Quarta-feira, 16 Março 2011 19: 06

Fabricação de cabos elétricos

Classifique este artigo
(Voto 1)

Os cabos vêm em uma variedade de tamanhos para diferentes usos, desde cabos de energia de supertensão que transportam energia elétrica a mais de 100 kilovolts, até cabos de telecomunicações. No passado, estes últimos utilizavam condutores de cobre, mas estes foram substituídos por cabos de fibra ótica, que transportam mais informações em um cabo muito menor. Entre eles estão os cabos gerais usados ​​para fins de fiação residencial, outros cabos flexíveis e cabos de energia com tensões inferiores às dos cabos de supertensão. Além disso, existem cabos mais especializados, como cabos com isolamento mineral (usados ​​onde sua proteção inerente contra queimaduras em um incêndio é crucial - por exemplo, em uma fábrica, em um hotel ou a bordo de um navio), fios esmaltados (usados ​​como enrolamentos para motores), fios de ouropel (usados ​​na conexão encaracolada de um aparelho de telefone), cabos de fogão (que historicamente usavam isolamento de amianto, mas agora usam outros materiais) e assim por diante.

Materiais e Processos

Condutores

O material mais comum usado como condutor em cabos sempre foi o cobre, devido à sua condutividade elétrica. O cobre tem que ser refinado para alta pureza antes de ser transformado em um condutor. O refino de cobre a partir de minério ou sucata é um processo de duas etapas:

  1. refino de fogo em um grande forno para remover impurezas indesejadas e fundir um ânodo de cobre
  2. refino eletrolítico em uma célula elétrica contendo ácido sulfúrico, a partir do qual o cobre muito puro é depositado no cátodo.

 

Nas fábricas modernas, os cátodos de cobre são fundidos em um forno de cuba e fundidos e laminados continuamente em barras de cobre. Essa haste é estirada até o tamanho necessário em uma máquina de trefilação, puxando o cobre através de uma série de matrizes precisas. Historicamente, a operação de trefilação era realizada em um local central, com muitas máquinas produzindo fios de diferentes tamanhos. Mais recentemente, fábricas autônomas menores têm sua própria operação de trefilação menor. Para algumas aplicações especializadas, o condutor de cobre é revestido com um revestimento de metal, como estanho, prata ou zinco.

Condutores de alumínio são usados ​​em cabos de energia aéreos, onde o peso mais leve mais do que compensa a condutividade inferior em comparação com o cobre. Os condutores de alumínio são feitos espremendo um lingote aquecido de alumínio através de uma matriz usando uma prensa de extrusão.

Condutores metálicos mais especializados utilizam ligas especiais para uma aplicação específica. Uma liga de cádmio-cobre foi usada para catenárias aéreas (o condutor aéreo usado em uma ferrovia) e para o fio de ouropel usado em um aparelho de telefone. O cádmio aumenta a resistência à tração em comparação com o cobre puro e é usado para que a catenária não ceda entre os suportes. A liga de cobre-berílio também é usada em certas aplicações.

As fibras ópticas, constituídas por um filamento contínuo de vidro de alta qualidade óptica para transmissão de telecomunicações, foram desenvolvidas no início dos anos 1980. Isso exigia uma tecnologia de fabricação totalmente nova. Tetracloreto de silício é queimado dentro de um torno mecânico para depositar dióxido de silício em um molde. O dióxido de silício é convertido em vidro por aquecimento em atmosfera de cloro; em seguida, é desenhado no tamanho certo e uma camada protetora é aplicada.

Isolamento

Muitos materiais de isolamento têm sido usados ​​em diferentes tipos de cabos. Os tipos mais comuns são os materiais plásticos, como PVC, polietileno, politetrafluoretileno (PTFE) e poliamidas. Em cada caso, o plástico é formulado para atender a uma especificação técnica e é aplicado na parte externa do condutor usando uma máquina de extrusão. Em alguns casos, podem ser adicionados materiais ao composto plástico para uma aplicação específica. Alguns cabos de energia, por exemplo, incorporam um composto de silano para reticulação do plástico. Nos casos em que o cabo vai ser enterrado no solo, é adicionado um pesticida para evitar que os cupins comam o isolamento.

Alguns cabos flexíveis, especialmente aqueles em minas subterrâneas, usam isolamento de borracha. Centenas de diferentes compostos de borracha são necessários para atender a diferentes especificações, e é necessária uma instalação especializada em compostos de borracha. A borracha é extrudada no condutor. Também deve ser vulcanizado passando por um banho de sal de nitrito quente ou por um líquido pressurizado. Para evitar que os condutores adjacentes isolados com borracha grudem, eles são puxados através de pó de talco.

