Quarta-feira, 16 Março 2011 20: 59

Fundição e Refino de Cobre, Chumbo e Zinco

Classifique este artigo
(5 votos)

Adaptado da EPA 1995.

Cobre

O cobre é extraído tanto em minas a céu aberto quanto em minas subterrâneas, dependendo do teor do minério e da natureza do depósito de minério. O minério de cobre normalmente contém menos de 1% de cobre na forma de minerais sulfetados. Uma vez que o minério é entregue acima do solo, ele é triturado e moído até a finura do pó e depois concentrado para processamento posterior. No processo de concentração, o minério moído é misturado com água, são adicionados reagentes químicos e o ar é soprado através da pasta. As bolhas de ar se ligam aos minerais de cobre e são então retiradas do topo das células de flotação. O concentrado contém entre 20 e 30% de cobre. Os rejeitos, ou minerais de ganga, do minério caem no fundo das células e são removidos, desidratados por espessadores e transportados como uma pasta para uma lagoa de rejeitos para disposição. Toda a água utilizada nessa operação, proveniente dos espessadores de desaguamento e da lagoa de rejeitos, é recuperada e reciclada de volta ao processo.

O cobre pode ser produzido pirometalurgicamente ou hidrometalurgicamente, dependendo do tipo de minério usado como carga. Os concentrados de minério, que contêm sulfeto de cobre e minerais de sulfeto de ferro, são tratados por processos pirometalúrgicos para produzir produtos de cobre de alta pureza. Os minérios de óxido, que contêm minerais de óxido de cobre que podem ocorrer em outras partes da mina, juntamente com outros resíduos oxidados, são tratados por processos hidrometalúrgicos para produzir produtos de cobre de alta pureza.

A conversão de cobre do minério para metal é realizada por fundição. Durante a fundição, os concentrados são secos e alimentados em um dos vários tipos diferentes de fornos. Lá, os minerais de sulfeto são parcialmente oxidados e derretidos para produzir uma camada de fosco, uma mistura de sulfeto de ferro e cobre e escória, uma camada superior de resíduos.

O fosco é posteriormente processado por conversão. A escória é retirada do forno e armazenada ou descartada em pilhas de escória no local. Uma pequena quantidade de escória é vendida para lastro ferroviário e granalha de jateamento. Um terceiro produto do processo de fundição é o dióxido de enxofre, um gás que é coletado, purificado e transformado em ácido sulfúrico para venda ou uso em operações de lixiviação hidrometalúrgica.

Após a fundição, o mate de cobre é alimentado em um conversor. Durante este processo, o mate de cobre é despejado em um recipiente cilíndrico horizontal (aproximadamente 10×4 m) equipado com uma fileira de tubos. Os tubos, conhecidos como tuyères, projetam-se no cilindro e são usados ​​para introduzir ar no conversor. Cal e sílica são adicionadas ao mate de cobre para reagir com o óxido de ferro produzido no processo para formar a escória. Sucata de cobre também pode ser adicionada ao conversor. O forno é girado de modo que as tuyères fiquem submersas e o ar é soprado no mate fundido, fazendo com que o restante do sulfeto de ferro reaja com o oxigênio para formar óxido de ferro e dióxido de enxofre. Em seguida, o conversor é girado para despejar a escória de silicato de ferro.

Depois que todo o ferro é removido, o conversor é girado de volta e recebe um segundo sopro de ar durante o qual o restante do enxofre é oxidado e removido do sulfeto de cobre. O conversor é então girado para despejar o cobre fundido, que neste ponto é chamado de cobre blister (assim chamado porque, se for permitido solidificar neste ponto, ele terá uma superfície irregular devido à presença de oxigênio gasoso e enxofre). O dióxido de enxofre dos conversores é coletado e alimentado no sistema de purificação de gás junto com o do forno de fundição e transformado em ácido sulfúrico. Devido ao seu teor residual de cobre, a escória é reciclada de volta para o forno de fundição.

O cobre blister, contendo um mínimo de 98.5% de cobre, é refinado em cobre de alta pureza em duas etapas. A primeira etapa é o refino a fogo, no qual o blister de cobre fundido é despejado em um forno cilíndrico, de aparência semelhante a um conversor, onde primeiro ar e depois gás natural ou propano são soprados através do fundido para remover o último enxofre e qualquer oxigênio residual do cobre. O cobre fundido é então despejado em uma roda de fundição para formar ânodos suficientemente puros para o eletrorrefino.

