Terça-feira, 15 Março 2011 14: 46

O Espectro Eletromagnético: Características Físicas Básicas

Classifique este artigo
(4 votos)

A forma mais conhecida de energia eletromagnética é a luz solar. A frequência da luz solar (luz visível) é a linha divisória entre a radiação ionizante mais potente (raios x, raios cósmicos) em frequências mais altas e a radiação não ionizante mais benigna em frequências mais baixas. Existe um espectro de radiação não ionizante. Dentro do contexto deste capítulo, na extremidade superior, logo abaixo da luz visível, está a radiação infravermelha. Abaixo disso está a ampla gama de frequências de rádio, que inclui (em ordem decrescente) micro-ondas, rádio celular, televisão, rádio FM e rádio AM, ondas curtas usadas em aquecedores dielétricos e de indução e, na extremidade inferior, campos com frequência de energia. O espectro eletromagnético é ilustrado na figura 1. 

Figura 1. O espectro eletromagnético

ELF010F1

Assim como a luz visível ou o som permeia nosso ambiente, o espaço onde vivemos e trabalhamos, o mesmo acontece com as energias dos campos eletromagnéticos. Além disso, assim como a maior parte da energia sonora a que estamos expostos é criada pela atividade humana, o mesmo ocorre com as energias eletromagnéticas: desde os níveis fracos emitidos por nossos aparelhos elétricos do dia-a-dia - aqueles que fazem nossos aparelhos de rádio e TV funcionarem - até os níveis mais altos níveis que os médicos aplicam para fins benéficos - por exemplo, diatermia (tratamentos térmicos). Em geral, a força de tais energias diminui rapidamente com a distância da fonte. Os níveis naturais desses campos no ambiente são baixos.

A radiação não ionizante (NIR) incorpora todas as radiações e campos do espectro eletromagnético que não possuem energia suficiente para produzir ionização da matéria. Ou seja, o NIR é incapaz de transmitir energia suficiente a uma molécula ou átomo para interromper sua estrutura removendo um ou mais elétrons. A fronteira entre o NIR e a radiação ionizante é geralmente definida em um comprimento de onda de aproximadamente 100 nanômetros.

Como acontece com qualquer forma de energia, a energia NIR tem o potencial de interagir com sistemas biológicos, e o resultado pode não ser significativo, pode ser prejudicial em diferentes graus ou pode ser benéfico. Com radiofrequência (RF) e radiação de micro-ondas, o principal mecanismo de interação é o aquecimento, mas na parte de baixa frequência do espectro, campos de alta intensidade podem induzir correntes no corpo e, portanto, ser perigosos. Os mecanismos de interação para forças de campo de baixo nível são, no entanto, desconhecidos.

 

 

 

 

 

 

 

 

Quantidades e unidades

Campos em frequências abaixo de cerca de 300 MHz são quantificados em termos de força do campo elétrico (E) e força do campo magnético (H). E é expresso em volts por metro (V/m) e H em amperes por metro (A/m). Ambos são campos vetoriais, ou seja, são caracterizados por magnitude e direção em cada ponto. Para a faixa de baixa frequência, o campo magnético é frequentemente expresso em termos de densidade de fluxo, B, com a unidade SI tesla (T). Quando os campos em nosso ambiente diário são discutidos, a subunidade microtesla (μT) é geralmente a unidade preferida. Em alguma literatura, a densidade de fluxo é expressa em gauss (G), e a conversão entre essas unidades é (para campos no ar):

1T = 104 G ou 0.1 μT = 1 mG e 1 A/m = 1.26 μT.

Estão disponíveis revisões de conceitos, quantidades, unidades e terminologia para proteção contra radiação não ionizante, incluindo radiação de radiofrequência (NCRP 1981; Polk e Postow 1986; OMS 1993).

O termo radiação significa simplesmente energia transmitida por ondas. Ondas eletromagnéticas são ondas de forças elétricas e magnéticas, onde um movimento ondulatório é definido como a propagação de perturbações em um sistema físico. Uma mudança no campo elétrico é acompanhada por uma mudança no campo magnético e vice-versa. Esses fenômenos foram descritos em 1865 por JC Maxwell em quatro equações que ficaram conhecidas como Equações de Maxwell.

