Um exemplo dessa construção é o grande gene do antígeno T do Simian Virus 40 (SV40) (o gene da imortalização), precedido pela região promotora do gene da metalotioneína, que é induzido pela presença de um metal no meio de cultura. Assim, após o gene ser transfectado nas células, as células podem ser tratadas com baixas concentrações de zinco para estimular o promotor MT e ativar a expressão do gene do antígeno T. Nessas condições, as células proliferam. Quando o zinco é removido do meio, as células param de se dividir e, em condições ideais, retornam a um estado em que expressam suas funções específicas do tecido.

A capacidade de gerar células imortalizadas combinada com os avanços na tecnologia de cultura de células contribuíram muito para a criação de linhagens de células de vários órgãos diferentes, incluindo cérebro, rim e fígado. No entanto, antes que essas linhagens celulares possam ser usadas como substitutas para os tipos celulares genuínos, elas devem ser cuidadosamente caracterizadas para determinar o quão “normais” elas realmente são.

Outros sistemas in vitro para estudar a toxicidade de órgãos-alvo envolvem complexidade crescente. À medida que os sistemas in vitro progridem em complexidade de uma única célula para cultura de órgão inteiro, eles se tornam mais comparáveis ​​ao meio in vivo, mas ao mesmo tempo tornam-se muito mais difíceis de controlar devido ao aumento do número de variáveis. Portanto, o que pode ser ganho ao passar para um nível mais alto de organização pode ser perdido na incapacidade do pesquisador de controlar o ambiente experimental. A Tabela 1 compara algumas das características de vários sistemas in vitro que têm sido usados ​​para estudar a hepatotoxicidade.

Tabela 1. Comparação de sistemas in vitro para estudos de hepatotoxicidade

System Complexidade
(nível de interação)
Capacidade de reter funções específicas do fígado Duração potencial da cultura Capacidade de controlar o ambiente
Linhagens celulares imortalizadas alguma célula para célula (varia com a linha celular) pobre a bom (varia de acordo com a linha celular) indeterminado excelente
Culturas primárias de hepatócitos célula a célula regular a excelente (varia de acordo com as condições da cultura) dias a semanas excelente
Co-culturas de células hepáticas célula a célula (entre os mesmos e diferentes tipos de células) bom a ótimo semanas excelente
fatias de fígado célula a célula (entre todos os tipos de células) bom a ótimo horas a dias Bom estado, com sinais de uso
Fígado isolado e perfundido célula a célula (entre todos os tipos de células) e intra-órgão excelente horas feira

 

Fatias de tecido cortadas com precisão estão sendo usadas mais extensivamente para estudos toxicológicos. Existem novos instrumentos disponíveis que permitem ao pesquisador cortar fatias de tecido uniformes em um ambiente estéril. As fatias de tecido oferecem alguma vantagem sobre os sistemas de cultura de células, pois todos os tipos de células do órgão estão presentes e mantêm sua arquitetura in vivo e comunicação intercelular. Assim, estudos in vitro podem ser conduzidos para determinar o tipo de célula-alvo dentro de um órgão, bem como para investigar a toxicidade específica do órgão-alvo. Uma desvantagem das fatias é que elas degeneram rapidamente após as primeiras 24 horas de cultivo, principalmente devido à má difusão de oxigênio para as células no interior das fatias. No entanto, estudos recentes indicaram que uma aeração mais eficiente pode ser alcançada por meio de uma rotação suave. Isso, junto com o uso de um meio mais complexo, permite que as fatias sobrevivam por até 96 horas.

Os explantes de tecido são semelhantes em conceito às fatias de tecido e também podem ser usados ​​para determinar a toxicidade de produtos químicos em órgãos-alvo específicos. Os explantes de tecido são estabelecidos removendo um pequeno pedaço de tecido (para estudos de teratogenicidade, um embrião intacto) e colocando-o em cultura para estudo posterior. As culturas de explantes têm sido úteis para estudos de toxicidade de curto prazo, incluindo irritação e corrosividade na pele, estudos de amianto na traqueia e estudos de neurotoxicidade no tecido cerebral.

Órgãos perfundidos isolados também podem ser usados ​​para avaliar a toxicidade do órgão-alvo. Esses sistemas oferecem uma vantagem semelhante à das fatias de tecido e explantes, pois todos os tipos de células estão presentes, mas sem o estresse ao tecido introduzido pelas manipulações envolvidas na preparação das fatias. Além disso, permitem a manutenção das interações intra-órgãos. Uma grande desvantagem é sua viabilidade a curto prazo, o que limita seu uso para testes de toxicidade in vitro. Em termos de alternativa, essas culturas podem ser consideradas um refinamento, uma vez que os animais não sofrem as consequências adversas do tratamento in vivo com tóxicos. No entanto, seu uso não diminui significativamente o número de animais necessários.

Em resumo, existem vários tipos de sistemas in vitro disponíveis para avaliar a toxicidade do órgão-alvo. É possível obter muitas informações sobre os mecanismos de toxicidade usando uma ou mais dessas técnicas. A dificuldade permanece em saber como extrapolar de um sistema in vitro, que representa uma parte relativamente pequena do processo toxicológico, para todo o processo que ocorre in vivo.