No eletrorrefino, os ânodos de cobre são carregados em células eletrolíticas e espaçados com folhas iniciais de cobre, ou cátodos, em um banho de solução de sulfato de cobre. Quando uma corrente direta passa pela célula, o cobre é dissolvido do ânodo, transportado através do eletrólito e depositado novamente nas folhas iniciais do cátodo. Quando os cátodos atingiram espessura suficiente, eles são removidos da célula eletrolítica e um novo conjunto de folhas iniciais é colocado em seu lugar. As impurezas sólidas nos ânodos caem no fundo da célula como um lodo, onde são coletadas e processadas para a recuperação de metais preciosos, como ouro e prata. Este material é conhecido como lodo anódico.

Os cátodos removidos da célula eletrolítica são o produto primário do produtor de cobre e contêm 99.99% de cobre. Estes podem ser vendidos para fábricas de fio-máquina como cátodos ou processados ​​posteriormente em um produto chamado haste. Na fabricação de hastes, os cátodos são fundidos em um forno de cuba e o cobre fundido é despejado em uma roda de fundição para formar uma barra adequada para laminação em uma haste contínua de 3/8 de polegada de diâmetro. Este produto de haste é enviado para fábricas de arame, onde é extrudado em vários tamanhos de fio de cobre.

No processo hidrometalúrgico, os minérios oxidados e os resíduos são lixiviados com ácido sulfúrico do processo de fundição. A lixiviação é realizada no local, ou em pilhas especialmente preparadas, distribuindo o ácido pelo topo e permitindo que ele penetre no material onde é coletado. O solo sob as almofadas de lixiviação é revestido com um material plástico impermeável e à prova de ácido para evitar que o licor de lixiviação contamine o lençol freático. Uma vez que as soluções ricas em cobre são coletadas, elas podem ser processadas por um dos dois processos - o processo de cimentação ou o processo de extração por solvente/eletroextração (SXEW). No processo de cimentação (que raramente é usado hoje), o cobre na solução ácida é depositado na superfície da sucata em troca do ferro. Quando cobre suficiente foi cimentado, o ferro rico em cobre é colocado na fundição junto com os concentrados de minério para recuperação de cobre por meio da rota pirometalúrgica.

No processo SXEW, a solução de lixiviação prenhe (PLS) é concentrada por extração por solvente, que extrai cobre, mas não impurezas metálicas (ferro e outras impurezas). A solução orgânica carregada de cobre é então separada do lixiviado em um tanque de decantação. Ácido sulfúrico é adicionado à mistura orgânica prenhe, que remove o cobre em uma solução eletrolítica. O lixiviado, contendo o ferro e outras impurezas, é devolvido à operação de lixiviação onde seu ácido é utilizado para posterior lixiviação. A solução de tira rica em cobre é passada para uma célula eletrolítica conhecida como célula eletrolítica. Uma célula de extração eletrolítica difere de uma célula de eletrorrefino porque usa um ânodo permanente e insolúvel. O cobre em solução é então banhado em um cátodo de folha inicial da mesma maneira que no cátodo em uma célula de eletrorrefinação. O eletrólito sem cobre é devolvido ao processo de extração por solvente, onde é usado para retirar mais cobre da solução orgânica. Os catodos produzidos a partir do processo de extração eletrolítica são então vendidos ou transformados em varetas da mesma forma que os produzidos a partir do processo de eletrorrefinação.

As células de extração eletrolítica também são usadas para a preparação de folhas de partida para os processos de eletrorrefinação e extração eletrolítica, depositando o cobre em cátodos de aço inoxidável ou titânio e, em seguida, removendo o cobre banhado.

Perigos e sua prevenção

Os principais riscos são a exposição a poeiras de minério durante o processamento e fundição do minério, vapores metálicos (incluindo cobre, chumbo e arsênico) durante a fundição, dióxido de enxofre e monóxido de carbono durante a maioria das operações de fundição, ruído das operações de britagem e moagem e de fornos, estresse térmico de fornos e ácido sulfúrico e perigos elétricos durante processos eletrolíticos.

