Imprimir esta página
Terça-feira, 15 Março 2011 15: 01

Radiação infra-vermelha

Classifique este artigo
(10 votos)

A radiação infravermelha é aquela parte do espectro da radiação não ionizante localizada entre as micro-ondas e a luz visível. É uma parte natural do ambiente humano e, portanto, as pessoas estão expostas a ela em pequenas quantidades em todas as áreas da vida diária – por exemplo, em casa ou durante atividades recreativas ao sol. No entanto, uma exposição muito intensa pode resultar de certos processos técnicos no local de trabalho.

Muitos processos industriais envolvem a cura térmica de vários tipos de materiais. As fontes de calor usadas ou o próprio material aquecido geralmente emitem níveis tão altos de radiação infravermelha que um grande número de trabalhadores corre o risco de ser exposto.

Conceitos e Quantidades

A radiação infravermelha (IR) tem comprimentos de onda que variam de 780 nm a 1 mm. Seguindo a classificação da Comissão Internacional de Iluminação (CIE), esta banda é subdividida em IRA (de 780 nm a 1.4 μm), IRB (de 1.4 μm a 3 μm) e IRC (de 3 μm a 1 mm). Esta subdivisão segue aproximadamente as características de absorção dependentes do comprimento de onda de IR no tecido e os diferentes efeitos biológicos resultantes.

A quantidade e a distribuição temporal e espacial da radiação infravermelha são descritas por diferentes grandezas e unidades radiométricas. Devido às propriedades ópticas e fisiológicas, especialmente do olho, geralmente é feita uma distinção entre pequenas fontes “pontuais” e fontes “estendidas”. O critério para esta distinção é o valor em radianos do ângulo (α) medido no olho que é subentendido pela fonte. Este ângulo pode ser calculado como um quociente, a dimensão da fonte de luz DL dividido pela distância de visualização r. Fontes estendidas são aquelas que apresentam um ângulo de visão no olho maior que αminutos, que normalmente é de 11 milirradianos. Para todas as fontes estendidas, há uma distância de visualização em que α é igual a αminutos; em distâncias de visualização maiores, a fonte pode ser tratada como uma fonte pontual. Na proteção contra radiação óptica, as grandezas mais importantes em relação a fontes estendidas são as esplendor (L, expresso em Wm-2sr-1) E do radiância integrada no tempo (Lp em jm-2sr-1), que descrevem o “brilho” da fonte. Para avaliação de risco à saúde, as quantidades mais relevantes relativas a fontes pontuais ou exposições a distâncias da fonte onde α< αminutos, são as irradiância (E, expresso em Wm-2), que é equivalente ao conceito de taxa de dose de exposição, e o exposição radiante (H, em Jm-2), equivalente ao conceito de dose de exposição.

Em algumas bandas do espectro, os efeitos biológicos devido à exposição são fortemente dependentes do comprimento de onda. Portanto, quantidades espectrorradiométricas adicionais devem ser usadas (por exemplo, a radiância espectral, Ll, expresso em Wm-2 sr-1 nm-1) para ponderar os valores de emissão física da fonte contra o espectro de ação aplicável relacionado ao efeito biológico.

 

Fontes e Exposição Ocupacional

A exposição ao IR resulta de várias fontes naturais e artificiais. A emissão espectral dessas fontes pode ser limitada a um único comprimento de onda (laser) ou pode ser distribuída em uma ampla faixa de comprimento de onda.

Os diferentes mecanismos para a geração de radiação óptica em geral são:

  • excitação térmica (radiação de corpo negro)
  • descarga de gás
  • amplificação da luz por emissão estimulada de radiação (laser), sendo o mecanismo de descarga gasosa de menor importância na banda do IR.