As ondas eletromagnéticas são caracterizadas por um conjunto de parâmetros que incluem frequência (f), comprimento de onda (λ), intensidade do campo elétrico, intensidade do campo magnético, polarização elétrica (P) (a direção do E campo), velocidade de propagação (c) e vetor de Poynting (S). Figura 2  ilustra a propagação de uma onda eletromagnética no espaço livre. A frequência é definida como o número de mudanças completas do campo elétrico ou magnético em um determinado ponto por segundo e é expressa em hertz (Hz). O comprimento de onda é a distância entre duas cristas ou vales consecutivos da onda (máximos ou mínimos). A frequência, o comprimento de onda e a velocidade da onda (v) estão inter-relacionados da seguinte forma:

v = f λ

Figura 2. Painel do Uma onda plana se propagando com a velocidade da luz na direção x

ELF010F2

A velocidade de uma onda eletromagnética no espaço livre é igual à velocidade da luz, mas a velocidade nos materiais depende das propriedades elétricas do material – isto é, de sua permissividade (ε) e permeabilidade (μ). A permissividade diz respeito às interações do material com o campo elétrico, e a permeabilidade expressa as interações com o campo magnético. Substâncias biológicas têm permissividades que diferem muito daquelas do espaço livre, sendo dependentes do comprimento de onda (especialmente na faixa de RF) e do tipo de tecido. A permeabilidade das substâncias biológicas, no entanto, é igual à do espaço livre.

Em uma onda plana, conforme ilustrado na figura 2 , o campo elétrico é perpendicular ao campo magnético e a direção de propagação é perpendicular aos campos elétrico e magnético.

 

 

 

Para uma onda plana, a razão entre o valor da intensidade do campo elétrico e o valor da intensidade do campo magnético, que é constante, é conhecida como impedância característica (Z):

Z = E/H

No espaço livre, Z= 120π ≈ 377Ω mas de outra forma Z depende da permissividade e permeabilidade do material através do qual a onda está se propagando.

A transferência de energia é descrita pelo vetor de Poynting, que representa a magnitude e a direção da densidade do fluxo eletromagnético:

S = E x H

Para uma onda em propagação, a integral de S sobre qualquer superfície representa a potência instantânea transmitida através desta superfície (densidade de potência). A magnitude do vetor de Poynting é expressa em watts por metro quadrado (W/m2) (em alguma literatura a unidade mW/cm2 é usado - a conversão para unidades SI é 1 mW/cm2 = 10 W/m2) e para ondas planas está relacionado com os valores das intensidades dos campos elétrico e magnético:

S = E2 /120π = E2 / 377

e

S =120π H2 = 377 H2

Nem todas as condições de exposição encontradas na prática podem ser representadas por ondas planas. Em distâncias próximas a fontes de radiação de radiofrequência, as relações características de ondas planas não são satisfeitas. O campo eletromagnético irradiado por uma antena pode ser dividido em duas regiões: a zona de campo próximo e a zona de campo distante. O limite entre essas zonas geralmente é colocado em:

r = 2a2

onde a é a maior dimensão da antena.

Na zona de campo próximo, a exposição deve ser caracterizada pelos campos elétrico e magnético. No campo distante, um desses é suficiente, pois eles estão inter-relacionados pelas equações acima envolvendo E e H. Na prática, a situação de campo próximo é frequentemente realizada em frequências abaixo de 300 Mhz.

A exposição a campos de RF é ainda mais complicada pelas interações de ondas eletromagnéticas com objetos. Em geral, quando as ondas eletromagnéticas encontram um objeto, parte da energia incidente é refletida, parte é absorvida e parte é transmitida. As proporções de energia transmitida, absorvida ou refletida pelo objeto dependem da frequência e polarização do campo e das propriedades elétricas e forma do objeto. Uma sobreposição das ondas incidente e refletida resulta em ondas estacionárias e distribuição de campo espacialmente não uniforme. Como as ondas são totalmente refletidas por objetos metálicos, as ondas estacionárias se formam perto de tais objetos.

Uma vez que a interação de campos de RF com sistemas biológicos depende de muitas características de campo diferentes e os campos encontrados na prática são complexos, os seguintes fatores devem ser considerados na descrição de exposições a campos de RF:

  • se a exposição ocorre na zona de campo próximo ou distante
  • se campo próximo, valores para ambos E e H são precisos; se campo distante, então ou E or H
  • variação espacial da magnitude do(s) campo(s)
  • polarização do campo, ou seja, a direção do campo elétrico em relação à direção de propagação da onda.

