Quarta-feira, 16 Março 2011 21: 21

Fundições

Classifique este artigo
(24 votos)

A fundição, ou fundição de metal, envolve o vazamento de metal fundido na cavidade interna de um molde resistente ao calor, que é a forma externa ou negativa do padrão do objeto de metal desejado. O molde pode conter um núcleo para determinar as dimensões de qualquer cavidade interna na fundição final. O trabalho de fundição compreende:

  • fazendo um padrão do artigo desejado
  • fazer o molde e núcleos e montar o molde
  • fusão e refino do metal
  • despejando o metal no molde
  • resfriamento da fundição de metal
  • removendo o molde e o núcleo da fundição de metal
  • removendo metal extra da fundição acabada.

 

Os princípios básicos da tecnologia de fundição mudaram pouco em milhares de anos. No entanto, os processos tornaram-se mais mecanizados e automáticos. Padrões de madeira foram substituídos por metal e plástico, novas substâncias foram desenvolvidas para produzir núcleos e moldes e uma ampla gama de ligas é usada. O processo de fundição mais proeminente é a moldagem em areia do ferro.

Ferro, aço, latão e bronze são metais fundidos tradicionais. O maior setor da indústria de fundição produz fundidos de ferro fundido cinzento e dúctil. Fundições de ferro cinzento usam ferro ou ferro-gusa (novos lingotes) para fazer peças fundidas de ferro padrão. As fundições de ferro dúctil adicionam magnésio, cério ou outros aditivos (muitas vezes chamados aditivos de concha) às conchas de metal fundido antes de vazar para fazer peças fundidas de ferro maleável ou nodular. Os diferentes aditivos têm pouco impacto nas exposições no local de trabalho. Aço e ferro maleável compõem o saldo do setor industrial de fundição de ferrosos. Os principais clientes das maiores fundições de ferro são as indústrias automobilística, de construção civil e de implementos agrícolas. O emprego na fundição de ferro diminuiu à medida que os blocos do motor se tornam menores e podem ser vazados em um único molde, e à medida que o ferro fundido é substituído pelo alumínio. Fundições de não ferrosos, especialmente fundição de alumínio e operações de fundição sob pressão, têm muitos empregos. As fundições de latão, tanto independentes quanto aquelas que produzem para a indústria de equipamentos hidráulicos, são um setor em declínio que, no entanto, continua sendo importante do ponto de vista da saúde ocupacional. Nos últimos anos, titânio, cromo, níquel e magnésio, e ainda metais mais tóxicos, como berílio, cádmio e tório, são usados ​​em produtos de fundição.

Embora se possa presumir que a indústria de fundição de metais começa com a refundição de material sólido na forma de lingotes de metal ou pigs, a indústria de ferro e aço nas grandes unidades pode ser tão integrada que a divisão é menos óbvia. Por exemplo, o alto-forno comercial pode transformar toda a sua produção em ferro-gusa, mas em uma planta integrada parte do ferro pode ser usada para produzir fundidos, participando assim do processo de fundição, e o ferro do alto-forno pode ser levado fundido para ser torneado em aço, onde a mesma coisa pode ocorrer. Na verdade, existe uma seção separada do comércio de aço conhecida por esse motivo como lingote de moldagem. Na fundição normal de ferro, a refusão do ferro-gusa também é um processo de refino. Nas fundições de não ferrosos, o processo de fusão pode requerer a adição de metais e outras substâncias, constituindo assim um processo de liga.

Os moldes feitos de areia siliciosa ligada com argila predominam no setor de fundição de ferro. Os núcleos tradicionalmente produzidos por cozimento de areia de sílica ligada a óleos vegetais ou açúcares naturais foram substancialmente substituídos. A moderna tecnologia de fundição desenvolveu novas técnicas para produzir moldes e machos.

Em geral, os riscos à saúde e segurança das fundições podem ser classificados por tipo de fundição de metal, processo de moldagem, tamanho da fundição e grau de mecanização.

Visão geral do processo

Com base nos desenhos do projetista, é construído um padrão em conformidade com a forma externa da peça fundida de metal acabada. Da mesma forma, é feita uma caixa de núcleo que produzirá núcleos adequados para ditar a configuração interna do artigo final. A fundição em areia é o método mais amplamente utilizado, mas outras técnicas estão disponíveis. Estes incluem: fundição em molde permanente, usando moldes de ferro ou aço; fundição sob pressão, na qual o metal fundido, muitas vezes uma liga leve, é forçado em um molde de metal sob pressões de 70 a 7,000 kgf/cm2; e fundição de cera perdida, onde um padrão de cera é feito de cada peça fundida a ser produzida e é coberto com refratário que formará o molde no qual o metal é vazado. O processo de “espuma perdida” usa padrões de espuma de poliestireno em areia para fazer peças fundidas de alumínio.

Os metais ou ligas são fundidos e preparados em um forno que pode ser do tipo cúpula, rotativo, reverberatório, cadinho, arco elétrico, canal ou indução sem núcleo (ver tabela 1). Análises metalúrgicas ou químicas relevantes são realizadas. O metal fundido é derramado no molde montado por meio de uma concha ou diretamente do forno. Quando o metal esfria, o molde e o material do núcleo são removidos (sacudir, decapagem ou nocaute) e a fundição é limpa e vestida (despruping, granalhagem ou hidrojateamento e outras técnicas abrasivas). Certas peças fundidas podem exigir soldagem, tratamento térmico ou pintura antes que o artigo acabado atenda às especificações do comprador.

Tabela 1. Tipos de fornos de fundição

Fornalha

Descrição

fornalha de cúpula

Uma fornalha de cúpula é uma fornalha alta e vertical, aberta na parte superior com portas articuladas na parte inferior. É carregado de cima com camadas alternadas de coque, calcário e metal; o metal fundido é removido na parte inferior. Perigos especiais incluem monóxido de carbono e calor.

Forno elétrico a arco

O forno é carregado com lingotes, sucata, metais de liga e agentes fundentes. Um arco é produzido entre três eletrodos e a carga de metal, derretendo o metal. Uma escória com fluxos cobre a superfície do metal fundido para evitar a oxidação, refinar o metal e proteger o teto do forno do calor excessivo. Quando estiver pronto, os eletrodos são levantados e o forno inclinado para despejar o metal fundido na panela receptora. Perigos especiais incluem fumaça de metal e ruído.

Forno de indução

Um forno de indução derrete o metal passando uma alta corrente elétrica através de bobinas de cobre na parte externa do forno, induzindo uma corrente elétrica na borda externa da carga de metal que aquece o metal devido à alta resistência elétrica da carga de metal. O derretimento progride de fora da carga para dentro. Perigos especiais incluem vapores metálicos.

Fornalha de cadinho

O cadinho ou recipiente contendo a carga de metal é aquecido por um queimador de gás ou óleo. Depois de pronto, o cadinho é retirado do forno e inclinado para despejar nos moldes. Perigos especiais incluem monóxido de carbono, fumaça de metal, ruído e calor.

forno rotativo

Um forno cilíndrico rotativo longo e inclinado que é carregado a partir do topo e acionado a partir da extremidade inferior.

forno de canal

Um tipo de forno de indução.

forno reverberatório

Este forno horizontal consiste em uma lareira em uma extremidade, separada da carga de metal por uma parede divisória baixa chamada de ponte corta-fogo, e uma chaminé na outra extremidade. O metal é mantido fora do contato com o combustível sólido. Tanto a lareira quanto a carga metálica são cobertas por um teto em arco. A chama em seu caminho da lareira para a pilha é refletida para baixo ou reverberada no metal abaixo, derretendo-o.

 

Perigos como o perigo decorrente da presença de metal quente são comuns à maioria das fundições, independentemente do processo de fundição empregado. Os perigos também podem ser específicos de um determinado processo de fundição. Por exemplo, o uso de magnésio apresenta riscos de queima não encontrados em outras indústrias de fundição de metal. Este artigo enfatiza as fundições de ferro, que contêm a maioria dos perigos típicos da fundição.