 

A emissão das fontes mais importantes usadas em muitos processos industriais resulta da excitação térmica e pode ser aproximada usando as leis físicas da radiação de corpo negro se a temperatura absoluta da fonte for conhecida. A emissão total (M, em Wm-2) de um radiador de corpo negro (figura 1) é descrito pela lei de Stefan-Boltzmann:

M(T) = 5.67 x 10-8T4

e depende da 4ª potência da temperatura (T, em K) do corpo radiante. A distribuição espectral da radiância é descrita pela lei de radiação de Planck:

e o comprimento de onda de emissão máxima (λmax) é descrito de acordo com a lei de Wien por:

λmax = (2.898 x 10-8) / T

Figura 1. Radiância espectral λmaxde um radiador de corpo negro na temperatura absoluta mostrada em graus Kelvin em cada curva

ELF040F1

Muitos lasers usados ​​em processos industriais e médicos emitem níveis muito altos de IR. Em geral, em comparação com outras fontes de radiação, a radiação laser tem algumas características incomuns que podem influenciar o risco após uma exposição, como duração de pulso muito curta ou irradiância extremamente alta. Portanto, a radiação laser é discutida em detalhes em outra parte deste capítulo.

Muitos processos industriais requerem o uso de fontes que emitem altos níveis de radiação visível e infravermelha e, portanto, um grande número de trabalhadores como padeiros, sopradores de vidro, trabalhadores de fornos, fundições, ferreiros, fundições e bombeiros estão potencialmente em risco de exposição. Além das lâmpadas, fontes como chamas, maçaricos a gás, maçaricos de acetileno, poças de metal fundido e barras de metal incandescente devem ser consideradas. Estes são encontrados em fundições, usinas siderúrgicas e em muitas outras plantas industriais pesadas. A Tabela 1 resume alguns exemplos de fontes de infravermelho e suas aplicações.

Tabela 1. Diferentes fontes de IR, população exposta e níveis aproximados de exposição

fonte

Aplicação ou população exposta

Exposição

Exposição à luz natural:

Trabalhadores ao ar livre, agricultores, trabalhadores da construção civil, marítimos, público em geral

500Wm-2

Lâmpadas de filamento de tungstênio

População em geral e trabalhadores
Iluminação geral, secagem de tintas e tintas

105-106 Wm-2sr-1

Lâmpadas de filamento de halogênio de tungstênio

(Ver lâmpadas de filamento de tungstênio)
Sistemas de cópia (fixação), processos gerais (secagem, cozimento, encolhimento, amaciamento)

50–200Wm-2 (a 50cm)

Diodos emissores de luz (por exemplo, diodo GaAs)

Brinquedos, eletrônicos de consumo, tecnologia de transmissão de dados, etc.

105 Wm-2sr-1

lâmpadas de arco de xenônio

Projetores, simuladores solares, luzes de busca
Operadores de câmera de fábrica de impressão, trabalhadores de laboratório óptico, artistas

107 Wm-2sr-1

ferro fundido

Fornalha de aço, trabalhadores de siderurgia

105 Wm-2sr-1

Matrizes de lâmpadas infravermelhas

Aquecimento e secagem industrial

103 para 8.103 Wm-2

Lâmpadas infravermelhas em hospitais

Incubadoras de laboratório

100–300Wm-2

 

Efeitos Biológicos

A radiação óptica em geral não penetra muito profundamente no tecido biológico. Portanto, os alvos primários de uma exposição IR são a pele e os olhos. Na maioria das condições de exposição, o principal mecanismo de interação do IR é térmico. Apenas os pulsos muito curtos que os lasers podem produzir, mas que não são considerados aqui, também podem levar a efeitos mecanotérmicos. Não se espera que os efeitos da ionização ou da quebra de ligações químicas apareçam com a radiação IR porque a energia da partícula, sendo menor que aproximadamente 1.6 eV, é muito baixa para causar tais efeitos. Pela mesma razão, as reações fotoquímicas tornam-se significativas apenas em comprimentos de onda mais curtos na região visual e ultravioleta. Os diferentes efeitos na saúde dependentes do comprimento de onda do IR surgem principalmente das propriedades ópticas dependentes do comprimento de onda do tecido - por exemplo, a absorção espectral da mídia ocular (figura 2).