Testes in vitro para irritação ocular

Talvez o teste de toxicidade de animal inteiro mais controverso do ponto de vista do bem-estar animal seja o teste de Draize para irritação ocular, realizado em coelhos. Neste teste, uma pequena dose fixa de uma substância química é colocada em um dos olhos do coelho enquanto o outro olho é usado como controle. O grau de irritação e inflamação é pontuado em vários momentos após a exposição. Um grande esforço está sendo feito para desenvolver metodologias para substituir este teste, que tem sido criticado não apenas por razões humanas, mas também pela subjetividade das observações e variabilidade dos resultados. É interessante notar que, apesar das duras críticas que o teste de Draize recebeu, ele provou ser notavelmente bem-sucedido em prever irritantes oculares humanos, particularmente substâncias levemente a moderadamente irritantes, que são difíceis de identificar por outros métodos. Assim, as demandas por alternativas in vitro são grandes.

A busca por alternativas ao teste de Draize é complicada, embora se preveja um sucesso. Numerosas alternativas in vitro e outras alternativas foram desenvolvidas e, em alguns casos, implementadas. Alternativas de refinamento ao teste de Draize, que por definição são menos dolorosas ou angustiantes para os animais, incluem o Teste do Olho de Baixo Volume, no qual quantidades menores de materiais de teste são colocadas nos olhos dos coelhos, não apenas por razões humanas, mas para imitam mais de perto as quantidades às quais as pessoas podem realmente ser acidentalmente expostas. Outro refinamento é que as substâncias com pH menor que 2 ou maior que 11.5 não são mais testadas em animais, pois são conhecidas por serem severamente irritantes para os olhos.

Entre 1980 e 1989, houve um declínio estimado de 87% no número de coelhos usados ​​para testes de irritação ocular de cosméticos. Testes in vitro foram incorporados como parte de uma abordagem de teste de nível para trazer essa grande redução em testes com animais inteiros. Essa abordagem é um processo de várias etapas que começa com um exame minucioso dos dados históricos de irritação ocular e análises físicas e químicas do produto químico a ser avaliado. Se esses dois processos não fornecerem informações suficientes, uma bateria de testes in vitro é realizada. Os dados adicionais obtidos nos testes in vitro podem então ser suficientes para avaliar a segurança da substância. Caso contrário, a etapa final seria realizar testes in vivo limitados. É fácil ver como esta abordagem pode eliminar ou pelo menos reduzir drasticamente o número de animais necessários para prever a segurança de uma substância de teste.

A bateria de testes in vitro usada como parte dessa estratégia de teste de nível depende das necessidades da indústria em particular. O teste de irritação ocular é feito por uma ampla variedade de indústrias, de cosméticos a produtos farmacêuticos e produtos químicos industriais. O tipo de informação exigida por cada setor varia e, portanto, não é possível definir uma única bateria de testes in vitro. Uma bateria de testes geralmente é projetada para avaliar cinco parâmetros: citotoxicidade, alterações na fisiologia e bioquímica do tecido, relações quantitativas entre estrutura e atividade, mediadores de inflamação e recuperação e reparo. Um exemplo de teste de citotoxicidade, que é uma possível causa de irritação, é o ensaio de vermelho neutro usando células cultivadas (ver acima). Alterações na fisiologia celular e bioquímica resultantes da exposição a um produto químico podem ser analisadas em culturas de células epiteliais da córnea humana. Alternativamente, os investigadores também usaram globos oculares intactos ou dissecados de bovinos ou de galinhas obtidos de matadouros. Muitos dos parâmetros medidos nessas culturas de órgãos inteiros são os mesmos medidos in vivo, como a opacidade da córnea e o inchaço da córnea.

A inflamação é frequentemente um componente da lesão ocular induzida por produtos químicos, e há vários ensaios disponíveis para examinar esse parâmetro. Vários ensaios bioquímicos detectam a presença de mediadores liberados durante o processo inflamatório, como ácido araquidônico e citocinas. A membrana corioalantóide (CAM) do ovo de galinha também pode ser usada como um indicador de inflamação. No ensaio CAM, um pequeno pedaço da casca de um embrião de galinha de dez a 14 dias é removido para expor o CAM. O produto químico é então aplicado ao CAM e os sinais de inflamação, como hemorragia vascular, são pontuados em vários momentos a partir de então.

Um dos processos in vivo mais difíceis de avaliar in vitro é a recuperação e reparação de lesões oculares. Um instrumento recém-desenvolvido, o microfisiômetro de silício, mede pequenas mudanças no pH extracelular e pode ser usado para monitorar células cultivadas em tempo real. Esta análise demonstrou correlacionar-se razoavelmente bem com a recuperação in vivo e tem sido usada como um teste in vitro para este processo. Esta foi uma breve visão geral dos tipos de testes empregados como alternativas ao teste de Draize para irritação ocular. É provável que nos próximos anos uma série completa de baterias de teste in vitro seja definida e cada uma seja validada para sua finalidade específica.

Validação

A chave para a aceitação regulatória e implementação de metodologias de teste in vitro é a validação, o processo pelo qual a credibilidade de um teste candidato é estabelecida para uma finalidade específica. Esforços para definir e coordenar o processo de validação foram feitos tanto nos Estados Unidos quanto na Europa. A União Européia estabeleceu o Centro Europeu para a Validação de Métodos Alternativos (ECVAM) em 1993 para coordenar esforços e interagir com organizações americanas como o Johns Hopkins Center for Alternatives to Animal Testing (CAAT), um centro acadêmico nos Estados Unidos , e o Comitê de Coordenação Interagencial para a Validação de Métodos Alternativos (ICCVAM), composto por representantes dos Institutos Nacionais de Saúde, da Agência de Proteção Ambiental dos EUA, da Administração de Alimentos e Medicamentos dos EUA e da Comissão de Segurança de Produtos de Consumo.