O condutor dentro de um cabo pode ser enrolado com um isolante como papel (que pode ter sido embebido em óleo mineral ou sintético) ou mica. Uma bainha externa é então aplicada, normalmente por extrusão de plástico.

Dois métodos de fabricação de cabos com isolamento mineral (MI) foram desenvolvidos. No primeiro, um tubo de cobre tem vários condutores sólidos de cobre inseridos nele, e o espaço entre eles é preenchido com um pó de óxido de magnésio. Todo o conjunto é então puxado para baixo através de uma série de matrizes até o tamanho necessário. A outra técnica envolve a soldagem contínua de uma espiral de cobre em torno de condutores separados por pó. Em uso, a bainha de cobre externa de um cabo MI é a conexão de aterramento e os condutores internos conduzem a corrente. Embora nenhuma camada externa seja necessária, alguns clientes especificam uma bainha de PVC por razões estéticas. Isso é contraproducente, pois a principal vantagem do cabo MI é que ele não queima, e uma bainha de PVC anula um pouco essa vantagem.

Nos últimos anos, o comportamento dos cabos em incêndios tem recebido atenção crescente por dois motivos:

  1. A maioria das borrachas e plásticos, os materiais de isolamento tradicionais, emitem grandes quantidades de fumaça e gases tóxicos em um incêndio e, em vários incidentes de incêndio de alto perfil, essa foi a principal causa de morte.
  2. Depois que um cabo é queimado, os condutores tocam e fundem o circuito e, portanto, a energia elétrica é perdida. Isso levou ao desenvolvimento de compostos de baixo teor de fumaça e fogo (LSF), tanto para materiais de plástico quanto de borracha. Deve-se perceber, no entanto, que o melhor desempenho em um incêndio sempre será obtido de um cabo MI.

 

Vários materiais especializados são usados ​​para determinados cabos. Os cabos de supertensão são preenchidos com óleo para propriedades de isolamento e resfriamento. Outros cabos usam uma graxa de hidrocarboneto conhecida como MIND, vaselina ou uma bainha de chumbo. Os fios esmaltados são normalmente feitos revestindo-os com um esmalte de poliuretano dissolvido em cresol.

Fabricação de cabos

Em muitos cabos, os condutores isolados individuais são torcidos juntos para formar uma configuração particular. Várias bobinas contendo os condutores individuais giram em torno de um eixo central à medida que o cabo é puxado pela máquina, em operações conhecidas como encalhe e disposição.

Alguns cabos precisam ser protegidos contra danos mecânicos. Muitas vezes isso é feito por trança, onde um material é entrelaçado em torno do isolamento externo de um cabo flexível, de modo que cada fio se cruze repetidamente em espiral. Um exemplo de tal cabo trançado (pelo menos no Reino Unido) é o usado em ferros elétricos, onde fios têxteis são usados ​​como material trançado. Em outros casos, o fio de aço é usado para o trançado, onde a operação é referida como blindagem.

operações auxiliares

Cabos maiores são fornecidos em tambores de até alguns metros de diâmetro. Tradicionalmente, os tambores são de madeira, mas têm sido usados ​​tambores de aço. Um tambor de madeira é feito pregando madeira serrada usando uma máquina ou uma pistola de pregar pneumática. Um conservante de cobre-cromo-arsênico é usado para evitar que a madeira apodreça. Cabos menores geralmente são fornecidos em uma bobina de papelão.

A operação de unir as duas pontas dos cabos, conhecida como junção, pode muito bem ter que ser realizado em um local remoto. A junta não só deve ter uma boa conexão elétrica, mas também deve ser capaz de suportar futuras condições ambientais. Os compostos de junta usados ​​são geralmente resinas acrílicas e incorporam compostos de isocianato e sílica em pó.

Os conectores de cabo são comumente feitos de latão em tornos automáticos que os fabricam a partir de barras. As máquinas são resfriadas e lubrificadas usando uma emulsão água-óleo. Os clipes de cabo são feitos por máquinas de injeção de plástico.

Perigos e sua Prevenção

O perigo à saúde mais difundido em toda a indústria de cabo é o ruído. As operações mais ruidosas são:

  • desenho do fio
  • trança
  • a refinaria de fogo de cobre
  • vazamento contínuo de hastes de cobre
  • fabricação de tambores de cabo.