A fundição mecanizada ou de produção emprega os mesmos métodos básicos da fundição de ferro convencional. Quando a moldagem é feita, por exemplo, por máquina e as peças fundidas são limpas por jateamento ou hidrojateamento, a máquina geralmente possui dispositivos de controle de poeira embutidos e o risco de poeira é reduzido. No entanto, a areia é freqüentemente movida de um lugar para outro em um transportador de correia aberta, e os pontos de transferência e o derramamento de areia podem ser fontes de quantidades consideráveis ​​de poeira no ar; em vista das altas taxas de produção, a carga de poeira no ar pode ser ainda maior do que na fundição convencional. Uma revisão dos dados de amostragem de ar em meados da década de 1970 mostrou níveis de poeira mais altos em grandes fundições de produção americanas do que em pequenas fundições amostradas durante o mesmo período. A instalação de exaustores sobre pontos de transferência em transportadores de correia, combinada com uma limpeza escrupulosa, deve ser uma prática normal. O transporte por sistemas pneumáticos às vezes é economicamente possível e resulta em um sistema de transporte virtualmente livre de poeira.

Fundições de Ferro

Para simplificar, pode-se presumir que uma fundição de ferro compreende as seis seções a seguir:

  1. fusão e vazamento de metal
  2. modelagem
  3. Moldagem
  4. fabricação de núcleo
  5. abalo/nocaute
  6. limpeza de fundição.

 

Em muitas fundições, quase todos esses processos podem ser executados simultânea ou consecutivamente na mesma área de oficina.

Em uma fundição de produção típica, o ferro passa da fusão ao vazamento, resfriamento, agitação, limpeza e transporte como peça fundida acabada. A areia é ciclada desde a mistura de areia, moldagem, agitação e de volta à mistura de areia. A areia é adicionada ao sistema a partir da fabricação do núcleo, que começa com areia nova.

Derretendo e derramando

A indústria de fundição de ferro depende fortemente do forno de cúpula para fusão e refino de metal. A cúpula é uma fornalha alta e vertical, aberta na parte superior e com portas de batente na parte inferior, forrada com refratário e carregada com coque, sucata e calcário. O ar é soprado através da carga de aberturas (tuyers) na parte inferior; a combustão do coque aquece, derrete e purifica o ferro. Os materiais de carga são alimentados no topo da cúpula por um guindaste durante a operação e devem ser armazenados à mão, geralmente em compartimentos ou caixas no pátio adjacente ao maquinário de carga. A organização e supervisão eficiente das pilhas de matérias-primas são essenciais para minimizar o risco de lesões por deslizamentos de objetos pesados. Guindastes com grandes eletroímãs ou pesos pesados ​​são frequentemente usados ​​para reduzir a sucata a tamanhos gerenciáveis ​​para carregar na cúpula e para encher os próprios funis de carregamento. A cabine do guindaste deve estar bem protegida e os operadores devidamente treinados.

Os funcionários que lidam com matérias-primas devem usar luvas de couro e botas de proteção. O carregamento descuidado pode transbordar a tremonha e causar derramamento perigoso. Se o processo de carregamento for muito ruidoso, o ruído do impacto de metal contra metal pode ser reduzido com a instalação de revestimentos de borracha com amortecimento de ruído nos depósitos e recipientes de armazenamento. A plataforma de carregamento está necessariamente acima do nível do solo e pode representar um perigo, a menos que seja nivelada e tenha uma superfície antiderrapante e trilhos fortes ao seu redor e quaisquer aberturas no piso.

As cúpulas geram grandes quantidades de monóxido de carbono, que pode vazar das portas de carregamento e ser soprado de volta por correntes parasitas locais. O monóxido de carbono é invisível, inodoro e pode rapidamente produzir níveis tóxicos no ambiente. Os funcionários que trabalham na plataforma de carregamento ou nas passarelas próximas devem ser bem treinados para reconhecer os sintomas de envenenamento por monóxido de carbono. Tanto o monitoramento contínuo quanto pontual dos níveis de exposição são necessários. Equipamentos autônomos de respiração e ressuscitação devem ser mantidos em prontidão e os operadores devem ser instruídos sobre seu uso. Quando o trabalho de emergência é realizado, um sistema de entrada em espaço confinado de monitoramento de contaminantes deve ser desenvolvido e aplicado. Todo o trabalho deve ser supervisionado.

As cúpulas são geralmente colocadas em pares ou grupos, de modo que, enquanto uma está sendo consertada, as outras operam. O período de uso deve ser baseado na experiência com durabilidade de refratários e nas recomendações de engenharia. Os procedimentos devem ser elaborados com antecedência para retirar o ferro e desligar quando surgirem pontos quentes ou se o sistema de resfriamento a água for desativado. O reparo da cúpula envolve necessariamente a presença de funcionários dentro da própria cúpula para consertar ou renovar os revestimentos refratários. Essas designações devem ser consideradas como entradas em espaços confinados e devem ser tomadas as devidas precauções. Precauções também devem ser tomadas para evitar a descarga de material através das portas de carregamento nesses momentos. Para proteger os trabalhadores da queda de objetos, eles devem usar capacetes de segurança e, se trabalharem em altura, cintos de segurança.

Os trabalhadores que extraem cúpulas (transferência de metal fundido do poço da cúpula para um forno de retenção ou panela) devem observar rigorosas medidas de proteção individual. Óculos de proteção e roupas de proteção são essenciais. Os protetores oculares devem resistir tanto ao impacto de alta velocidade quanto ao metal fundido. Deve-se ter extremo cuidado para evitar que restos de escória fundida (os detritos indesejados removidos da fusão com o auxílio de aditivos de calcário) e metal entrem em contato com a água, o que causará uma explosão de vapor. Os seringueiros e supervisores devem garantir que qualquer pessoa não envolvida na operação da cúpula permaneça fora da área de perigo, delimitada por um raio de cerca de 4 m a partir da bica da cúpula. O delineamento de uma zona de entrada proibida não autorizada é um requisito legal sob os Regulamentos de Fundições de Ferro e Aço da Grã-Bretanha de 1953.

Quando a corrida da cúpula termina, o fundo da cúpula é derrubado para remover a escória indesejada e outros materiais ainda dentro da casca antes que os funcionários possam realizar a manutenção refratária de rotina. Deixar cair o fundo da cúpula é uma operação habilidosa e perigosa que requer supervisão treinada. Um piso refratário ou camada de areia seca sobre a qual cair os detritos é essencial. Se ocorrer algum problema, como portas de fundo de cúpula emperradas, muito cuidado deve ser tomado para evitar riscos de queimaduras aos trabalhadores pelo metal quente e escória.

O metal incandescente visível é um perigo para os olhos dos trabalhadores devido à emissão de radiação infravermelha e ultravioleta, cuja exposição extensa pode causar catarata.

A concha deve ser seca antes de encher com metal fundido, para evitar explosões de vapor; deve ser estabelecido um período satisfatório de aquecimento da chama.

Os funcionários das seções de metal e vazamento da fundição devem receber capacetes, proteção ocular colorida e protetores faciais, roupas aluminizadas, como aventais, polainas ou polainas (coberturas para a parte inferior das pernas e pés) e botas. O uso de equipamentos de proteção deve ser obrigatório, devendo haver instrução adequada sobre seu uso e manutenção. Altos padrões de limpeza e exclusão de água no mais alto grau possível são necessários em todas as áreas onde o metal fundido está sendo manipulado.

Onde panelas grandes são penduradas de guindastes ou transportadores aéreos, dispositivos de controle positivo de panelas devem ser empregados para garantir que não ocorra derramamento de metal se o operador soltar a alça. Os ganchos que seguram conchas de metal fundido devem ser testados periodicamente quanto à fadiga do metal para evitar falhas.