A validação de testes in vitro requer organização e planejamento substanciais. Deve haver consenso entre reguladores do governo e cientistas industriais e acadêmicos sobre procedimentos aceitáveis ​​e supervisão suficiente por um conselho consultivo científico para garantir que os protocolos atendam aos padrões estabelecidos. Os estudos de validação devem ser realizados em uma série de laboratórios de referência usando conjuntos calibrados de produtos químicos de um banco químico e células ou tecidos de uma única fonte. Tanto a repetibilidade intralaboratorial quanto a reprodutibilidade interlaboratorial de um teste candidato devem ser demonstradas e os resultados submetidos à análise estatística apropriada. Uma vez compilados os resultados dos diferentes componentes dos estudos de validação, o conselho científico pode fazer recomendações sobre a validade do(s) teste(s) candidato(s) para uma finalidade específica. Além disso, os resultados dos estudos devem ser publicados em periódicos revisados ​​por pares e colocados em um banco de dados.

A definição do processo de validação é atualmente um trabalho em andamento. Cada novo estudo de validação fornecerá informações úteis para o desenho do próximo estudo. A comunicação e a cooperação internacional são essenciais para o desenvolvimento rápido de uma série de protocolos amplamente aceitáveis, especialmente devido à crescente urgência imposta pela aprovação da Diretiva de Cosméticos da CE. Esta legislação pode, de fato, fornecer o ímpeto necessário para um esforço sério de validação a ser realizado. É somente com a conclusão deste processo que a aceitação dos métodos in vitro pelas várias comunidades reguladoras pode começar.

Conclusão

Este artigo forneceu uma ampla visão geral do status atual dos testes de toxicidade in vitro. A ciência da toxicologia in vitro é relativamente jovem, mas está crescendo exponencialmente. O desafio para os próximos anos é incorporar o conhecimento mecanístico gerado por estudos celulares e moleculares no vasto inventário de dados in vivo para fornecer uma descrição mais completa dos mecanismos toxicológicos, bem como estabelecer um paradigma pelo qual os dados in vitro possam ser usados para prever a toxicidade in vivo. Somente por meio dos esforços conjuntos de toxicologistas e representantes do governo é que o valor inerente desses métodos in vitro poderá ser realizado.

 

Voltar

Leia 11736 vezes Última modificação na sexta-feira, 23 setembro 2011 17: 07

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de toxicologia

Andersen, KE e HI Maibach. 1985. Testes preditivos de alergia de contato em porquinhos-da-índia. Indivíduo. 14 em Problemas Atuais em Dermatologia. Basileia: Karger.

Ashby, J e RW Tennant. 1991. Relações definitivas entre estrutura química, carcinogenicidade e mutagenicidade para 301 produtos químicos testados pelo US NTP. Mut Res 257: 229-306.

Barlow, S e F Sullivan. 1982. Perigos Reprodutivos de Produtos Químicos Industriais. Londres: Academic Press.

Barreto, JC. 1993a. Mecanismos de ação de carcinógenos humanos conhecidos. No Mecanismos de Carcinogênese na Identificação de Riscos, editado por H Vainio, PN Magee, DB McGregor e AJ McMichael. Lyon: Agência Internacional de Pesquisa sobre o Câncer (IARC).

—. 1993b. Mecanismos de carcinogênese em várias etapas e avaliação de risco cancerígeno. Saúde Ambiental Persp 100: 9-20.

Bernstein, ME. 1984. Agentes que afetam o sistema reprodutor masculino: Efeitos da estrutura na atividade. Rev de Metab drogas 15: 941-996.

Beutler, E. 1992. A biologia molecular de variantes de G6PD e outros defeitos de glóbulos vermelhos. Annu Rev Med 43: 47-59.

Flor, AD. 1981. Diretrizes para estudos reprodutivos em populações humanas expostas. White Plains, Nova York: Fundação March of Dimes.

Borghoff, S, B Short e J Swenberg. 1990. Mecanismos bioquímicos e patobiologia da nefropatia por a-2-globulina. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly e PI Mackenzie. 1991. A superfamília do gene UPD-glucuronosiltransferase: nomenclatura sugerida com base na divergência evolutiva. DNA Celular Biol 10: 487-494.

Burleson, G, A Munson e J Dean. 1995. Métodos modernos em imunotoxicologia. Nova York: Wiley.

Capecchi, M. 1994. Substituição de genes direcionados. Sci Am 270: 52-59.

Carney, EW. 1994. Uma perspectiva integrada sobre a toxicidade do etilenoglicol no desenvolvimento. Rep Toxicol 8: 99-113.

Dean, JH, MI Luster, AE Munson e I Kimber. 1994. Imunotoxicologia e Imunofarmacologia. Nova York: Raven Press.

Descotes, J. 1986. Imunotoxicologia de Drogas e Produtos Químicos. Amsterdã: Elsevier.

Devary, Y, C Rosette, JA DiDonato e M Karin. 1993. Ativação de NFkB por luz ultravioleta não dependente de um sinal nuclear. Ciência 261: 1442-1445.

Dixon, R.L. 1985. Toxicologia reprodutiva. Nova York: Raven Press.

DUFUS, JH. 1993. Glossário para químicos de termos usados ​​em toxicologia. Química de aplicação pura 65: 2003-2122.