 

Para a exposição a campos magnéticos de baixa frequência, ainda não está claro se a força do campo ou a densidade do fluxo é a única consideração importante. Pode acontecer que outros fatores também sejam importantes, como o tempo de exposição ou a rapidez das mudanças de campo.

O termo campo eletromagnetico (EMF), como é usado na mídia e na imprensa popular, geralmente se refere a campos elétricos e magnéticos na extremidade de baixa frequência do espectro, mas também pode ser usado em um sentido muito mais amplo para incluir todo o espectro de radiação eletromagnética. Note que na faixa de baixa frequência o E e B os campos não são acoplados ou inter-relacionados da mesma forma que estão em frequências mais altas e, portanto, é mais preciso referir-se a eles como “campos elétricos e magnéticos” em vez de EMFs.

 

Voltar

Leia 13118 vezes Última modificação em quarta-feira, 17 de agosto de 2011 17:44

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Radiação: Referências não ionizantes

Allen, SG. 1991. Medições de campo de radiofrequência e avaliação de riscos. J Radiol Protect 11:49-62.

Conferência Americana de Higienistas Industriais Governamentais (ACGIH). 1992. Documentação para os Valores Limite Limiares. Cincinnati, Ohio: ACGIH.

—. 1993. Valores Limite para Substâncias Químicas e Agentes Físicos e Índices de Exposição Biológica. Cincinnati, Ohio: ACGIH.

—. 1994a. Relatório Anual do Comitê de Valores Limite de Agentes Físicos da ACGIH. Cincinnati, Ohio: ACGIH.

—. 1994b. TLV's, valores-limite e índices de exposição biológica para 1994-1995. Cincinnati, Ohio: ACGIH.

—. 1995. 1995-1996 Valores Limite para Substâncias Químicas e Agentes Físicos e Índices Biológicos de Exposição. Cincinnati, Ohio: ACGIH.

—. 1996. TLVs© e BEIs©. Valores Limite de Limite para Substâncias Químicas e Agentes Físicos; Índices de Exposição Biológica. Cincinnati, Ohio: ACGIH.

Instituto Nacional de Padrões Americano (ANSI). 1993. Uso Seguro de Lasers. Padrão nº Z-136.1. Nova York: ANSI.

Aniolczyk, R. 1981. Medições de avaliação higiênica de campos eletromagnéticos no ambiente de diatermia, soldadores e aquecedores de indução. Medicina Pracy 32:119-128.

Bassett, CAL, SN Mitchell e SR Gaston. 1982. Tratamento de campo eletromagnético pulsante em fraturas não unidas e artrodeses malsucedidas. J Am Med Assoc 247:623-628.

Bassett, CAL, RJ Pawluk e AA Pilla. 1974. Aumento da reparação óssea por campos eletromagnéticos acoplados indutivamente. Science 184:575-577.

Berger, D, F Urbach e RE Davies. 1968. O espectro de ação do eritema induzido pela radiação ultravioleta. No Relatório Preliminar XIII. Congressus Internationalis Dermatologiae, Munchen, editado por W Jadassohn e CG Schirren. Nova York: Springer-Verlag.

Bernhardt, JH. 1988a. O estabelecimento de limites dependentes da frequência para campos elétricos e magnéticos e avaliação de efeitos indiretos. Rad Envir Biophys 27:1.

Bernhardt, JH e R Matthes. 1992. Fontes eletromagnéticas ELF e RF. Em Non-Ionizing Radiation Protection, editado por MW Greene. Vancôver: UBC Press.

Bini, M, A Checcucci, A Ignesti, L Millanta, R Olmi, N Rubino e R Vanni. 1986. Exposição de trabalhadores a intensos campos elétricos de RF que vazam de selantes plásticos. J Poder do Microondas 21:33-40.

Buhr, E, E Sutter e Conselho de Saúde Holandês. 1989. Filtros dinâmicos para dispositivos de proteção. Em Dosimetry of Laser Radiation in Medicine and Biology, editado por GJ Mueller e DH Sliney. Bellingham, Washington: SPIE.