Nas fundições de produção, o molde montado se move ao longo de um transportador mecânico para uma estação de vazamento ventilada. O derramamento pode ser feito por uma concha controlada manualmente com auxílio mecânico, uma concha de indexação controlada por uma cabine ou pode ser automático. Normalmente, a estação de vazamento é fornecida com um capô de compensação com suprimento de ar direto. O molde vazado prossegue ao longo do transportador através de um túnel de resfriamento esgotado até a remoção. Em pequenas fundições de oficina, os moldes podem ser despejados no chão da fundição e deixados queimar lá. Nesta situação, a panela deve ser equipada com exaustor móvel.

A extração e o transporte de ferro fundido e o carregamento de fornos elétricos criam exposição a óxido de ferro e outros vapores de óxido de metal. Despejar no molde inflama e pirólise os materiais orgânicos, gerando grandes quantidades de monóxido de carbono, fumaça, hidrocarbonetos aromáticos polinucleares (PAHs) cancerígenos e produtos de pirólise de materiais do núcleo que podem ser cancerígenos e também sensibilizadores respiratórios. Moldes contendo grandes núcleos de caixa fria ligados a poliuretano liberam uma fumaça densa e irritante contendo isocianatos e aminas. O principal controle de risco para queima de molde é uma estação de vazamento esgotada localmente e um túnel de resfriamento.

Em fundições com ventiladores de teto para operações de vazamento exaustivo, altas concentrações de fumos metálicos podem ser encontradas nas regiões superiores onde estão localizadas as cabines dos guindastes. Se as cabines tiverem um operador, as cabines devem ser fechadas e providas de ar condicionado e filtrado.

Fabricação de padrões

A modelagem é um ofício altamente qualificado que traduz os planos de design bidimensionais para um objeto tridimensional. Padrões tradicionais de madeira são feitos em oficinas padrão contendo ferramentas manuais e equipamentos elétricos de corte e aplainamento. Aqui, todas as medidas razoavelmente viáveis ​​devem ser tomadas para reduzir o ruído ao máximo possível, e protetores auriculares adequados devem ser fornecidos. É importante que os funcionários estejam cientes das vantagens de usar essa proteção.

As máquinas motorizadas de corte e acabamento de madeira são fontes óbvias de perigo e, muitas vezes, as proteções adequadas não podem ser instaladas sem impedir o funcionamento da máquina. Os funcionários devem ser bem versados ​​no procedimento operacional normal e também devem ser instruídos sobre os perigos inerentes ao trabalho.

Serrar madeira pode criar exposição à poeira. Sistemas de ventilação eficientes devem ser instalados para eliminar o pó de madeira da atmosfera da oficina de modelagem. Em certas indústrias que utilizam madeiras duras, observou-se câncer nasal. Isso não foi estudado na indústria de fundação.

A fundição em moldes de metal permanentes, como na fundição sob pressão, tem sido um desenvolvimento importante na indústria de fundição. Nesse caso, a modelagem é amplamente substituída por métodos de engenharia e é realmente uma operação de fabricação de moldes. A maioria dos perigos da modelagem e os riscos da areia são eliminados, mas são substituídos pelo risco inerente ao uso de algum tipo de material refratário para revestir a matriz ou molde. No trabalho de fundição moderna, o uso crescente é feito de núcleos de areia, caso em que os riscos de poeira da fundição de areia ainda estão presentes.

Moulding

O processo de moldagem mais comum na indústria de fundição de ferro usa o molde tradicional de “areia verde” feito de areia de sílica, pó de carvão, argila e aglutinantes orgânicos. Outros métodos de produção de moldes são adaptados da fabricação de núcleos: termoendurecível, autoendurecível a frio e endurecido a gás. Esses métodos e seus perigos serão discutidos em coremaking. Também podem ser utilizados moldes permanentes ou o processo de espuma perdida, principalmente na indústria de fundição de alumínio.

Nas fundições de produção, a mistura de areia, moldagem, montagem do molde, vazamento e agitação são integrados e mecanizados. A areia do shakeout é reciclada de volta para a operação de mistura de areia, onde água e outros aditivos são adicionados e a areia é misturada em trituradores para manter as propriedades físicas desejadas.

Para facilitar a montagem, os padrões (e seus moldes) são feitos em duas partes. Na fabricação manual de moldes, os moldes são colocados em armações de metal ou madeira chamadas frascos. A metade inferior do padrão é colocada no frasco inferior (o querido), e primeiro areia fina e depois areia pesada são despejadas ao redor do padrão. A areia é compactada no molde por meio de um processo de compressão, compactação de areia ou pressão. O frasco superior (o lidar) é preparado de forma semelhante. Espaçadores de madeira são colocados na capa para formar os canais de entrada e de entrada, que são o caminho para o metal fundido fluir para dentro da cavidade do molde. Os padrões são removidos, o núcleo inserido e, em seguida, as duas metades do molde são montadas e presas juntas, prontas para vazar. Nas fundições de produção, os frascos de copa e arrasto são preparados em um transportador mecânico, os machos são colocados no frasco de arrasto e o molde é montado por meios mecânicos.

O pó de sílica é um problema potencial onde quer que a areia seja manuseada. A areia de moldagem geralmente está úmida ou misturada com resina líquida e, portanto, é menos provável que seja uma fonte significativa de poeira respirável. Às vezes, um agente de separação, como o talco, é adicionado para promover a pronta remoção do padrão do molde. Talco respirável causa talcose, um tipo de pneumoconiose. Agentes de separação são mais difundidos onde a moldagem manual é empregada; nos processos maiores e mais automáticos, eles raramente são vistos. Às vezes, produtos químicos são pulverizados na superfície do molde, suspensos ou dissolvidos em álcool isopropílico, que é queimado para deixar o composto, geralmente um tipo de grafite, revestindo o molde para obter uma fundição com um acabamento superficial mais fino. Isso envolve um risco imediato de incêndio, e todos os funcionários envolvidos na aplicação desses revestimentos devem receber roupas de proteção retardadoras de fogo e proteção para as mãos, pois os solventes orgânicos também podem causar dermatites. Os revestimentos devem ser aplicados em cabine ventilada para evitar que os vapores orgânicos escapem para o local de trabalho. Precauções rigorosas também devem ser observadas para garantir que o álcool isopropílico seja armazenado e usado com segurança. Ele deve ser transferido para um pequeno recipiente para uso imediato, e os recipientes de armazenamento maiores devem ser mantidos bem longe do processo de queima.

A fabricação manual de moldes pode envolver a manipulação de objetos grandes e pesados. Os próprios moldes são pesados, assim como as caixas ou frascos de moldagem. Eles são frequentemente levantados, movidos e empilhados manualmente. Lesões nas costas são comuns, e assistência elétrica é necessária para que os funcionários não precisem levantar objetos muito pesados ​​para serem carregados com segurança.

Projetos padronizados estão disponíveis para gabinetes de misturadores, transportadores e estações de vazamento e agitação com volumes de exaustão apropriados e velocidades de captura e transporte. A adesão a tais projetos e a manutenção preventiva rigorosa dos sistemas de controle atingirá a conformidade com os limites reconhecidos internacionalmente para exposição à poeira.

Núcleo

Os núcleos inseridos no molde determinam a configuração interna de uma peça fundida oca, como a camisa d'água de um bloco de motor. O núcleo deve resistir ao processo de fundição, mas ao mesmo tempo não deve ser tão forte que resista à remoção da fundição durante o estágio de nocaute.

Antes da década de 1960, as misturas de núcleo compreendiam areia e aglutinantes, como óleo de linhaça, melaço ou dextrina (areia betuminosa). A areia foi acondicionada em caixa macho com cavidade no formato do núcleo, e posteriormente seca em estufa. Os fornos centrais desenvolvem produtos de pirólise nocivos e requerem um sistema de chaminé adequado e bem conservado. Normalmente, as correntes de convecção dentro do forno serão suficientes para garantir a remoção satisfatória dos vapores do local de trabalho, embora contribuam enormemente para a poluição do ar. o perigo é menor; em alguns casos, no entanto, pequenas quantidades de acroleína nos vapores podem ser um incômodo considerável. Os núcleos podem ser tratados com um “revestimento flare-off” para melhorar o acabamento superficial da peça fundida, o que exige os mesmos cuidados que no caso dos moldes.