Elsenhans, B, K Schuemann e W Forth. 1991. Metais tóxicos: Interações com metais essenciais. No Nutrição, Toxicidade e Câncer, editado por IR Rowland. Boca-Raton: CRC Press.

Agência de Proteção Ambiental (EPA). 1992. Diretrizes para avaliação de exposição. Registro Federal 57: 22888-22938.

—. 1993. Princípios de avaliação de risco de neurotoxicidade. Registro Federal 58: 41556-41598.

—. 1994. Diretrizes para Avaliação de Toxicidade Reprodutiva. Washington, DC: US ​​EPA: Escritório de Pesquisa e Desenvolvimento.

Fergusson, J.E. 1990. Os Elementos Pesados. Indivíduo. 15 em Química, Impacto Ambiental e Efeitos na Saúde. Oxford: Pérgamo.

Gehring, PJ, PG Watanabe e GE Blau. 1976. Estudos farmacocinéticos na avaliação do perigo toxicológico e ambiental de produtos químicos. Avaliação de Segurança de Novos Conceitos 1(Parte 1, Capítulo 8):195-270.

Goldstein, JA e SMF de Morais. 1994. Bioquímica e biologia molecular do ser humano CYP2C subfamília. Farmacogenética 4: 285-299.

González, FJ. 1992. Citocromos humanos P450: Problemas e perspectivas. Tendências Pharmacol Sci 13: 346-352.

Gonzalez, FJ, CL Crespi e HV Gelboin. 1991. CDNA-expressed humano cytochrome P450: Uma nova era em toxicologia molecular e avaliação de risco humano. Mut Res 247: 113-127.

González, FJ e DW Nebert. 1990. Evolução da superfamília do gene P450: “guerra” animal-planta, impulso molecular e diferenças genéticas humanas na oxidação de drogas. Tendências Genet 6: 182-186.

Grant, DM. 1993. Genética molecular das N-acetiltransferases. Farmacogenética 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman e J Laskey. 1988. O desenvolvimento de um protocolo para avaliar os efeitos reprodutivos de tóxicos no rato. Rep Toxicol 2: 281-287.

Guengerich, FP. 1989. Polimorfismo do citocromo P450 em humanos. Tendências Pharmacol Sci 10: 107-109.

—. 1993. Enzimas do citocromo P450. Sou ciência 81: 440-447.

Hansch, C e A Leo. 1979. Constantes Substituintes para Análise de Correlação em Química e Biologia. Nova York: Wiley.

Hansch, C e L Zhang. 1993. Relações quantitativas de estrutura-atividade do citocromo P450. Rev de Metab drogas 25: 1-48.

Hayes AW. 1988. Princípios e Métodos de Toxicologia. 2ª ed. Nova York: Raven Press.

Heindell, JJ e RE Chapin. 1993. Métodos em Toxicologia: Toxicologia reprodutiva masculina e feminina. Vol. 1 e 2. San Diego, Califórnia: Academic Press.

Agência Internacional de Pesquisa sobre o Câncer (IARC). 1992. Radiação solar e ultravioleta. Lyon: IARC.

—. 1993. Exposições ocupacionais de cabeleireiros e barbeiros e uso pessoal de corantes capilares: algumas tinturas capilares, corantes cosméticos, corantes industriais e aminas aromáticas. Lyon: IARC.

—. 1994a. Preâmbulo. Lyon: IARC.

—. 1994b. Alguns produtos químicos industriais. Lyon: IARC.

Comissão Internacional de Proteção Radiológica (ICRP). 1965. Princípios de Monitoramento Ambiental Relacionados ao Manuseio de Materiais Radioativos. Relatório do Comitê IV da Comissão Internacional de Proteção Radiológica. Oxford: Pérgamo.

Programa Internacional de Segurança Química (IPCS). 1991. Princípios e métodos para a avaliação da nefrotoxicidade associada à exposição a produtos químicos, EHC 119. Genebra: OMS.

—. 1996. Princípios e Métodos de Avaliação Imunotoxicidade direta associada à exposição a produtos químicos, EHC 180. Genebra: OMS.

Johanson, G e PH Naslund. 1988. Programação em planilhas - uma nova abordagem na modelagem baseada na fisiologia da toxicocinética de solventes. Letras Toxicológicas 41: 115-127.

Johnson, B.L. 1978. Prevenção de Doenças Neurotóxicas em Populações Trabalhadoras. Nova York: Wiley.

Jones, JC, JM Ward, U Mohr e RD Hunt. 1990. Sistema Hemopoiético, Monografia ILSI, Berlim: Springer Verlag.

Kalow, W. 1962. Farmacogenética: Hereditariedade e Resposta a Drogas. Filadélfia: WB Saunders.

—. 1992. Farmacogenética do Metabolismo de Fármacos. Nova York: Pergamon.

Kammüller, ME, N Bloksma e W Seinen. 1989. Autoimunidade e Toxicologia. Desregulação imune induzida por drogas e produtos químicos. Amsterdã: Elsevier Sciences.

Kawajiri, K, J Watanabe e SI Hayashi. 1994. Polimorfismo genético de P450 e câncer humano. No Citocromo P450: Bioquímica, Biofísica e Biologia Molecular, editado por MC Lechner. Paris: John Libbey Eurotext.

Kehrer, JP. 1993. Radicais livres como mediadores de lesões e doenças teciduais. Crítico Rev Toxicol 23: 21-48.

Kellerman, G, CR Shaw e M Luyten-Kellerman. 1973. Indutibilidade da aril hidrocarboneto hidroxilase e carcinoma bronocogênico. New Engl J Med 289: 934-937.