 

Níveis de ruído superiores a 90 dBA são comuns nessas áreas. Para trefilação e trançamento, o nível geral de ruído depende do número e localização das máquinas e do ambiente acústico. O layout da máquina deve ser planejado para minimizar a exposição a ruídos. Caixas acústicas cuidadosamente projetadas são os meios mais eficazes de controlar o ruído, mas são caras. Para a refinaria de fogo de cobre e lingotamento contínuo de varetas de cobre as principais fontes de ruído são os queimadores, que devem ser projetados para baixa emissão de ruído. No caso da fabricação de tambores de cabo, as pistolas de pregos operadas pneumaticamente são a principal fonte de ruído, que pode ser reduzida diminuindo a pressão da linha de ar e instalando silenciadores de exaustão. A norma da indústria na maioria dos casos acima, no entanto, é fornecer proteção auditiva aos trabalhadores nas áreas afetadas, mas tal proteção será mais desconfortável do que o normal devido aos ambientes quentes na refinaria de cobre e vazamento contínuo de hastes de cobre. Audiometria regular também deve ser realizada para monitorar a audição de cada indivíduo.

Muitos dos riscos de segurança e sua prevenção são os mesmos de muitas outras indústrias manufatureiras. No entanto, alguns perigos especiais são apresentados por algumas máquinas de fabricação de cabos, na medida em que possuem numerosas bobinas de condutores girando em torno de dois eixos ao mesmo tempo. É essencial garantir que as proteções da máquina estejam travadas para evitar que a máquina opere, a menos que as proteções estejam posicionadas para impedir o acesso a nips em movimento e outras peças rotativas, como grandes tambores de cabos. Durante o rosqueamento inicial da máquina, quando pode ser necessário permitir o acesso do operador dentro da proteção da máquina, a máquina deve ser capaz de se mover apenas alguns centímetros por vez. Arranjos de intertravamento podem ser obtidos por meio de uma chave exclusiva que abre a proteção ou deve ser inserida no console de controle para permitir sua operação.

Uma avaliação do risco de partículas voadoras - por exemplo, se um fio quebrar e se soltar - deve ser feita.

As proteções devem, preferencialmente, ser projetadas para impedir fisicamente que tais partículas atinjam o operador. Quando isso não for possível, proteção ocular adequada deve ser fornecida e usada. As operações de trefilação são frequentemente designadas como áreas onde a proteção para os olhos deve ser usada.

Condutores

Em qualquer processo de metal quente, como uma refinaria de fogo de cobre ou hastes de cobre fundidas, a água deve ser evitada de entrar em contato com o metal fundido para evitar uma explosão. Carregar o forno pode resultar na fuga de vapores de óxido de metal no local de trabalho. Isso deve ser controlado usando ventilação de exaustão local eficaz sobre a porta de carregamento. Da mesma forma, as passagens pelas quais o metal fundido passa do forno para a máquina de fundição e a própria máquina de fundição precisam ser controladas adequadamente.

O principal perigo na refinaria eletrolítica é a névoa de ácido sulfúrico formada em cada célula. As concentrações no ar devem ser mantidas abaixo de 1 mg/m3 por ventilação adequada para evitar irritação.

Ao fundir hastes de cobre, um risco adicional pode ser apresentado pelo uso de placas de isolamento ou mantas para conservar o calor ao redor da roda de fundição. Os materiais cerâmicos podem ter substituído o amianto em tais aplicações, mas as próprias fibras cerâmicas devem ser manuseadas com muito cuidado para evitar exposições. Esses materiais tornam-se mais friáveis ​​(isto é, quebram-se facilmente) após o uso, quando são afetados pelo calor, e a exposição a fibras respiráveis ​​transportadas pelo ar resulta de seu manuseio.

Um perigo incomum é apresentado na fabricação de cabos de alimentação de alumínio. Uma suspensão de grafite em óleo pesado é aplicada ao aríete da prensa de extrusão para evitar que o tarugo de alumínio grude no aríete. Como o aríete está quente, parte desse material é queimado e sobe para o espaço do telhado. Desde que não haja nenhum operador de ponte rolante nas proximidades e que os ventiladores de teto estejam instalados e funcionando, não deve haver risco para a saúde dos trabalhadores.

Fabricar ligas de cobre-cádmio ou ligas de cobre-cádmio pode apresentar altos riscos para os funcionários envolvidos. Como o cádmio ferve bem abaixo do ponto de fusão do cobre, vapores de óxido de cádmio gerados recentemente serão gerados em grandes quantidades sempre que o cádmio for adicionado ao cobre fundido (o que deve ser para fazer a liga). O processo pode ser realizado com segurança apenas com um projeto muito cuidadoso da ventilação de exaustão local. Da mesma forma, a fabricação da liga de cobre-berílio requer grande atenção aos detalhes, uma vez que o berílio é o mais tóxico de todos os metais tóxicos e possui os limites de exposição mais rigorosos.