A moldagem por caixa quente ou casca e fabricação de machos são processos termoendurecíveis usados ​​em fundições de ferro. A areia nova pode ser misturada com resina na fundição, ou a areia revestida com resina pode ser enviada em sacos para adição à máquina de fabricação de machos. A areia de resina é injetada em um padrão de metal (a caixa do núcleo). O padrão é então aquecido - por queima direta de gás natural no processo de caixa quente ou por outros meios para núcleos de casca e moldagem. As caixas quentes normalmente usam uma resina termoendurecível de álcool furfurílico (furano), ureia ou fenol-formaldeído. A moldagem da casca usa uma resina de ureia ou fenol-formaldeído. Após um curto tempo de cura, o núcleo endurece consideravelmente e pode ser empurrado para fora da placa padrão por pinos ejetores. A fabricação de núcleos de caixa quente e casca gera uma exposição substancial ao formaldeído, que é um provável carcinógeno, e outros contaminantes, dependendo do sistema. As medidas de controle para formaldeído incluem suprimento de ar direto na estação do operador, exaustão local na caixa de núcleo, enclausuramento e exaustão local na estação de armazenamento de núcleo e resinas com baixa emissão de formaldeído. O controle satisfatório é difícil de conseguir. Vigilância médica para problemas respiratórios deve ser fornecida aos trabalhadores da fabricação de núcleos. O contato da resina de fenol ou ureia-formaldeído com a pele ou olhos deve ser evitado porque as resinas são irritantes ou sensibilizantes e podem causar dermatite. A lavagem abundante com água ajudará a evitar o problema.

Os sistemas de endurecimento de cura a frio (sem cozimento) atualmente em uso incluem: resinas de ureia e fenol-formaldeído catalisadas por ácido com e sem álcool furfurílico; isocianatos alquídicos e fenólicos; Fascold; silicatos auto-endurecíveis; Inoset; areia de cimento e areia fluida ou moldável. Endurecedores de endurecimento a frio não requerem aquecimento externo para endurecer. Os isocianatos empregados nos aglutinantes são normalmente à base de metileno difenil isocianato (MDI), que, se inalado, pode atuar como irritante ou sensibilizador respiratório, causando asma. Luvas e óculos de proteção são aconselháveis ​​ao manusear ou usar esses compostos. Os próprios isocianatos devem ser cuidadosamente armazenados em recipientes selados em condições secas a uma temperatura entre 10 e 30°C. Os recipientes de armazenamento vazios devem ser preenchidos e embebidos por 24 horas com uma solução de carbonato de sódio a 5% para neutralizar qualquer produto químico residual deixado no tambor. A maioria dos princípios gerais de manutenção deve ser rigorosamente aplicada aos processos de moldagem de resina, mas o maior cuidado de todos deve ser exercido ao manusear os catalisadores usados ​​como agentes de configuração. Os catalisadores das resinas de fenol e isocianato de óleo são geralmente aminas aromáticas à base de compostos de piridina, que são líquidos com cheiro pungente. Eles podem causar irritação cutânea grave e danos renais e hepáticos e também podem afetar o sistema nervoso central. Esses compostos são fornecidos como aditivos separados (aglutinante de três partes) ou já estão misturados com os materiais oleosos, e o LEV deve ser fornecido nas etapas de mistura, moldagem, fundição e nocaute. Para alguns outros processos sem cozimento, os catalisadores usados ​​são ácidos fosfóricos ou vários ácidos sulfônicos, que também são tóxicos; acidentes durante o transporte ou uso devem ser adequadamente protegidos.

A fabricação de núcleos endurecidos a gás compreende o dióxido de carbono (CO2)-silicato e os processos Isocure (ou “Ashland”). Muitas variações do CO2-silicato foram desenvolvidos desde a década de 1950. Este processo tem sido geralmente utilizado para a produção de moldes e machos de médio a grande porte. A areia do núcleo é uma mistura de silicato de sódio e areia de sílica, geralmente modificada pela adição de substâncias como melaço como agentes de decomposição. Depois que a caixa do núcleo é preenchida, o núcleo é curado passando dióxido de carbono pela mistura do núcleo. Isso forma carbonato de sódio e gel de sílica, que atua como um aglutinante.

O silicato de sódio é uma substância alcalina e pode ser prejudicial se entrar em contato com a pele ou olhos ou se for ingerido. É aconselhável fornecer um chuveiro de emergência próximo a áreas onde grandes quantidades de silicato de sódio são manuseadas e sempre usar luvas. Um lava-olhos prontamente disponível deve estar localizado em qualquer área de fundição onde o silicato de sódio é usado. o CO2 pode ser fornecido como um sólido, líquido ou gás. Quando for fornecido em cilindros ou tanques de pressão, muitos cuidados de limpeza devem ser tomados, como armazenamento de cilindros, manutenção de válvulas, manuseio e assim por diante. Há também o risco do próprio gás, pois pode diminuir a concentração de oxigênio no ar em ambientes fechados.

O processo Isocure é usado para machos e moldes. Este é um sistema de gás no qual uma resina, frequentemente fenol-formaldeído, é misturada com um di-isocianato (por exemplo, MDI) e areia. Isso é injetado na caixa do núcleo e, em seguida, gaseado com uma amina, geralmente trietilamina ou dimetiletilamina, para causar a reação de formação de reticulação. As aminas, muitas vezes vendidas em tambores, são líquidos altamente voláteis com forte cheiro de amônia. Existe um risco muito real de incêndio ou explosão, e deve-se tomar extremo cuidado, especialmente quando o material é armazenado a granel. O efeito característico dessas aminas é causar visão de halo e inchaço da córnea, embora também afetem o sistema nervoso central, onde podem causar convulsões, paralisia e, ocasionalmente, a morte. Se parte da amina entrar em contato com os olhos ou a pele, as medidas de primeiros socorros devem incluir lavagem com água em abundância por pelo menos 15 minutos e atenção médica imediata. No processo Isocure, a amina é aplicada como um vapor em um transportador de nitrogênio, com o excesso de amina depurado através de uma torre de ácido. Vazamento da caixa de núcleo é a principal causa de alta exposição, embora a liberação de gás de amina de núcleos fabricados também seja significativa. Deve-se ter muito cuidado ao manusear este material, e equipamentos de exaustão adequados devem ser instalados para remover os vapores das áreas de trabalho.

Shakeout, extração de fundição e nocaute do núcleo

Depois que o metal fundido esfria, a fundição bruta deve ser removida do molde. Este é um processo ruidoso, normalmente expondo os operadores bem acima de 90 dBA durante um dia de trabalho de 8 horas. Protetores auriculares devem ser fornecidos se não for possível reduzir a emissão de ruído. A maior parte do molde é separada da peça fundida, geralmente por impacto. Freqüentemente, a caixa de moldagem, o molde e a fundição são jogados em uma grade vibratória para desalojar a areia (agitação). A areia então cai através da grade em uma tremonha ou em um transportador onde pode ser submetida a separadores magnéticos e reciclada para moagem, tratamento e reutilização, ou simplesmente despejada. Às vezes, o hidrojateamento pode ser usado em vez de uma grade, criando menos poeira. O núcleo é removido aqui, às vezes também usando correntes de água de alta pressão.

A fundição é então removida e transferida para o próximo estágio da operação de nocaute. Freqüentemente, pequenas peças fundidas podem ser removidas do frasco por um processo de “punch-out” antes da agitação, o que produz menos poeira. A areia dá origem a níveis perigosos de poeira de sílica porque esteve em contato com metal fundido e, portanto, é muito seca. O metal e a areia permanecem muito quentes. A proteção dos olhos é necessária. As superfícies de passagem e de trabalho devem ser mantidas livres de sucata, que é um risco de tropeço, e de poeira, que pode ser ressuspensa para representar um risco de inalação.