Khera, KS. 1991. Alterações induzidas quimicamente homeostase materna e histologia do concepto: seu significado etiológico em anomalias fetais de ratos. Teratologia 44: 259-297.

Kimmel, CA, GL Kimmel e V Frankos. 1986. Workshop do Interagency Regulatory Liaison Group sobre avaliação de risco de toxicidade reprodutiva. Saúde Ambiental Persp 66: 193-221.

Klaassen, CD, MO Amdur e J Doull (eds.). 1991. Toxicologia de Casarett e Doull. Nova York: Pergamon Press.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen e ED Kroese. 1995. Métodos quantitativos em toxicologia para avaliação dose-resposta humana. RIVM-relatório nr. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer e M Schwarz. 1992. Padrão mutacional específico de carcinógeno no gene p53 em carcinomas de células escamosas induzidos por radiação ultravioleta B da pele de camundongos. Câncer Res 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Uma abordagem sem modelo para extrapolação de baixa dose. Env H Pessoas 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare e DM Ziegler. 1994. Uma nomenclatura para a família de genes de monooxigenase contendo flavina de mamífero baseada em identidades de sequência de aminoácidos. Arch Biochem Biophys 308: 254-257.

Lewalter, J e U Korallus. 1985. Conjugados de proteínas sanguíneas e acetilação de aminas aromáticas. Novas descobertas em monitoramento biológico. Int Arch Occup Ambiente Saúde 56: 179-196.

Majno, G e I Joris. 1995. Apoptose, oncose e necrose: uma visão geral da morte celular. Sou J Pathol 146: 3-15.

Mattison, DR e PJ Thomford. 1989. O mecanismo de ação dos tóxicos reprodutivos. Patol tóxico 17: 364-376.

Meyer, UA. 1994. Polimorfismos do citocromo P450 CYP2D6 como fator de risco na carcinogênese. No Citocromo P450: Bioquímica, Biofísica e Biologia Molecular, editado por MC Lechner. Paris: John Libbey Eurotext.

Moller, H, H Vainio e E Heseltine. 1994. Estimativa quantitativa e previsão de risco na Agência Internacional de Pesquisa sobre o Câncer. Câncer Res 54:3625-3627.

Moolenaar, RJ. 1994. Suposições padrão na avaliação de risco cancerígeno usadas por agências reguladoras. Regul Toxicol Farmacol 20: 135-141.

Moser, VC. 1990. Abordagens de triagem para neurotoxicidade: Uma bateria observacional funcional. J Am Coll Toxicol 1: 85-93.

Conselho Nacional de Pesquisa (NRC). 1983. Avaliação de Riscos no Governo Federal: Gerenciando o Processo. Washington, DC: NAS Press.

—. 1989. Marcadores Biológicos na Toxicidade Reprodutiva. Washington, DC: NAS Press.

—. 1992. Marcadores Biológicos em Imunotoxicologia. Subcomitê de Toxicologia. Washington, DC: NAS Press.

NEBERTO, DW. 1988. Genes que codificam enzimas metabolizadoras de drogas: Possível papel na doença humana. No Variação fenotípica em populações, editado por AD Woodhead, MA Bender e RC Leonard. Nova York: Plenum Publishing.

—. 1994. Enzimas metabolizadoras de drogas na transcrição modulada por ligando. Biochem Pharmacol 47: 25-37.

Nebert, DW e WW Weber. 1990. Farmacogenética. No Princípios de Ação de Drogas. A Base da Farmacologia, editado por WB Pratt e PW Taylor. Nova York: Churchill-Livingstone.

Nebert, DW e DR Nelson. 1991. Nomenclatura do gene P450 baseada na evolução. No Métodos de Enzimologia. Citocromo P450, editado por MR Waterman e EF Johnson. Orlando, Flórida: Academic Press.

Nebert, DW e RA McKinnon. 1994. Citocromo P450: Evolução e diversidade funcional. Prog LivDis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato e MR Waterman. 1987. A superfamília do gene P450: nomenclatura recomendada. DNA Celular Biol 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman e DJ Waxman. 1991. A superfamília P450: atualização sobre novas sequências, mapeamento de genes e nomenclatura recomendada. DNA Celular Biol 10: 1-14.

Nebert, DW, DD Petersen e A Puga. 1991. Polimorfismo do locus AH humano e câncer: indutibilidade de CYP1A1 e outros genes por produtos de combustão e dioxina. Farmacogenética 1: 68-78.

Nebert, DW, A Puga e V Vasiliou. 1993. Papel do receptor Ah e da bateria de genes induzida por dioxina [Ah] na toxicidade, câncer e transdução de sinal. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert e K Okuda. 1993. A superfamília P450: atualização sobre novas sequências, mapeamento de genes, números de acesso, primeiros nomes triviais de enzimas e nomenclatura. DNA Celular Biol 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu e DK Miller. 1995. Identificação e inibição da protease ICE/CED-3 necessária para a apoptose de mamíferos. Natureza 376: 37-43.

Nolan, RJ, WT Stott e PG Watanabe. 1995. Dados toxicológicos na avaliação de segurança química. Indivíduo. 2 em Patty's Higiene Industrial e Toxicologia, editado por LJ Cralley, LV Cralley e JS Bus. Nova York: John Wiley & Sons.

NORDBERG, GF. 1976. Efeito e Relações Dose-Resposta de Metais Tóxicos. Amsterdã: Elsevier.