Bureau de Saúde Radiológica. 1981. Uma Avaliação da Emissão de Radiação de Terminais de Exibição de Vídeo. Rockville, MD: Departamento de Saúde Radiológica.

CLEUET, A e A. Mayer. 1980. Risques liés à l'utilisation industrielle des lasers. In Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, No. 99 Paris: Institut National de Recherche et de Sécurité.

Coblentz, WR, R Stair e JM Hogue. 1931. A relação eritêmica espectral da pele com a radiação ultravioleta. Em Proceedings of the National Academy of Sciences of the United States of America Washington, DC: National Academy of Sciences.

Cole, CA, DF Forbes e PD Davies. 1986. Um espectro de ação para fotocarcinogênese UV. Photochem Photobiol 43(3):275-284.

Commission Internationale de L'Eclairage (CIE). 1987. Vocabulário Internacional de Iluminação. Viena: CIE.

Cullen, AP, BR Chou, MG Hall e SE Jany. 1984. Ultravioleta-B danifica o endotélio da córnea. Am J Optom Phys Opt 61(7):473-478.

Duchene, A, J Lakey e M Repacholi. 1991. Diretrizes da IRPA sobre proteção contra radiação não ionizante. Nova York: Pergamon.

Elder, JA, PA Czerki, K Stuchly, K Hansson Mild e AR Sheppard. 1989. Radiação de radiofrequência. Em Nonionizing Radiation Protection, editado por MJ Suess e DA Benwell-Morison. Genebra: OMS.

Eriksen, P. 1985. Espectros ópticos resolvidos no tempo da ignição de arco de soldagem MIG. Am Ind Hyg Assoc J 46:101-104.

Everett, MA, RL Olsen e RM Sayer. 1965. Eritema ultravioleta. Arch Dermatol 92:713-719.

Fitzpatrick, TB, MA Pathak, LC Harber, M Seiji e A Kukita. 1974. Sunlight and Man, Normal and Abnormal Photobiologic Responses. Tóquio: Univ. da Tokyo Press.

Forbes, PD e PD Davies. 1982. Fatores que influenciam a fotocarcinogênese. Indivíduo. 7 em Photoimmunology, editado por JAM Parrish, L Kripke e WL Morison. Nova York: Pleno.

Freeman, RS, DW Owens, JM Knox e HT Hudson. 1966. Requisitos relativos de energia para uma resposta eritemal da pele a comprimentos de onda monocromáticos de ultravioleta presentes no espectro solar. J Invest Dermatol 47:586-592.

Grandolfo, M e K Hansson Mild. 1989. Radiofrequência ocupacional e pública mundial e proteção contra micro-ondas. Em Biointeração Eletromagnética. Mecanismos, Normas de Segurança, Guias de Proteção, editado por G Franceschetti, OP Gandhi e M Grandolfo. Nova York: Pleno.

Verde, MW. 1992. Radiação não ionizante. 2º Workshop Internacional de Radiação Não Ionizante, 10-14 de maio, Vancouver.

Ham, WTJ. 1989. A fotopatologia e a natureza da lesão retiniana de luz azul e quase ultravioleta produzida por lasers e outras fontes ópticas. Em Laser Applications in Medicine and Biology, editado por ML Wolbarsht. Nova York: Pleno.

Ham, WT, HA Mueller, JJ Ruffolo, D Guerry III e RK Guerry. 1982. Espectro de ação para lesões na retina causadas por radiação quase ultravioleta no macaco afácico. Am J Ophthalmol 93(3):299-306.

Hansson Mild, K. 1980. Exposição ocupacional a campos eletromagnéticos de radiofrequência. Proc IEEE 68:12-17.

Hausser, KW. 1928. Influência do comprimento de onda na biologia da radiação. Strahlentherapie 28:25-44.

Instituto de Engenheiros Elétricos e Eletrônicos (IEEE). 1990a. IEEE COMAR Posição de RF e Microondas. Nova York: IEEE.

—. 1990b. Declaração de posição do IEEE COMAR sobre os aspectos de saúde da exposição a campos elétricos e magnéticos de seladores de RF e aquecedores dielétricos. Nova York: IEEE.

—. 1991. Padrão IEEE para níveis de segurança com relação à exposição humana a campos eletromagnéticos de radiofrequência de 3 KHz a 300 GHz. Nova York: IEEE.