Relativamente poucos estudos foram realizados para determinar qual efeito, se houver, os novos aglomerantes de núcleo têm sobre a saúde do operador de descolamento em particular. Os furanos, álcool furfurílico e ácido fosfórico, resinas de ureia e fenol-formaldeído, silicato de sódio e dióxido de carbono, no-bakes, óleo de linhaça modificado e MDI, todos sofrem algum tipo de decomposição térmica quando expostos às temperaturas dos metais fundidos.

Ainda não foram realizados estudos sobre o efeito da partícula de sílica revestida com resina no desenvolvimento de pneumoconiose. Não se sabe se esses revestimentos terão um efeito inibidor ou acelerador nas lesões do tecido pulmonar. Teme-se que os produtos da reação do ácido fosfórico possam liberar fosfina. Experimentos com animais e alguns estudos selecionados mostraram que o efeito do pó de sílica no tecido pulmonar é bastante acelerado quando a sílica é tratada com um ácido mineral. As resinas de uréia e fenol-formaldeído podem liberar fenóis livres, aldeídos e monóxido de carbono. Os açúcares adicionados para aumentar a colapsibilidade produzem quantidades significativas de monóxido de carbono. No-bakes liberará isocianatos (por exemplo, MDI) e monóxido de carbono.

Refinamento (limpeza)

A limpeza da fundição, ou refinamento, é realizada após a remoção e remoção do núcleo. Os vários processos envolvidos são designados de forma variada em lugares diferentes, mas podem ser classificados da seguinte forma:

  • Curativo abrange decapagem, desbaste ou remoção de sujeira, remoção de areia de moldagem aderente, areia de núcleo, canais, risers, rebarbas e outros materiais prontamente descartáveis ​​com ferramentas manuais ou ferramentas pneumáticas portáteis.
  • Refinamento abrange a remoção de areia de moldagem queimada, bordas ásperas, excesso de metal, como bolhas, tocos de portões, crostas ou outras manchas indesejadas e a limpeza manual da fundição usando cinzéis manuais, ferramentas pneumáticas e escovas de aço. Técnicas de soldagem, como corte com chama de oxiacetileno, arco elétrico, arco-ar, lavagem com pó e maçarico de plasma, podem ser empregadas para queima de cabeçotes, para reparo de fundição e para corte e lavagem.

 

A remoção do espru é a primeira operação de curativo. Até metade do metal fundido no molde não faz parte da peça fundida final. O molde deve incluir reservatórios, cavidades, alimentadores e sprue para que seja preenchido com metal para completar o objeto fundido. O espru geralmente pode ser removido durante a fase de nocaute, mas às vezes isso deve ser realizado como uma etapa separada da operação de rebarbação ou curativo. A remoção do espru é feita manualmente, geralmente batendo na peça fundida com um martelo. Para reduzir o ruído, os martelos de metal podem ser substituídos por outros revestidos de borracha e os transportadores revestidos com a mesma borracha de amortecimento de ruído. Fragmentos de metal quente são lançados e representam um risco para os olhos. Proteção para os olhos deve ser usada. Os sprues soltos devem normalmente ser devolvidos à região de carregamento da planta de fusão e não deve ser permitido que se acumulem na seção de desprulamento da fundição. Após a remoção do spruing (mas às vezes antes), a maioria das peças fundidas é jateada ou tombada para remover os materiais do molde e talvez para melhorar o acabamento da superfície. Barris caindo geram altos níveis de ruído. Gabinetes podem ser necessários, o que também pode exigir LEV.

Os métodos de dressagem em fundições de aço, ferro e não ferrosos são muito semelhantes, mas existem dificuldades especiais na dressagem e rebarbação de fundidos de aço devido a maiores quantidades de areia fundida queimada em comparação com fundidos de ferro e não ferrosos. A areia fundida em grandes peças fundidas de aço pode conter cristobalita, que é mais tóxica do que o quartzo encontrado na areia virgem.

É necessário jateamento sem ar ou tombamento de peças fundidas antes de lascar e retificar para evitar a superexposição ao pó de sílica. A peça fundida deve estar livre de poeira visível, embora um risco de sílica ainda possa ser gerado pela retificação se a sílica for queimada na superfície de metal aparentemente limpa da peça fundida. O tiro é impulsionado de forma centrífuga no lançamento e nenhum operador é necessário dentro da unidade. O gabinete de jateamento deve ser esgotado para que nenhuma poeira visível escape. Somente quando há quebra ou deterioração do gabinete de jateamento e/ou ventilador e coletor é que há problema de poeira.

Água ou água e areia ou jateamento sob pressão podem ser usados ​​para remover a areia aderente, submetendo a peça fundida a uma corrente de alta pressão de água ou granalha de ferro ou aço. O jateamento de areia foi proibido em vários países (por exemplo, Reino Unido) devido ao risco de silicose, pois as partículas de areia se tornam cada vez mais finas e a fração respirável aumenta continuamente. A água ou o tiro é descarregado através de uma pistola e pode representar um risco para o pessoal se não for manuseado corretamente. A detonação deve ser sempre realizada em um espaço isolado e fechado. Todos os compartimentos de jateamento devem ser inspecionados em intervalos regulares para garantir que o sistema de extração de poeira esteja funcionando e que não haja vazamentos através dos quais granalha ou água possam escapar para a fundição. Os capacetes dos Blasters devem ser aprovados e cuidadosamente mantidos. É recomendável afixar um aviso na porta do estande, alertando os funcionários que estão ocorrendo detonações e que é proibida a entrada de pessoas não autorizadas. Em certas circunstâncias, os parafusos de retardo ligados ao motor de jateamento podem ser instalados nas portas, impossibilitando a abertura das portas até que o jateamento tenha cessado.

Uma variedade de ferramentas de retificação são usadas para suavizar a fundição grosseira. Os rebolos abrasivos podem ser montados em máquinas de chão ou pedestal ou em esmerilhadeiras portáteis ou basculantes. Retificadoras de pedestal são usadas para peças fundidas menores que podem ser facilmente manuseadas; esmerilhadeiras portáteis, rebolos de disco de superfície, rebolos tipo copo e rebolos cônicos são usados ​​para uma série de finalidades, incluindo alisamento de superfícies internas de peças fundidas; As retificadoras de estrutura oscilante são usadas principalmente em grandes peças fundidas que requerem muita remoção de metal.

Outras fundições

fundação de aço

A produção na fundição de aço (diferente de uma usina siderúrgica básica) é semelhante à da fundição de ferro; no entanto, as temperaturas do metal são muito mais altas. Isso significa que a proteção ocular com lentes coloridas é essencial e que a sílica no molde é convertida pelo calor em tridimita ou cristobalita, duas formas de sílica cristalina que são particularmente perigosas para os pulmões. A areia muitas vezes fica queimada na peça fundida e tem de ser removida por meios mecânicos, o que dá origem a poeiras perigosas; conseqüentemente, sistemas eficazes de exaustão de pó e proteção respiratória são essenciais.

Fundição de liga leve

A fundição de ligas leves utiliza principalmente ligas de alumínio e magnésio. Estes geralmente contêm pequenas quantidades de metais que podem liberar vapores tóxicos sob certas circunstâncias. Os vapores devem ser analisados ​​para determinar seus constituintes onde a liga pode conter tais componentes.

Nas fundições de alumínio e magnésio, a fusão é comumente feita em fornos de cadinho. Aberturas de exaustão ao redor do topo da panela para remover a fumaça são aconselháveis. Em fornos a óleo, a combustão incompleta devido a queimadores defeituosos pode resultar na liberação de produtos como monóxido de carbono no ar. Os vapores do forno podem conter hidrocarbonetos complexos, alguns dos quais podem ser cancerígenos. Durante a limpeza da fornalha e da chaminé existe o risco de exposição ao pentóxido de vanádio concentrado na fuligem da fornalha dos depósitos de óleo.