Escritório de Avaliação de Tecnologia (OTA). 1985. Riscos Reprodutivos no Local de Trabalho. Documento nº OTA-BA-266. Washington, DC: Escritório de Imprensa do Governo.

—. 1990. Neurotoxicidade: identificando e controlando venenos do sistema nervoso. Documento nº OTA-BA-436. Washington, DC: Escritório de Imprensa do Governo.

Organização para a Cooperação e Desenvolvimento Econômico (OCDE). 1993. Projeto conjunto US EPA/EC sobre a avaliação de relações (quantitativas) de atividades de estrutura. Paris: OCDE.

Parque, CN e NC Hawkins. 1993. Revisão de tecnologia; uma visão geral da avaliação de risco de câncer. Métodos tóxicos 3: 63-86.

Pease, W, J Vandenberg e WK Hooper. 1991. Comparando abordagens alternativas para estabelecer níveis regulatórios para tóxicos reprodutivos: DBCP como um estudo de caso. Saúde Ambiental Persp 91: 141-155.

Prpi ƒ -Maji ƒ , D, S Telisman e S Kezi ƒ . 6.5. Estudo in vitro sobre a interação de chumbo e álcool e a inibição da desidratase do ácido delta-aminolevulínico eritrocitário no homem. Scand J Work Environment Health 10: 235-238.

Reitz, RH, RJ Nolan e AM Schumann. 1987. Desenvolvimento de modelos farmacocinéticos multiespécies e multirotas para cloreto de metileno e 1,1,1-tricloroetano. No Farmacocinética e Avaliação de Risco, Água Potável e Saúde. Washington, DC: Imprensa da Academia Nacional.

Roitt, I, J Brostoff e D Male. 1989. Imunologia. Londres: Gower Medical Publishing.

Sato, A. 1991. O efeito de fatores ambientais no comportamento farmacocinético de vapores de solventes orgânicos. Ann Ocupa Hyg 35: 525-541.

Silbergeld, E.K. 1990. Desenvolvendo métodos formais de avaliação de risco para neurotóxicos: Uma avaliação do estado da arte. No Avanços em Toxicologia Neurocomportamental, editado por BL Johnson, WK Anger, A Durao e C Xintaras. Chelsea, Michigan: Lewis.

Spencer, PS e HH Schaumberg. 1980. Neurotoxicologia Experimental e Clínica. Baltimore: Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills e RE LePorte. 1988. Avaliação de métodos para a identificação prospectiva de perdas fetais precoces em estudos de epidemiologia ambiental. Am J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger e H Meier. 1973. Análise genética da resistência ao dano testicular induzido por cádmio em camundongos. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interações de metais e metalóides essenciais e/ou tóxicos em relação às diferenças interindividuais na suscetibilidade a vários tóxicos e doenças crônicas no homem. Arh rig rada toksikol 46: 459-476.

Telišman, S, A Pinent e D Prpi ƒ -Maji ƒ . 6.5. A interferência do chumbo no metabolismo do zinco e a interação chumbo e zinco em humanos como uma possível explicação da aparente suscetibilidade individual ao chumbo. No Metais Pesados ​​no Meio Ambiente, editado por RJ Allan e JO Nriagu. Edimburgo: CEP Consultants.

Telišman, S, D Prpi ƒ -Maji ƒ , e S Kezi ƒ . 6.5. Estudo in vivo sobre a interação de chumbo e álcool e a inibição da desidratase do ácido delta-aminolevulínico eritrocitário no homem. Scand J Work Environment Health 10: 239-244.

Tilson, HA e PA Cabe. 1978. Estratégias para a avaliação das consequências neurocomportamentais de fatores ambientais. Saúde Ambiental Persp 26: 287-299.

Trump, BF e AU Arstila. 1971. Lesão celular e morte celular. No Princípios de Patobiologia, editado por MF LaVia e RB Hill Jr. Nova York: Oxford Univ. Imprensa.

Trump, BF e IK Berezesky. 1992. O papel do Ca2 citosólico + na lesão celular, necrose e apoptose. Curr Opin Cell Biol 4: 227-232.

—. 1995. Lesão celular mediada por cálcio e morte celular. FASEB J 9: 219-228.

Trump, BF, IK Berezesky e A Osornio-Vargas. 1981. Morte celular e o processo da doença. O papel do cálcio celular. No Morte Celular em Biologia e Patologia, editado por ID Bowen e RA Lockshin. Londres: Chapman & Hall.

Vos, JG, M Younes e E Smith. 1995. Hipersensibilidade alérgica induzida por produtos químicos: recomendações para prevenção publicadas em nome do Escritório Regional da Organização Mundial da Saúde para a Europa. Boca Raton, Flórida: CRC Press.

Weber, WW. 1987. Os Genes Acetiladores e a Resposta a Drogas. Nova York: Oxford Univ. Imprensa.

Organização Mundial da Saúde (OMS). 1980. Limites recomendados com base na saúde para exposição ocupacional a metais pesados. Série de Relatórios Técnicos, No. 647. Genebra: OMS.

—. 1986. Princípios e Métodos para a Avaliação da Neurotoxicidade Associada à Exposição a Produtos Químicos. Critério de Saúde Ambiental, No.60. Genebra: OMS.

—. 1987. Diretrizes de qualidade do ar para a Europa. Série Europeia, No. 23. Copenhague: Publicações Regionais da OMS.

—. 1989. Glossário de termos sobre segurança química para uso em publicações IPCS. Genebra: OMS.