A fabricação de fibras ópticas é uma operação altamente especializada e de alta tecnologia. Os produtos químicos usados ​​têm seus próprios perigos especiais, e o controle do ambiente de trabalho requer o projeto, instalação e manutenção de LEV complexos e sistemas de ventilação de processo. Esses sistemas devem ser controlados por dampers de controle monitorados por computador. Os principais perigos químicos são de cloro, cloreto de hidrogênio e ozônio. Além disso, os solventes usados ​​para limpar as matrizes devem ser manuseados em cabines de exaustão, e o contato da pele com as resinas à base de acrilato usadas para revestir as fibras deve ser evitado.

Isolamento

As operações de composição de plástico e de borracha apresentam perigos particulares que devem ser adequadamente controlados (consulte o capítulo Indústria de Borracha). Embora a indústria de cabos possa usar compostos diferentes de outras indústrias, as técnicas de controle são as mesmas.

Ao serem aquecidos, os compostos plásticos desprenderão uma mistura complexa de produtos de degradação térmica, cuja composição dependerá do composto plástico original e da temperatura a que está submetido. Na temperatura normal de processamento de extrusoras de plástico, os contaminantes transportados pelo ar geralmente são um problema relativamente pequeno, mas é prudente instalar ventilação no espaço entre a cabeça da extrusora e o bebedouro usado para resfriar o produto, principalmente para controlar a exposição ao ftalato plastificantes comumente usados ​​em PVC. A fase da operação que pode justificar uma investigação mais aprofundada é durante uma transição. O operador deve ficar sobre o cabeçote extrusor para remover o composto plástico ainda quente e, em seguida, passar o novo composto (e no chão) até que apenas a nova cor saia e o cabo esteja centralizado no cabeçote extrusor. Pode ser difícil projetar LEV eficaz durante esta fase, quando o operador está tão próximo do cabeçote da extrusora.

O politetrafluoretileno (PTFE) tem seu próprio risco especial. Pode causar febre de fumaça de polímero, que apresenta sintomas semelhantes aos da gripe. A condição é temporária, mas deve ser evitada controlando adequadamente as exposições ao composto aquecido.

O uso da borracha na fabricação de cabos tem apresentado um nível de risco menor do que outros usos da borracha, como na indústria de pneus. Em ambas as indústrias, o uso de um antioxidante (Nonox S) contendo β-naftilamina, até sua retirada em 1949, resultou em casos de câncer de bexiga até 30 anos depois naqueles que haviam sido expostos antes da data de retirada, mas nenhum em aqueles empregados depois de 1949 apenas. A indústria de cabos, no entanto, não experimentou o aumento da incidência de outros tipos de câncer, principalmente de pulmão e estômago, observados na indústria de pneus. O motivo é quase certo que na fabricação de cabos as máquinas de extrusão e vulcanização são fechadas, e a exposição dos funcionários a vapores e pó de borracha era geralmente muito menor do que na indústria de pneus. Uma exposição de preocupação potencial em fábricas de cabos de borracha é o uso de talco. É importante garantir que apenas a forma não fibrosa do talco (isto é, aquela que não contém nenhuma tremolita fibrosa) seja usada e que o talco seja aplicado em uma caixa fechada com exaustão local.

Muitos cabos são impressos com marcações de identificação. Onde impressoras de jato de vídeo modernas são usadas, o risco à saúde é quase certamente insignificante devido às quantidades muito pequenas de solvente utilizadas. Outras técnicas de impressão, no entanto, podem resultar em exposições significativas a solventes, seja durante a produção normal ou, mais comumente, durante as operações de limpeza. Sistemas de exaustão adequados devem, portanto, ser usados ​​para controlar tais exposições.

Os principais perigos da fabricação de cabos MI são exposição à poeira, ruído e vibração. Os dois primeiros são controlados por técnicas padrão descritas em outro lugar. A exposição à vibração ocorreu no passado durante estampagem, quando uma ponta era formada na extremidade do tubo montado por inserção manual em uma máquina com martelos rotativos, para que a ponta pudesse ser inserida na máquina de trefilação. Mais recentemente, este tipo de máquina de estampagem foi substituído por máquinas pneumáticas, o que eliminou tanto a vibração quanto o ruído gerado pelo método mais antigo.