O espatoflúor é comumente usado como fundente na fusão do alumínio, e quantidades significativas de pó de flúor podem ser liberadas no meio ambiente. Em certos casos, o cloreto de bário foi usado como fundente para ligas de magnésio; trata-se de uma substância significativamente tóxica e, conseqüentemente, exige-se muito cuidado em seu uso. Ligas leves podem ocasionalmente ser desgaseificadas pela passagem de dióxido de enxofre ou cloro (ou compostos patenteados que se decompõem para produzir cloro) através do metal fundido; ventilação de exaustão e equipamento de proteção respiratória são necessários para esta operação. A fim de reduzir a taxa de resfriamento do metal quente no molde, uma mistura de substâncias (geralmente alumínio e óxido de ferro) que reagem altamente exotermicamente é colocada no riser do molde. Esta mistura de “thermite” emite fumos densos que se revelaram inócuos na prática. Quando os fumos são de cor castanha, pode ser dado alarme devido à suspeita da presença de óxidos de azoto; no entanto, essa suspeita é infundada. O alumínio finamente dividido produzido durante a preparação de fundidos de alumínio e magnésio constitui um grave risco de incêndio, e métodos úmidos devem ser usados ​​para coleta de pó.

A fundição de magnésio acarreta risco potencial considerável de incêndio e explosão. O magnésio fundido entrará em combustão a menos que uma barreira protetora seja mantida entre ele e a atmosfera; o enxofre fundido é amplamente empregado para esta finalidade. Os trabalhadores da fundição que aplicam o pó de enxofre no caldeirão manualmente podem desenvolver dermatite e devem usar luvas feitas de tecido à prova de fogo. O enxofre em contato com o metal está em constante combustão, de modo que quantidades consideráveis ​​de dióxido de enxofre são liberadas. Ventilação de exaustão deve ser instalada. Os trabalhadores devem ser informados sobre o perigo de uma panela ou concha de magnésio fundido pegar fogo, o que pode dar origem a uma nuvem densa de óxido de magnésio finamente dividido. Roupas de proteção de materiais à prova de fogo devem ser usadas por todos os trabalhadores de fundição de magnésio. Roupas revestidas com pó de magnésio não devem ser guardadas em armários sem controle de umidade, pois pode ocorrer combustão espontânea. O pó de magnésio deve ser removido da roupa. O giz francês é usado extensivamente na preparação de moldes em fundições de magnésio; a poeira deve ser controlada para evitar a talcose. Óleos penetrantes e pós em pó são empregados na inspeção de peças fundidas de ligas leves para a detecção de trincas.

Corantes foram introduzidos para melhorar a eficácia dessas técnicas. Descobriu-se que certos corantes vermelhos são absorvidos e excretados no suor, causando sujeira nas roupas pessoais; embora esta condição seja um incômodo, nenhum efeito sobre a saúde foi observado.

Fundições de latão e bronze

Fumos de metais tóxicos e poeira de ligas típicas são um perigo especial de fundições de latão e bronze. Exposições ao chumbo acima dos limites de segurança nas operações de fusão, vazamento e acabamento são comuns, especialmente quando as ligas têm uma composição de alto teor de chumbo. O risco de chumbo na limpeza do forno e eliminação de escória é particularmente grave. A superexposição ao chumbo é frequente na fusão e vazamento e também pode ocorrer na moagem. Os fumos de zinco e cobre (os constituintes do bronze) são as causas mais comuns da febre dos fumos metálicos, embora a condição também tenha sido observada em trabalhadores de fundição que usam magnésio, alumínio, antimônio e assim por diante. Algumas ligas de alta resistência contêm cádmio, que pode causar pneumonia química por exposição aguda e danos renais e câncer de pulmão por exposição crônica.

processo de molde permanente

A fundição em moldes de metal permanentes, como na fundição sob pressão, tem sido um desenvolvimento importante na fundição. Neste caso, a modelagem é amplamente substituída por métodos de engenharia e é realmente uma operação de penetração. A maior parte dos perigos da modelação são assim removidos e os riscos da areia também são eliminados, mas são substituídos por um grau de risco inerente à utilização de algum tipo de material refractário para revestir a matriz ou molde. No trabalho de fundição moderna, o uso crescente é feito de núcleos de areia, caso em que os riscos de poeira da fundição de areia ainda estão presentes.

fundição

O alumínio é um metal comum na fundição sob pressão. O hardware automotivo, como acabamento cromado, é normalmente fundido em zinco, seguido de cobre, níquel e cromagem. O risco de febre de fumaça de metal de fumaça de zinco deve ser constantemente controlado, assim como a névoa de ácido crômico.

As máquinas de fundição sob pressão apresentam todos os perigos comuns às prensas hidráulicas. Além disso, o trabalhador pode ser exposto à névoa de óleos usados ​​como lubrificantes e deve ser protegido contra a inalação dessas névoas e contra o perigo de roupas saturadas de óleo. Os fluidos hidráulicos resistentes ao fogo utilizados nas prensas podem conter compostos organofosforados tóxicos, devendo-se tomar cuidado especial durante os trabalhos de manutenção nos sistemas hidráulicos.

Fundação de precisão

As fundições de precisão dependem do investimento ou processo de fundição por cera perdida, no qual os padrões são feitos por injeção de cera de moldagem em uma matriz; esses padrões são revestidos com um pó refratário fino que serve como material de revestimento do molde, e a cera é então derretida antes da fundição ou pela introdução do próprio metal de fundição.

A remoção de cera apresenta um risco de incêndio definido, e a decomposição da cera produz acroleína e outros produtos de decomposição perigosos. Os fornos de queima de cera devem ser adequadamente ventilados. O tricloroetileno foi usado para remover os últimos vestígios de cera; este solvente pode se acumular em bolsas no molde ou ser absorvido pelo material refratário e vaporizar ou se decompor durante o vazamento. A inclusão de materiais refratários de fundição de investimento de amianto deve ser eliminada devido aos perigos do amianto.

Problemas de saúde e padrões de doenças

As fundições se destacam entre os processos industriais devido a uma taxa de mortalidade mais alta decorrente de derramamentos e explosões de metal fundido, manutenção da cúpula, incluindo queda no fundo e perigos de monóxido de carbono durante o revestimento. As fundições relatam uma maior incidência de lesões por corpos estranhos, contusões e queimaduras e uma menor proporção de lesões musculoesqueléticas do que outras instalações. Eles também têm os mais altos níveis de exposição ao ruído.

Um estudo de várias dezenas de lesões fatais em fundições revelou as seguintes causas: esmagamento entre carros transportadores de moldes e estruturas de edifícios durante a manutenção e solução de problemas, esmagamento durante a limpeza de trituradores que foram ativados remotamente, queimaduras de metal fundido após falha do guindaste, rachaduras no molde, transferência por transbordamento concha, erupção de vapor em concha não seca, quedas de guindastes e plataformas de trabalho, eletrocussão de equipamentos de soldagem, esmagamento de veículos de manuseio de materiais, queimaduras por queda do fundo da cúpula, atmosfera com alto teor de oxigênio durante o reparo da cúpula e superexposição de monóxido de carbono durante o reparo da cúpula.

Rodas abrasivas

O rebentamento ou quebra de rebolos abrasivos pode causar ferimentos fatais ou muito graves: os espaços entre o rebolo e o resto nas esmerilhadeiras de pedestal podem prender e esmagar a mão ou o antebraço. Os olhos desprotegidos estão em risco em todas as fases. Escorregadelas e quedas, principalmente ao transportar cargas pesadas, podem ser causadas por pisos mal conservados ou obstruídos. Lesões nos pés podem ser causadas pela queda de objetos ou cargas. Entorses e distensões podem resultar de esforço excessivo em levantar e carregar. Dispositivos de elevação mal conservados podem falhar e fazer com que os materiais caiam sobre os trabalhadores. Choque elétrico pode resultar de equipamentos elétricos mal conservados ou desenterrados (sem aterramento), especialmente ferramentas portáteis.