—. 1993. A derivação de valores de orientação para limites de exposição baseados em saúde. Critérios de Saúde Ambiental, rascunho não editado. Genebra: OMS.

Wyllie, AH, JFR Kerr e AR Currie. 1980. Morte celular: O significado da apoptose. Int Rev Cytol 68: 251-306.

@REFS LABEL = Outras leituras relevantes

Alberto, R. 1994. Avaliação de risco cancerígeno na Agência de Proteção Ambiental dos EUA. Crit. Rev. toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts e JD Watson. 1988. Biologia molecular da célula. Nova York: Garland Publishing.

Arianos, EJ. 1964. Farmacologia Molecular. Vol.1. Nova York: Academic Press.

Ariens, EJ, E Mutschler e AM Simonis. 1978. Allgemeine Toxicologie [Toxicologia Geral]. Estugarda: Georg Thieme Verlag.

Ashby, J e RW Tennant. 1994. Previsão de carcinogenicidade de roedores para 44 produtos químicos: Resultados. Mutagênese 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis e CC Caldart. 1990. Vigilância do Trabalhador para Exposição e Doença. Baltimore: Johns Hopkins Univ. Imprensa.

Balabuha, NS e GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Acúmulo de elementos radioativos no organismo e sua excreção]. Moscou: Medgiz.

Balls, M, J Bridges e J Southee. 1991. Animais e Alternativas em Toxicologia Situação Atual e Perspectivas Futuras. Nottingham, Reino Unido: Fundo para Substituição de Animais em Experimentos Médicos.

Berlin, A, J Dean, MH Draper, EMB Smith e F Spreafico. 1987. Imunotoxicologia. Dordrecht: Martinus Nijhoff.

Boyhous, A. 1974. Respiração. Nova York: Grune & Stratton.

Brandau, R e BH Lippold. 1982. Absorção dérmica e transdérmica. Estugarda: Wissenschaftliche Verlagsgesellschaft.

Brusick, DJ. 1994. Métodos de Avaliação de Risco Genético. Boca Raton: Editores Lewis.

Burrell, R. 1993. Toxicidade imunológica humana. Mol Aspects Med 14: 1-81.

Castell, JV e MJ Gómez-Lechón. 1992. Alternativas In Vitro à Farmacotoxicologia Animal. Madri, Espanha: Farmaindustria.

Chapman, G. 1967. Fluidos corporais e suas funções. Londres: Edward Arnold.

Comitê de Marcadores Biológicos do Conselho Nacional de Pesquisa. 1987. Marcadores biológicos na pesquisa de saúde ambiental. Saúde Ambiental Persp 74: 3-9.

Cralley, LJ, LV Cralley e JS Bus (eds.). 1978. Patty's Higiene Industrial e Toxicologia. Nova York: Witey.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith e MT Van der Venne. 1990. Imunotoxidade de Metais e Imunotoxicologia. Nova York: Plenum Press.

Djuric, D. 1987. Molecular-cell Aspects of Occupational Exposure to Toxic Chemicals. No Parte 1 Toxicocinética. Genebra: OMS.

DUFUS, JH. 1980. Toxicologia Ambiental. Londres: Edward Arnold.

ECOTOC. 1986. Relação Estrutura-Atividade em Toxicologia e Ecotoxicologia, Monografia No. 8. Bruxelas: ECOTOC.

Forth, W, D Henschler e W Rummel. 1983. Farmacologia e Toxicologia. Mannheim: Bibliographische Institut.

Frazier, JM. 1990. Critérios científicos para validação de testes de toxicidade in vitro. Monografia Ambiental da OCDE, no. 36. Paris: OCDE.

—. 1992. Toxicidade In Vitro—Aplicações à Avaliação de Segurança. Nova York: Marcel Dekker.

Gad, SC. 1994. Toxicologia In Vitro. Nova York: Raven Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tecidos gordurosos e tóxicos]. No Aktualnie Vaprosi promishlenoi toksikolgii [Problemas reais em toxicologia ocupacional], editado por NV Lazarev. Leningrado: Ministério da Saúde RSFSR.

GAYLOR, DW. 1983. O uso de fatores de segurança para controlar o risco. J Toxicol Saúde Ambiental 11: 329-336.

Gibson, GG, R Hubbard e DV Parke. 1983. Imunotoxicologia. Londres: Academic Press.

Goldberg, AM. 1983-1995. Alternativas em Toxicologia. vol. 1-12. Nova York: Mary Ann Liebert.

Grandjean, P. 1992. Suscetibilidade individual à toxicidade. Letras Toxicológicas 64/65: 43-51.

Hanke, J e JK Piotrowski. 1984. Biochemyczne podstawy toksikologii [Base Bioquímica da Toxicologia]. Varsóvia: PZWL.

Hatch, T e P Gross. 1954. Deposição Pulmonar e Retenção de Aerossóis Inalados. Nova York: Academic Press.

Conselho de Saúde dos Países Baixos: Comitê de Avaliação da Carcinogenicidade de Substâncias Químicas. 1994. Avaliação de risco de produtos químicos cancerígenos na Holanda. Regul Toxicol Farmacol 19: 14-30.

Holland, WC, RL Klein e AH Briggs. 1967. Farmacologia Molekulaere.

Huff, JE. 1993. Produtos químicos e câncer em humanos: Primeira evidência em animais experimentais. Saúde Ambiental Persp 100: 201-210.