Comissão Internacional de Proteção contra Radiação Não Ionizante (ICNIRP). 1994. Diretrizes sobre limites de exposição a campos magnéticos estáticos. Saúde Física 66:100-106.

—. 1995. Diretrizes para Limites de Exposição Humana à Radiação Laser.

Declaração do ICNIRP. 1996. Problemas de saúde relacionados ao uso de radiotelefones portáteis e transmissores de base. Health Physics, 70:587-593.

Comissão Eletrotécnica Internacional (IEC). 1993. Padrão IEC No. 825-1. Genebra: CEI.

Organização Internacional do Trabalho (OIT). 1993a. Proteção contra campos elétricos e magnéticos de frequência de energia. Série de Segurança e Saúde Ocupacional, No. 69. Genebra: ILO.

Associação Internacional de Proteção contra Radiação (IRPA). 1985. Diretrizes para limites de exposição humana à radiação laser. Saúde Física 48(2):341-359.

—. 1988a. Alteração: Recomendações para pequenas atualizações das diretrizes IRPA 1985 sobre os limites de exposição à radiação laser. Health Phys 54(5):573-573.

—. 1988b. Diretrizes sobre limites de exposição a campos eletromagnéticos de radiofrequência na faixa de frequência de 100 kHz a 300 GHz. Saúde Física 54:115-123.

—. 1989. Proposta de mudança para os limites de exposição à radiação ultravioleta da IRPA 1985. Health Phys 56(6):971-972.

Associação Internacional de Proteção contra Radiação (IRPA) e Comitê Internacional de Radiação Não Ionizante. 1990. Diretrizes provisórias sobre limites de exposição a campos elétricos e magnéticos de 50/60 Hz. Saúde Física 58(1):113-122.

Kolmodin-Hedman, B, K Hansson Mild, E Jönsson, MC Anderson e A Eriksson. 1988. Problemas de saúde entre operações de máquinas de solda de plástico e exposição a campos eletromagnéticos de radiofrequência. Int Arch Occup Environ Health 60:243-247.

Krause, N. 1986. Exposição de pessoas a campos magnéticos estáticos e variáveis ​​no tempo em tecnologia, medicina, pesquisa e vida pública: Aspectos dosimétricos. Em Biological Effects of Static and ELF-Magnetic Fields, editado por JH Bernhardt. Munique: MMV Medizin Verlag.

Lövsund, P e KH Mild. 1978. Campo eletromagnético de baixa frequência perto de alguns aquecedores de indução. Estocolmo: Conselho de Saúde e Segurança Ocupacional de Estocolmo.

Lövsund, P, PA Oberg e SEG Nilsson. 1982. Campos magnéticos ELF em eletroaço e indústrias de soldagem. Radio Sci 17(5S):355-385.

Luckiesh, ML, L Holladay e AH Taylor. 1930. Reação da pele humana não curtida à radiação ultravioleta. J Optic Soc Am 20:423-432.

McKinlay, AF e B Diffey. 1987. Um espectro de ação de referência para eritema induzido por ultravioleta na pele humana. Em Human Exposure to Ultraviolet Radiation: Risks and Regulations, editado por WF Passchier e BFM Bosnjakovic. Nova York: Excerpta medica Division, Elsevier Science Publishers.

McKinlay, A, JB Andersen, JH Bernhardt, M Grandolfo, KA Hossmann, FE van Leeuwen, K Hansson Mild, AJ Swerdlow, L Verschaeve e B Veyret. Proposta de um programa de investigação por um Grupo de Peritos da Comissão Europeia. Possíveis efeitos na saúde relacionados ao uso de radiotelefones. Reportagem não publicada.

Mitbriet, IM e VD Manyachin. 1984. Influência dos campos magnéticos na reparação do osso. Moscou, Nauka, 292-296.

Conselho Nacional de Proteção e Medições de Radiação (NCRP). 1981. Campos eletromagnéticos de radiofrequência. Propriedades, Quantidades e Unidades, Interação Biofísica e Medidas. Bethesda, MD: NCRP.

—. 1986. Efeitos Biológicos e Critérios de Exposição para Campos Eletromagnéticos de Radiofrequência. Relatório nº 86. Bethesda, MD: NCRP.