Todas as partes perigosas do maquinário, especialmente as rodas abrasivas, devem ter proteção adequada, com bloqueio automático se a proteção for removida durante o processamento. As lacunas perigosas entre o rebolo e o restante nas esmerilhadeiras de pedestal devem ser eliminadas e deve-se prestar muita atenção a todos os cuidados e cuidados com os rebolos abrasivos e na regulação de sua velocidade (cuidado especial é necessário com rebolos portáteis). A manutenção rigorosa de todos os equipamentos elétricos e arranjos de aterramento adequados devem ser aplicados. Os trabalhadores devem ser instruídos sobre técnicas corretas de levantamento e transporte e devem saber como prender cargas a ganchos de guindastes e outros aparelhos de içamento. EPI adequado, como protetores oculares e faciais e proteção para os pés e pernas, também devem ser fornecidos. Devem ser tomadas providências para primeiros socorros imediatos, mesmo para ferimentos leves, e cuidados médicos competentes quando necessário.

Dust

As doenças causadas pela poeira são proeminentes entre os trabalhadores de fundição. As exposições à sílica estão frequentemente próximas ou excedem os limites de exposição prescritos, mesmo em operações de limpeza bem controladas em modernas fundições de produção e onde as peças fundidas estão livres de poeira visível. Exposições muitas vezes acima do limite ocorrem onde as peças fundidas estão empoeiradas ou os gabinetes vazam. As superexposições são prováveis ​​onde a poeira visível escapa da ventilação na remoção, preparação de areia ou reparo de refratários.

A silicose é o risco de saúde predominante na oficina de acabamento de aço; uma pneumoconiose mista é mais prevalente em rebarbação de ferro (Landrigan et al. 1986). Na fundição, a prevalência aumenta com o tempo de exposição e maiores níveis de poeira. Há alguma evidência de que as condições nas fundições de aço são mais propensas a causar silicose do que nas fundições de ferro devido aos níveis mais altos de sílica livre presente. As tentativas de definir um nível de exposição no qual a silicose não ocorrerá foram inconclusivas; o limite é provavelmente inferior a 100 microgramas/m3 e talvez tão baixo quanto a metade desse valor.

Na maioria dos países, a ocorrência de novos casos de silicose está diminuindo, em parte por causa de mudanças na tecnologia, um afastamento da areia de sílica em fundições e uma mudança do tijolo de sílica para revestimentos básicos de fornalhas na fundição de aço. Uma das principais razões é o fato de que a automação resultou no emprego de menos trabalhadores na produção de aço e nas fundições. A exposição ao pó de sílica respirável permanece teimosamente alta em muitas fundições, no entanto, e em países onde os processos exigem muita mão-de-obra, a silicose continua sendo um grande problema.

A silico-tuberculose tem sido relatada há muito tempo em trabalhadores de fundição. Onde a prevalência da silicose diminuiu, houve uma queda paralela nos casos relatados de tuberculose, embora essa doença não tenha sido completamente erradicada. Em países onde os níveis de poeira permaneceram altos, os processos empoeirados são trabalhosos e a prevalência de tuberculose na população em geral é elevada, a tuberculose continua sendo uma importante causa de morte entre os trabalhadores de fundição.

Muitos trabalhadores que sofrem de pneumoconiose também têm bronquite crônica, frequentemente associada a enfisema; há muito que muitos investigadores acreditam que, pelo menos em alguns casos, as exposições ocupacionais podem ter desempenhado um papel. Câncer de pulmão, pneumonia lobar, broncopneumonia e trombose coronária também foram relatados como associados à pneumoconiose em trabalhadores de fundição.

Uma revisão recente de estudos de mortalidade de trabalhadores de fundição, incluindo a indústria automobilística americana, mostrou um aumento de mortes por câncer de pulmão em 14 dos 15 estudos. Como as altas taxas de câncer de pulmão são encontradas entre os trabalhadores de salas de limpeza, onde o principal perigo é a sílica, é provável que exposições mistas também sejam encontradas.

Estudos de carcinógenos no ambiente de fundição têm se concentrado em hidrocarbonetos aromáticos policíclicos formados na quebra térmica de aditivos de areia e aglutinantes. Sugeriu-se que metais como cromo e níquel e poeiras como sílica e amianto também podem ser responsáveis ​​por parte do excesso de mortalidade. Diferenças na química de moldagem e fabricação de machos, tipo de areia e composição de ligas de ferro e aço podem ser responsáveis ​​por diferentes níveis de risco em diferentes fundições (IARC 1984).

O aumento da mortalidade por doenças respiratórias não malignas foi encontrado em 8 dos 11 estudos. As mortes por silicose também foram registradas. Estudos clínicos encontraram alterações de raios-x características de pneumoconiose, déficits de função pulmonar característicos de obstrução e aumento de sintomas respiratórios entre trabalhadores em modernas fundições de produção “limpa”. Estes resultaram de exposições após a década de 960 e sugerem fortemente que os riscos à saúde prevalentes nas antigas fundições ainda não foram eliminados.

A prevenção de distúrbios pulmonares é essencialmente uma questão de controle de poeira e fumaça; a solução geralmente aplicável é fornecer boa ventilação geral juntamente com LEV eficiente. Sistemas de baixo volume e alta velocidade são mais adequados para algumas operações, especialmente rebolos portáteis e ferramentas pneumáticas.

Cinzéis manuais ou pneumáticos usados ​​para remover areia queimada produzem muito pó finamente dividido. Escovar o excesso de materiais com escovas de arame giratórias ou escovas manuais também produz muita poeira; LEV é necessária.

As medidas de controle de poeira são facilmente adaptáveis ​​a esmerilhadeiras de piso e de estrutura oscilante. A retificação portátil em pequenas peças fundidas pode ser realizada em bancadas com ventilação de exaustão ou pode ser aplicada ventilação nas próprias ferramentas. A escovação também pode ser realizada em bancada ventilada. O controle de poeira em peças fundidas grandes apresenta um problema, mas um progresso considerável foi feito com sistemas de ventilação de baixo volume e alta velocidade. Instrução e treinamento em seu uso são necessários para superar as objeções dos trabalhadores que acham esses sistemas complicados e reclamam que sua visão da área de trabalho é prejudicada.

A preparação e preparação de moldes muito grandes, onde a ventilação local é impraticável, deve ser feita em uma área separada e isolada e em um momento em que poucos outros trabalhadores estejam presentes. EPI adequado, limpo e reparado regularmente, deve ser fornecido para cada trabalhador, juntamente com instruções sobre seu uso adequado.

Desde a década de 1950, uma variedade de sistemas de resinas sintéticas foi introduzida em fundições para ligar a areia em núcleos e moldes. Estes geralmente compreendem um material de base e um catalisador ou endurecedor que inicia a polimerização. Muitos desses produtos químicos reativos são sensibilizadores (por exemplo, isocianatos, álcool furfurílico, aminas e formaldeído) e já foram implicados em casos de asma ocupacional entre trabalhadores de fundição. Em um estudo, 12 de 78 trabalhadores de fundição expostos a resinas Pepset (cold-box) apresentaram sintomas asmáticos e, destes, seis tiveram um declínio acentuado nas taxas de fluxo de ar em um teste de desafio usando metil di-isocianato (Johnson et al. 1985 ).

Soldagem

A soldagem em oficinas de acabamento expõe os trabalhadores a vapores metálicos com o consequente risco de toxicidade e febre dos metais, dependendo da composição dos metais envolvidos. A soldagem em ferro fundido requer uma haste de níquel e cria exposição a vapores de níquel. A tocha de plasma produz uma quantidade considerável de fumaça metálica, ozônio, óxido de nitrogênio e radiação ultravioleta, além de gerar altos níveis de ruído.

Uma bancada ventilada por exaustão pode ser fornecida para soldagem de peças fundidas pequenas. É difícil controlar as exposições durante as operações de soldagem ou queima em peças fundidas grandes. Uma abordagem bem-sucedida envolve a criação de uma estação central para essas operações e o fornecimento de LEV por meio de um duto flexível posicionado no ponto de soldagem. Isso requer treinamento do trabalhador para mover o duto de um local para outro. Uma boa ventilação geral e, quando necessário, o uso de EPI ajudará a reduzir a exposição geral à poeira e fumaça.