Klaassen, CD e DL Eaton. 1991. Princípios de toxicologia. Indivíduo. 2 em Toxicologia de Casarett e Doull, editado por CD Klaassen, MO Amdur e J Doull. Nova York: Pergamon Press.

Kossover, EM. 1962. Bioquímica Molecular. Nova Iorque: McGraw-Hill.

KUNDIEV, YI. 1975.Vssavanie pesticidav cherez kozsu I profilaktika otravlenii [Absorção de pesticidas através da pele e prevenção de intoxicação]. Kiev: Zdoróvia.

Kustov, VV, LA Tiunov e JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Efeitos combinados de tóxicos industriais]. Moscou: Medicina.

Lauwerys, R. 1982. Toxicologia industrial e intoxicações profissionais. Paris: Mason.

Li, AP e RH Heflich. 1991. Toxicologia Genética. Boca Ratón: CRC Press.

Loewey, AG e P Siekewitz. 1969. Estrutura e funções celulares. Nova York: Holt, Reinhart e Winston.

Loomis, TA. 1976. Fundamentos de Toxicologia. Filadélfia: Lea & Febiger.

Mendelsohn, ML e RJ Albertini. 1990. Mutação e Meio Ambiente, Partes AE. Nova York: Wiley Liss.

Metzler, DE. 1977. Bioquímica. Nova York: Academic Press.

Miller, K, JL Turk e S Nicklin. 1992. Princípios e Práticas de Imunotoxicologia. Oxford: Blackwells Scientific.

Ministério do Comércio Internacional e Indústria. 1981. Manual de Substâncias Químicas Existentes. Tóquio: Chemical Daily Press.

—. 1987. Pedido de Aprovação de Produtos Químicos pela Lei de Controle de Substâncias Químicas. (em japonês e em inglês). Tóquio: Kagaku Kogyo Nippo Press.

Montagna, W. 1956. A estrutura e função da pele. Nova York: Academic Press.

Moolenaar, RJ. 1994. Avaliação de risco cancerígeno: comparação internacional. Regul Toxicol Pharmacol 20: 302-336.

Conselho Nacional de Pesquisa. 1989. Marcadores Biológicos na Toxicidade Reprodutiva. Washington, DC: NAS Press.

Neuman, WG e M. Neuman. 1958. A dinâmica química dos minerais ósseos. Chicago: The Univ. da Chicago Press.

Newcombe, DS, NR Rose e JC Bloom. 1992. Imunotoxicologia Clínica. Nova York: Raven Press.

Pacheco, H. 1973. A farmacologia molecular. Paris: Presse Universitária.

Piotrowski, JK. 1971. A Aplicação da Cinética Metabólica e Excretora a Problemas de Toxicologia Industrial. Washington, DC: Departamento de Saúde, Educação e Bem-Estar dos EUA.

—. 1983. Interações bioquímicas de metais pesados: Metalotioneína. No Efeitos na Saúde da Exposição Combinada a Produtos Químicos. Copenhague: Escritório Regional da OMS para a Europa.

Anais da Conferência Arnold O. Beckman/IFCC de Biomarcadores de Toxicologia Ambiental de Exposição Química. 1994. Clin Chem 40(7B).

Russel, WMS e RL Burch. 1959. Os Princípios da Técnica Experimental Humanitária. Londres: Methuen & Co. Reimpresso por Universities Federation for Animal Welfare, 1993.

Rycroft, RJG, T Menné, PJ Frosch e C Benezra. 1992. Tratado de Dermatite de Contato. Berlim: Springer-Verlag.

Schubert, J. 1951. Estimativa de radioelementos em indivíduos expostos. Nucleônica 8: 13-28.

Shelby, MD e E Zeiger. 1990. Atividade de carcinógenos humanos nos testes de citogenética de medula óssea de roedores e Salmonella. Mut Res 234: 257-261.

Stone, R. 1995. Uma abordagem molecular ao risco de câncer. Ciência 268: 356-357.

Teisinger, J. 1984. Teste de exposição na Industrietoxikologie [Testes de exposição em toxicologia industrial]. Berlim: VEB Verlag Volk und Gesundheit.

Congresso dos EUA. 1990. Monitoramento e Triagem Genética no Trabalho, OTA-BA-455. Washington, DC: US ​​Government Printing Office.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vida]. Leipzig: VEB Bibliographische Institut.

Weil, E. 1975. Elementos de toxicologia industrial [Elementos de Toxicologia Industrial]. Paris: Masson et Cie.

Organização Mundial da Saúde (OMS). 1975. Métodos usados ​​na URSS para estabelecer níveis seguros de substâncias tóxicas. Genebra: OMS.

1978. Princípios e Métodos para Avaliação da Toxicidade de Produtos Químicos, Parte 1. Critérios de Saúde Ambiental, no.6. Genebra: OMS.

—. 1981. Exposição Combinada a Produtos Químicos, Documento Provisório nº 11. Copenhague: Escritório Regional da OMS para a Europa.

—. 1986. Princípios de Estudos Toxicocinéticos. Critérios de Saúde Ambiental, nº. 57. Genebra: OMS.

Yoftrey, JM e FC Courtice. 1956. Linfáticos, Linfáticos e Tecido Linfóide. Cambridge: Universidade de Harvard. Imprensa.

Zakutinsky, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problemas de Toxicologia de Materiais Radioativos]. Moscou: Medgiz.

Zurlo, J, D Rudacille e AM Goldberg. 1993. Animais e Alternativas em Testes: História, Ciência e Ética. Nova York: Mary Ann Liebert.