Conselho Nacional de Proteção Radiológica (NRPB). 1992. Campos eletromagnéticos e o risco de câncer. vol. 3(1). Chilton, Reino Unido: NRPB.

—. 1993. Restrições à exposição humana a campos e radiações eletromagnéticos estáticos e variáveis ​​no tempo. Didcot, Reino Unido: NRPB.

Conselho Nacional de Pesquisa (NRC). 1996. Possíveis efeitos na saúde da exposição a campos elétricos e magnéticos residenciais. Washington: NAS Press. 314.

Olsen, EG e A Ringvold. 1982. Endotélio da córnea humana e radiação ultravioleta. Acta Ophthalmol 60:54-56.

Parrish, JA, KF Jaenicke e RR Anderson. 1982. Eritema e melanogênese: Espectros de ação da pele humana normal. Photochem Photobiol 36(2):187-191.

Passchier, WF e BFM Bosnjakovic. 1987. Exposição Humana à Radiação Ultravioleta: Riscos e Regulamentações. Nova York: Excerpta Medica Division, Elsevier Science Publishers.

Pitts, DG. 1974. O espectro humano de ação ultravioleta. Am J Optom Phys Opt 51(12):946-960.

Pitts, DG e TJ Tredici. 1971. Os efeitos do ultravioleta no olho. Am Ind Hyg Assoc J 32(4):235-246.

Pitts, DG, AP Cullen e PD Hacker. 1977a. Efeitos oculares da radiação ultravioleta de 295 a 365nm. Invest Ophthalmol Vis Sci 16(10):932-939.

—. 1977b. Efeitos Ultravioleta de 295 a 400nm no Olho do Coelho. Cincinnati, Ohio: Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH).

Polk, C e E Postow. 1986. CRC Handbook of Biological Effects of Electromagnetic Fields. Boca Ratón: CRC Press.

Repacholi, MH. 1985. Terminais de exibição de vídeo - os operadores devem se preocupar? Austalas Phys Eng Sci Med 8(2):51-61.

—. 1990. Câncer da exposição a campos elétricos e magnéticos de 50760 Hz: um grande debate científico. Austalas Phys Eng Sci Med 13(1):4-17.

Repacholi, M, A Basten, V Gebski, D Noonan, J Finnic e AW Harris. 1997. Linfomas em camundongos transgênicos E-Pim1 expostos a campos eletromagnéticos pulsados ​​de 900 MHz. Pesquisa de radiação, 147:631-640.

Riley, MV, S Susan, MI Peters e CA Schwartz. 1987. Os efeitos da irradiação UVB no endotélio da córnea. Curr Eye Res 6(8):1021-1033.

Ringvold, A. 1980a. Córnea e radiação ultravioleta. Acta Oftalmol 58:63-68.

—. 1980b. Humor aquoso e radiação ultravioleta. Acta Ophthalmol 58:69-82.

—. 1983. Dano do epitélio da córnea causado pela radiação ultravioleta. Acta Ophthalmol 61:898-907.

Ringvold, A e M. Davanger. 1985. Alterações no estroma da córnea de coelho causadas pela radiação UV. Acta Ophthalmol 63:601-606.

Ringvold, A, M Davanger e EG Olsen. 1982. Alterações do endotélio da córnea após radiação ultravioleta. Acta Oftalmol 60:41-53.

Roberts, NJ e SM Michaelson. 1985. Estudos epidemiológicos da exposição humana à radiação de radiofrequência: uma revisão crítica. Int Arch Occup Environ Health 56:169-178.

Roy, CR, KH Joyner, HP Gies e MJ Bangay. 1984. Medição de radiação eletromagnética emitida por terminais de exibição visual (VDTs). Rad Prot Austral 2(1):26-30.

Scotto, J, TR Fears e GB Gori. 1980. Medições de radiação ultravioleta nos Estados Unidos e comparações com dados de câncer de pele. Washington, DC: US ​​Government Printing Office.

Sienkiewicz, ZJ, RD Saunder e CI Kowalczuk. 1991. Efeitos biológicos da exposição a campos eletromagnéticos não ionizantes e radiação. 11 Campos elétricos e magnéticos de frequência extremamente baixa. Didcot, Reino Unido: National Radiation Protection Board.