Figura 2. Absorção espectral do meio ocular

ELF040F2

Efeitos no olho

Em geral, o olho está bem adaptado para se proteger contra a radiação óptica do ambiente natural. Além disso, o olho é fisiologicamente protegido contra lesões de fontes de luz intensa, como o sol ou lâmpadas de alta intensidade, por uma resposta de aversão que limita a duração da exposição a uma fração de segundo (aproximadamente 0.25 segundos).

A IRA afeta principalmente a retina, devido à transparência da mídia ocular. Ao visualizar diretamente uma fonte pontual ou feixe de laser, as propriedades de foco na região IRA tornam a retina muito mais suscetível a danos do que qualquer outra parte do corpo. Para períodos curtos de exposição, considera-se que o aquecimento da íris pela absorção de infravermelho visível ou próximo desempenha um papel no desenvolvimento de opacidades na lente.

Com o aumento do comprimento de onda, acima de aproximadamente 1 μm, a absorção pelo meio ocular aumenta. Portanto, considera-se que a absorção da radiação IRA tanto pelo cristalino quanto pela íris pigmentada desempenha um papel na formação de opacidades lenticulares. Danos à lente são atribuídos a comprimentos de onda abaixo de 3 μm (IRA e IRB). Para radiação infravermelha de comprimentos de onda superiores a 1.4 μm, o humor aquoso e a lente são particularmente fortemente absorventes.

Na região IRB e IRC do espectro, a mídia ocular torna-se opaca como resultado da forte absorção por sua água constituinte. A absorção nesta região ocorre principalmente na córnea e no humor aquoso. Além de 1.9 μm, a córnea é efetivamente o único absorvedor. A absorção da radiação infravermelha de comprimento de onda longo pela córnea pode levar ao aumento da temperatura no olho devido à condução térmica. Devido a uma rápida taxa de renovação das células superficiais da córnea, qualquer dano limitado à camada externa da córnea pode ser temporário. Na banda IRC, a exposição pode causar uma queimadura na córnea semelhante à da pele. As queimaduras da córnea não são muito prováveis ​​de ocorrer, no entanto, por causa da reação de aversão desencadeada pela sensação dolorosa causada pela forte exposição.

Efeitos na pele

A radiação infravermelha não penetra profundamente na pele. Portanto, a exposição da pele a infravermelhos muito fortes pode levar a efeitos térmicos locais de gravidade variável e até mesmo queimaduras graves. Os efeitos na pele dependem das propriedades ópticas da pele, como a profundidade de penetração dependente do comprimento de onda (figura 3 ). Especialmente em comprimentos de onda mais longos, uma exposição extensa pode causar um alto aumento de temperatura local e queimaduras. Os valores limite para esses efeitos são dependentes do tempo, devido às propriedades físicas dos processos de transporte térmico na pele. Uma irradiação de 10 kWm-2, por exemplo, pode causar uma sensação dolorosa em 5 segundos, enquanto uma exposição de 2 kWm-2 não causará a mesma reação em períodos menores que aproximadamente 50 segundos.

Figura 3. Profundidade de penetração na pele para diferentes comprimentos de onda

ELF040F3

Se a exposição for prolongada por períodos muito longos, mesmo em valores bem abaixo do limiar da dor, a carga de calor para o corpo humano pode ser grande. Especialmente se a exposição cobrir todo o corpo como, por exemplo, na frente de um derretimento de aço. O resultado pode ser um desequilíbrio do sistema de termorregulação fisiologicamente bem equilibrado. O limite para tolerar tal exposição dependerá de diferentes condições individuais e ambientais, como a capacidade individual do sistema de termorregulação, o metabolismo corporal real durante a exposição ou a temperatura ambiente, umidade e movimento do ar (velocidade do vento). Sem nenhum trabalho físico, uma exposição máxima de 300 Wm-2 pode ser tolerado por mais de oito horas sob certas condições ambientais, mas esse valor diminui para aproximadamente 140 Wm-2 durante o trabalho físico pesado.