Ruído e vibração

Os maiores níveis de ruído na fundição são normalmente encontrados nas operações de desmontagem e limpeza; são maiores nas fundições mecanizadas do que nas manuais. O próprio sistema de ventilação pode gerar exposições próximas a 90 dBA.

Os níveis de ruído no rebarbamento de fundidos de aço podem estar na faixa de 115 a 120 dBA, enquanto os realmente encontrados no rebarbamento de ferro fundido estão na faixa de 105 a 115 dBA. A Associação Britânica de Pesquisa de Fundição de Aço estabeleceu que as fontes de ruído durante a rebarbação incluem:

  • o escapamento da ferramenta de rebarbação
  • o impacto do martelo ou da roda na fundição
  • ressonância da peça fundida e vibração contra o seu suporte
  • transmissão de vibração do suporte de fundição para as estruturas circundantes
  • reflexão do ruído direto pelo exaustor controlando o fluxo de ar através do sistema de ventilação.

 

As estratégias de controle de ruído variam com o tamanho da peça fundida, o tipo de metal, a área de trabalho disponível, o uso de ferramentas portáteis e outros fatores relacionados. Certas medidas básicas estão disponíveis para reduzir a exposição ao ruído de indivíduos e colegas de trabalho, incluindo isolamento no tempo e no espaço, fechamentos completos, partições de absorção parcial de som, execução de trabalhos em superfícies de absorção de som, defletores, painéis e capas feitas de material fono-absorvente. absorventes ou outros materiais acústicos. As diretrizes para limites seguros de exposição diária devem ser observadas e, como último recurso, dispositivos de proteção individual podem ser usados.

Uma bancada de rebarbação desenvolvida pela British Steel Casting Research Association reduz o ruído no lascamento em cerca de 4 a 5 dBA. Este banco incorpora um sistema de exaustão para remover a poeira. Essa melhoria é encorajadora e leva à esperança de que, com mais desenvolvimento, reduções de ruído ainda maiores se tornem possíveis.

Síndrome de vibração mão-braço

Ferramentas vibratórias portáteis podem causar o fenômeno de Raynaud (síndrome de vibração mão-braço - HAVS). Isso é mais prevalente em garras de aço do que em garras de ferro e mais frequente entre aquelas que usam ferramentas rotativas. A taxa vibratória crítica para o aparecimento desse fenômeno está entre 2,000 e 3,000 revoluções por minuto e na faixa de 40 a 125 Hz.

Pensa-se agora que o HAVS envolva efeitos em vários outros tecidos no antebraço, além dos nervos periféricos e vasos sanguíneos. Está associada à síndrome do túnel do carpo e alterações degenerativas nas articulações. Um estudo recente de trituradores e trituradores de usinas siderúrgicas mostrou que eles tinham duas vezes mais chances de desenvolver a contratura de Dupuytren do que um grupo de comparação (Thomas e Clarke 1992).

A vibração transmitida às mãos do trabalhador pode ser consideravelmente reduzida por: seleção de ferramentas projetadas para reduzir as faixas nocivas de frequência e amplitude; direção da porta de exaustão longe da mão; uso de várias camadas de luvas ou luva isolante; e encurtamento do tempo de exposição por mudanças nas operações de trabalho, ferramentas e períodos de descanso.

Problemas oculares

Algumas das poeiras e produtos químicos encontrados em fundições (por exemplo, isocianatos, formaldeído e aminas terciárias, como dimetiletilamina, trietilamina e assim por diante) são irritantes e têm sido responsáveis ​​por sintomas visuais entre os trabalhadores expostos. Estes incluem coceira, olhos lacrimejantes, visão nebulosa ou turva ou a chamada “visão cinza-azulada”. Com base na ocorrência desses efeitos, recomenda-se reduzir as exposições médias ponderadas no tempo abaixo de 3 ppm.

Outros problemas

Exposições ao formaldeído iguais ou superiores ao limite de exposição dos EUA são encontradas em operações bem controladas de fabricação de núcleos de caixa quente. Exposições muitas vezes acima do limite podem ser encontradas onde o controle de risco é deficiente.

O amianto tem sido amplamente utilizado na indústria de fundição e, até recentemente, era frequentemente usado em roupas de proteção para trabalhadores expostos ao calor. Seus efeitos foram encontrados em pesquisas de raio-x de trabalhadores de fundição, tanto entre trabalhadores de produção quanto de manutenção que foram expostos ao amianto; uma pesquisa transversal encontrou o envolvimento pleural característico em 20 de 900 trabalhadores do aço (Kronenberg et al. 1991).

Exames periódicos

Pré-colocação e exames médicos periódicos, incluindo uma pesquisa de sintomas, radiografias de tórax, testes de função pulmonar e audiogramas, devem ser fornecidos para todos os trabalhadores da fundição com acompanhamento adequado se forem detectados achados questionáveis ​​ou anormais. Os efeitos combinados da fumaça do tabaco sobre o risco de problemas respiratórios entre os trabalhadores de fundição exigem a inclusão de conselhos sobre como parar de fumar em um programa de educação e promoção de saúde.

Conclusão

As fundições têm sido uma operação industrial essencial há séculos. Apesar dos avanços contínuos na tecnologia, eles apresentam aos trabalhadores uma panóplia de riscos à segurança e à saúde. Como os perigos continuam a existir mesmo nas fábricas mais modernas com programas exemplares de prevenção e controle, proteger a saúde e o bem-estar dos trabalhadores continua sendo um desafio contínuo para a administração e para os trabalhadores e seus representantes. Isso permanece difícil tanto em recessões da indústria (quando as preocupações com a saúde e segurança do trabalhador tendem a dar lugar a restrições econômicas) quanto em tempos de expansão (quando a demanda por aumento de produção pode levar a atalhos potencialmente perigosos nos processos). Portanto, a educação e o treinamento no controle de riscos continuam sendo uma necessidade constante.

 

Voltar

Leia 20782 vezes Última modificação em quarta-feira, 10 de agosto de 2011 23:14
Mais nesta categoria: Forjamento e estampagem »

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências da indústria de processamento de metal e metalurgia

Buonicore, AJ e WT Davis (eds.). 1992. Manual de Engenharia de Poluição do Ar. Nova York: Van Nostrand Reinhold/Air and Waste Management Association.

Agência de Proteção Ambiental (EPA). 1995. Perfil da Indústria de Metais Não Ferrosos. EPA/310-R-95-010. Washington, DC: EPA.

Associação Internacional para Pesquisa sobre o Câncer (IARC). 1984. Monografias sobre a Avaliação de Riscos Carcinogênicos para Humanos. Vol. 34. Lyon: IARC.

Johnson A, CY Moira, L MacLean, E Atkins, A Dybunico, F Cheng e D Enarson. 1985. Anormalidades respiratórias entre trabalhadores da indústria siderúrgica. Brit J Ind Med 42:94–100.

Kronenberg RS, JC Levin, RF Dodson, JGN Garcia e DE Griffith. 1991. Doença relacionada ao amianto em funcionários de uma siderúrgica e de uma fábrica de garrafas de vidro. Ann NY Acad Sci 643:397–403.

Landrigan, PJ, MG Cherniack, FA Lewis, LR Catlett e RW Hornung. 1986. Silicose em uma fundição de ferro fundido cinzento. A persistência de uma doença antiga. Scand J Work Environ Health 12:32–39.

Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH). 1996. Critérios para um Padrão Recomendado: Exposições Ocupacionais a Fluidos de Usinagem. Cincinatti, OH: NIOSH.

Palheta, D. e A. Taylor. 1995. Mercúrio em amostras ambientais e biológicas de uma área de mineração de ouro na Região Amazônica do Brasil. Ciência do Meio Ambiente Total 168:63-69.

Thomas, PR e Clarke D. 1992 Dedo branco vibratório e contratura de Dupuytren: eles estão relacionados? Occup Med 42(3):155–158.