Silverman, C. 1990. Estudos epidemiológicos de câncer e campos eletromagnéticos. No Cap. 17 em Efeitos Biológicos e Aplicações Médicas da Energia Eletromagnética, editado por OP Gandhi. Engelwood Cliffs, NJ: Prentice Hall.

Sliney, DH. 1972. Os méritos de um espectro de ação de envelope para critérios de exposição à radiação ultravioleta. Am Ind Hyg Assoc J 33:644-653.

—. 1986. Fatores físicos na cataratogênese: radiação ultravioleta ambiente e temperatura. Invest Ophthalmol Vis Sci 27(5):781-790.

—. 1987. Estimando a exposição solar à radiação ultravioleta para um implante de lente intra-ocular. J Cataract Refract Surg 13(5):296-301.

—. 1992. Um guia do gerente de segurança para os novos filtros de soldagem. Soldagem J 71(9):45-47.
Sliney, DH e ML Wolbarsht. 1980. Segurança com lasers e outras fontes ópticas. Nova York: Pleno.

Stenson, S. 1982. Achados oculares em xeroderma pigmentoso: Relato de dois casos. Ann Ophthalmol 14(6):580-585.

Sterenborg, HJCM e JC van der Leun. 1987. Espectros de ação para tumorigênese por radiação ultravioleta. Em Human Exposure to Ultraviolet Radiation: Risks and Regulations, editado por WF Passchier e BFM Bosnjakovic. Nova York: Excerpta Medica Division, Elsevier Science Publishers.

Stutchly, MA. 1986. Exposição humana a campos magnéticos estáticos e variáveis ​​no tempo. Saúde Física 51(2):215-225.

Stuchly, MA e DW Lecuyer. 1985. Aquecimento por indução e exposição do operador a campos eletromagnéticos. Saúde Phys 49:693-700.

—. 1989. Exposição a campos eletromagnéticos em soldagem a arco. Saúde Física 56:297-302.

Szmigielski, S, M Bielec, S Lipski e G Sokolska. 1988. Aspectos imunológicos e relacionados ao câncer da exposição a campos de microondas e radiofrequência de baixo nível. In Modern Bioelectricity, editado por AA Mario. Nova York: Marcel Dekker.

Taylor, HR, SK West, FS Rosenthal, B Munoz, HS Newland, H Abbey e EA Emmett. 1988. Efeito da radiação ultravioleta na formação de catarata. New Engl J Med 319:1429-1433.

Diga, RA. 1983. Instrumentação para medição de campos eletromagnéticos: Equipamentos, calibrações e aplicações selecionadas. In Biological Effects and Dosimetry of Nonionizing Radiation, Radiofrequency and Microwave Energies, editado por M Grandolfo, SM Michaelson e A Rindi. Nova York: Pleno.

Urbach, F. 1969. Os efeitos biológicos da radiação ultravioleta. Nova York: Pergamon.

Organização Mundial da Saúde (OMS). 1981. Radiofrequência e microondas. Critério de Saúde Ambiental, No.16. Genebra: OMS.

—. 1982. Lasers e Radiação Óptica. Critérios de Saúde Ambiental, No. 23. Genebra: OMS.

—. 1987. Campos Magnéticos. Critério de Saúde Ambiental, No.69. Genebra: OMS.

—. 1989. Proteção contra radiação não ionizante. Copenhague: Escritório Regional da OMS para a Europa.

—. 1993. Campos eletromagnéticos de 300 Hz a 300 GHz. Critérios de Saúde Ambiental, No. 137. Genebra: OMS.

—. 1994. Radiação ultravioleta. Critérios de Saúde Ambiental, No. 160. Genebra: OMS.

Organização Mundial da Saúde (OMS), Programa Ambiental das Nações Unidas (PNUMA) e Associação Internacional de Proteção contra Radiação (IRPA). 1984. Frequência Extremamente Baixa (ELF). Critérios de Saúde Ambiental, No. 35. Genebra: OMS.

Zaffanella, LE e DW DeNo. 1978. Efeitos eletrostáticos e eletromagnéticos de linhas de transmissão de ultra-alta tensão. Palo Alto, Califórnia: Electric Power Research Institute.

Zuclich, JA e JS Connolly. 1976. Danos oculares induzidos por radiação laser quase ultravioleta. Invest Ophthalmol Vis Sci 15(9):760-764.