Padrões de exposição

Os efeitos biológicos da exposição aos infravermelhos, que dependem do comprimento de onda e da duração da exposição, são intoleráveis ​​apenas se forem excedidos certos limites de intensidade ou valores de dose. Para se proteger contra essas condições intoleráveis ​​de exposição, organizações internacionais como a Organização Mundial da Saúde (OMS), a Organização Internacional do Trabalho (OIT), o Comitê Internacional para Radiação Não Ionizante da Associação Internacional de Proteção contra Radiação (INIRC/IRPA) e seus sucessor, a Comissão Internacional de Proteção contra Radiação Não Ionizante (ICNIRP) e a Conferência Americana de Higienistas Industriais Governamentais (ACGIH) sugeriram limites de exposição para radiação infravermelha de fontes ópticas coerentes e incoerentes. A maioria das sugestões nacionais e internacionais sobre diretrizes para limitar a exposição humana à radiação infravermelha são baseadas ou mesmo idênticas aos valores limite sugeridos (TLVs) publicados pela ACGIH (1993/1994). Esses limites são amplamente reconhecidos e frequentemente usados ​​em situações ocupacionais. Eles são baseados no conhecimento científico atual e destinam-se a prevenir lesões térmicas da retina e da córnea e evitar possíveis efeitos retardados no cristalino do olho.

A revisão de 1994 dos limites de exposição da ACGIH é a seguinte:

1. Para a proteção da retina contra lesões térmicas em caso de exposição à luz visível (por exemplo, no caso de fontes de luz potentes), a radiância espectral Lλ em W/(m² sr nm) ponderado contra a função de risco térmico da retina Rλ (ver tabela 2) ao longo do intervalo de comprimento de onda Δλ e somados na faixa de comprimento de onda de 400 a 1400 nm, não devem exceder:

onde t é a duração da visualização limitada a intervalos de 10-3 a 10 segundos (ou seja, para condições de visualização acidental, visualização não fixa), e α é a subtensão angular da fonte em radianos calculada por α = extensão máxima da fonte/distância até a fonte Rλ  (mesa 2 ).

2. Para proteger a retina dos riscos de exposição de lâmpadas de calor infravermelhas ou qualquer fonte de infravermelho próximo, onde um forte estímulo visual está ausente, a radiação infravermelha na faixa de comprimento de onda de 770 a 1400 nm conforme vista pelo olho (com base em uma pupila de 7 mm diâmetro) para condições de visualização prolongadas devem ser limitadas a:

Esse limite é baseado em um diâmetro pupilar de 7 mm, pois, nesse caso, a resposta de aversão (fechar o olho, por exemplo) pode não existir devido à ausência de luz visível.

3. Para evitar possíveis efeitos retardados na lente do olho, como catarata retardada, e para proteger a córnea da superexposição, a radiação infravermelha em comprimentos de onda superiores a 770 nm deve ser limitada a 100 W/m² por períodos superiores a 1,000 s e para:

ou por períodos mais curtos.

4. Para pacientes afácicos, funções de ponderação separadas e TLVs resultantes são fornecidos para a faixa de comprimento de onda da luz ultravioleta e visível (305–700 nm).

Tabela 2. Função de risco térmico da retina

Comprimento de onda (nm)

Rλ

Comprimento de onda (nm)

Rλ

400

1.0

460

8.0

405

2.0

465

7.0

410

4.0

470

6.2

415

8.0

475

5.5

420

9.0

480

4.5

425

9.5

485

4.0

430

9.8

490

2.2

435

10.0

495

1.6

440

10.0

500-700

1.0

445

9.7

700-1,050

10((700 ) / 500)

450

9.4

1,050-1,400

0.2

455

9.0

   

Fonte: ACGIH 1996.