A exposição ao chumbo durante o revestimento de chumbo deve ser controlada pelo uso de LEV adequado e pela proibição de comer, beber e fumar em áreas susceptíveis de serem contaminadas com chumbo. O monitoramento biológico regular deve ser realizado por meio da análise de amostras de sangue quanto ao teor de chumbo em um laboratório qualificado.

O cresol utilizado na fabricação dos fios esmaltados é corrosivo e apresenta odor característico em baixíssimas concentrações. Parte do poliuretano é termicamente degradado nos fornos de esmaltação para liberar tolueno diisocianato (TDI), um potente sensibilizador respiratório. Um bom LEV é necessário em torno dos fornos com pós-combustores catalíticos para garantir que o TDI não polua a área circundante.

operações auxiliares

Articulação as operações apresentam perigos para dois grupos distintos de trabalhadores – os que as fabricam e os que as utilizam. A fabricação envolve o manuseio de um pó fibrogênico (sílica), um sensibilizador respiratório (isocianato) e um sensibilizador da pele (resina acrílica). O LEV eficaz deve ser usado para controlar adequadamente as exposições dos funcionários, e luvas adequadas devem ser usadas para evitar o contato da pele com a resina. O principal perigo para os usuários dos compostos é a sensibilização da pele à resina. Isso pode ser difícil de controlar, pois o articulador pode não ser capaz de evitar totalmente o contato com a pele e, muitas vezes, estará em um local remoto, longe de uma fonte de água para fins de limpeza. Um limpador de mãos sem água é, portanto, essencial.

Perigos ambientais e sua prevenção

Em geral, a fabricação de cabos não resulta em emissões significativas fora da fábrica. Há três exceções a esta regra. A primeira é que a exposição aos vapores de solventes usados ​​para impressão e outros fins é controlada pelo uso de sistemas LEV que descarregam os vapores na atmosfera. Essas emissões de compostos orgânicos voláteis (VOCs) são um dos componentes necessários para formar a poluição fotoquímica e, portanto, estão sob pressão crescente das autoridades reguladoras em vários países. A segunda exceção é a liberação potencial de TDI da fabricação de arame esmaltado. A terceira exceção é que, em vários casos, a fabricação das matérias-primas utilizadas nos cabos pode resultar em emissões ambientais se não forem tomadas medidas de controle. As emissões de partículas metálicas de uma refinaria de cobre e da fabricação de ligas cádmio-cobre ou berílio-cobre devem ser canalizadas para sistemas de filtro de mangas adequados. Da mesma forma, quaisquer emissões de partículas de compostos de borracha devem ser canalizadas para uma unidade de filtro de mangas. As emissões de particulados, cloreto de hidrogênio e cloro da fabricação de fibras ópticas devem ser canalizadas para um sistema de filtro de mangas seguido de um lavador de soda cáustica.

 

Voltar

Leia 11288 vezes Última modificação em terça-feira, 28 de junho de 2011 13:51

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Eletrodomésticos e Referências de Equipamentos

Ducatman, AM, BS Ducatman e JA Barnes. 1988. Perigo de bateria de lítio: Implicações antiquadas de planejamento de novas tecnologias. J Occup Med 30:309–311.

Executivo de Saúde e Segurança (HSE). 1990. Fibras Minerais Sintéticas. Nota de Orientação Executiva EH46. Londres: HSE.

Agência Internacional de Pesquisa sobre o Câncer (IARC). 1992. Monografias sobre a Avaliação de Riscos Carcinogênicos para Humanos, vol. 54. Lyon: IARC.

Matte TD, JP Figueroa, G Burr, JP Flesch, RH Keenlyside e EL Baker. 1989. Exposição ao chumbo entre trabalhadores de baterias de chumbo-ácido na Jamaica. Amer J Ind Med 16:167–177.

McDiarmid, MA, CS Freeman, EA Grossman e J Martonik. 1996. Resultados do monitoramento biológico para trabalhadores expostos ao cádmio. Amer Ind Hyg Assoc J 57:1019–1023.

Roels, HA, JP Ghyselen, E Ceulemans e RR Lauwerys. 1992. Avaliação do nível admissível de exposição ao manganês em trabalhadores expostos à poeira de dióxido de manganês. Brit J Ind Med 49:25–34.

Telesca, DR. 1983. Uma Pesquisa de Sistemas de Controle de Riscos à Saúde para Uso e Processamento de Mercúrio. Relatório nº CT-109-4. Cincinnati, OH: NIOSH.

Wallis, G, R Menke e C Chelton. 1993. Teste de campo no local de trabalho de um respirador de meia máscara de pressão negativa descartável (3M 8710). Amer Ind Hyg Assoc J 54:576-583.