Medição

Existem técnicas e instrumentos radiométricos confiáveis ​​que permitem analisar o risco para a pele e os olhos da exposição a fontes de radiação óptica. Para caracterizar uma fonte de luz convencional, geralmente é muito útil medir a radiância. Para definir as condições de exposição perigosa de fontes ópticas, a irradiância e a exposição radiante são de maior importância. A avaliação de fontes de banda larga é mais complexa do que a avaliação de fontes que emitem em comprimentos de onda únicos ou bandas muito estreitas, pois as características espectrais e o tamanho da fonte devem ser considerados. O espectro de certas lâmpadas consiste em uma emissão contínua em uma ampla faixa de comprimento de onda e emissão em determinados comprimentos de onda únicos (linhas). Erros significativos podem ser introduzidos na representação desses espectros se a fração de energia em cada linha não for adicionada adequadamente ao contínuo.

Para avaliação de riscos à saúde, os valores de exposição devem ser medidos em uma abertura limite para a qual os padrões de exposição são especificados. Normalmente, uma abertura de 1 mm é considerada o menor tamanho de abertura prática. Comprimentos de onda superiores a 0.1 mm apresentam dificuldades devido aos efeitos de difração significativos criados por uma abertura de 1 mm. Para esta banda de comprimento de onda foi aceita uma abertura de 1 cm² (11 mm de diâmetro), porque os pontos quentes nesta banda são maiores do que em comprimentos de onda mais curtos. Para a avaliação dos perigos da retina, o tamanho da abertura foi determinado por um tamanho médio da pupila e, portanto, foi escolhida uma abertura de 7 mm.

Em geral, as medições na região óptica são muito complexas. Medições feitas por pessoal não treinado podem levar a conclusões inválidas. Um resumo detalhado dos procedimentos de medição pode ser encontrado em Sliney e Wolbarsht (1980).

Medidas protetoras

A proteção padrão mais eficaz contra a exposição à radiação óptica é o fechamento total da fonte e todos os caminhos de radiação que podem sair da fonte. Com tais medidas, o cumprimento dos limites de exposição deve ser fácil de alcançar na maioria dos casos. Quando este não for o caso, a proteção individual é aplicável. Por exemplo, deve-se usar a proteção ocular disponível na forma de óculos ou visores adequados ou roupas de proteção. Se as condições de trabalho não permitirem a aplicação de tais medidas, pode ser necessário controle administrativo e acesso restrito a fontes muito intensas. Em alguns casos, a redução da potência da fonte ou do tempo de trabalho (pausas de trabalho para recuperação do estresse térmico), ou de ambos, pode ser uma medida possível para proteger o trabalhador.

Conclusão

Em geral, a radiação infravermelha das fontes mais comuns, como lâmpadas, ou da maioria das aplicações industriais, não causará nenhum risco aos trabalhadores. Em alguns locais de trabalho, no entanto, o IR pode causar risco à saúde do trabalhador. Além disso, há um rápido aumento na aplicação e uso de lâmpadas especiais e em processos de alta temperatura na indústria, ciência e medicina. Se a exposição dessas aplicações for suficientemente elevada, não podem ser excluídos os efeitos nocivos (principalmente nos olhos, mas também na pele). Espera-se que a importância dos padrões de exposição à radiação óptica reconhecidos internacionalmente aumente. Para proteger o trabalhador da exposição excessiva, devem ser obrigatórias medidas de proteção como blindagem (olhos) ou roupas de proteção.

Os principais efeitos biológicos adversos atribuídos à radiação infravermelha são as cataratas, conhecidas como catarata do soprador de vidro ou catarata do forno. A exposição a longo prazo, mesmo em níveis relativamente baixos, causa estresse térmico ao corpo humano. Em tais condições de exposição, fatores adicionais, como temperatura corporal e perda de calor por evaporação, bem como fatores ambientais, devem ser considerados.

A fim de informar e instruir os trabalhadores, alguns guias práticos foram desenvolvidos nos países industrializados. Um resumo abrangente pode ser encontrado em Sliney e Wolbarsht (1980).

 

Voltar

Leia 22353 vezes Última modificação em quinta-feira, 13 de outubro de 2011 21:31