As precauções incluem: LEV para poeira durante as operações de transferência; exaustão local e ventilação de diluição para dióxido de enxofre e monóxido de carbono; um programa de controle de ruído e proteção auditiva; roupas de proteção e escudos, pausas para descanso e fluidos para estresse térmico; e LEV, EPI e precauções elétricas para processos eletrolíticos. A proteção respiratória é comumente usada para proteção contra poeira, fumaça e dióxido de enxofre.

A Tabela 1 lista poluentes ambientais para várias etapas na fundição e refino de cobre.

Tabela 1. Entradas de materiais de processo e saídas de poluição para fundição e refino de cobre

Processo

entrada de material

Emissões de ar

Resíduos de processo

Outros resíduos

concentração de cobre

Minério de cobre, água, reagentes químicos, espessantes

 

Águas residuais de flotação

Rejeitos contendo resíduos minerais, como calcário e quartzo

lixiviação de cobre

Concentrado de cobre, ácido sulfúrico

 

lixiviado descontrolado

Resíduos de lixiviação

fundição de cobre

Concentrado de cobre, fluxo silicioso

Dióxido de enxofre, material particulado contendo arsênico, antimônio, cádmio, chumbo, mercúrio e zinco

 

Polpa/lodo de purga de usina ácida, escória contendo sulfetos de ferro, sílica

conversão de cobre

Cobre fosco, sucata de cobre, fluxo silicioso

Dióxido de enxofre, material particulado contendo arsênico, antimônio, cádmio, chumbo, mercúrio e zinco

 

Polpa/lodo de purga de usina ácida, escória contendo sulfetos de ferro, sílica

Refino eletrolítico de cobre

Blister de cobre, ácido sulfúrico

   

Slimes contendo impurezas como ouro, prata, antimônio, arsênico, bismuto, ferro, chumbo, níquel, selênio, enxofre e zinco

 

Conduzir

O processo primário de produção de chumbo consiste em quatro etapas: sinterização, fundição, escória e refino pirometalúrgico. Para começar, uma matéria-prima compreendendo principalmente concentrado de chumbo na forma de sulfeto de chumbo é alimentada em uma máquina de sinterização. Outras matérias-primas podem ser adicionadas, incluindo ferro, sílica, fluxo de calcário, coque, soda, cinza, pirita, zinco, soda cáustica e particulados recolhidos de dispositivos de controle de poluição. Na máquina de sinterização, a matéria-prima de chumbo é submetida a jatos de ar quente que queimam o enxofre, criando dióxido de enxofre. O material de óxido de chumbo existente após este processo contém cerca de 9% do seu peso em carbono. O sínter é então alimentado junto com coque, vários materiais reciclados e de limpeza, calcário e outros agentes fundentes em um alto-forno para redução, onde o carbono atua como combustível e funde ou derrete o material de chumbo. O chumbo fundido escoa para o fundo do forno onde se formam quatro camadas: “speiss” (o material mais leve, basicamente arsênico e antimônio); “mate” (sulfureto de cobre e outros sulfuretos metálicos); escória de alto-forno (principalmente silicatos); e barras de chumbo (98% de chumbo, em peso). Todas as camadas são então drenadas. O speiss e o matte são vendidos para fundições de cobre para recuperação de cobre e metais preciosos. A escória de alto-forno que contém zinco, ferro, sílica e cal é armazenada em pilhas e parcialmente reciclada. As emissões de óxido de enxofre são geradas nos altos-fornos a partir de pequenas quantidades de sulfeto de chumbo residual e sulfatos de chumbo no sinter feed.

O lingote de chumbo bruto do alto-forno geralmente requer tratamento preliminar em caldeiras antes de passar pelas operações de refino. Durante a escória, o lingote é agitado em uma caldeira de escória e resfriado um pouco acima do ponto de congelamento (370 a 425°C). Uma escória, composta de óxido de chumbo, juntamente com cobre, antimônio e outros elementos, flutua até o topo e se solidifica acima do chumbo derretido.

A escória é removida e alimentada em um forno de escória para recuperação dos metais úteis não chumbo. Para melhorar a recuperação do cobre, o lingote de chumbo com escória é tratado pela adição de materiais contendo enxofre, zinco e/ou alumínio, diminuindo o teor de cobre para aproximadamente 0.01%.

Durante a quarta etapa, o lingote de chumbo é refinado usando métodos pirometalúrgicos para remover quaisquer materiais restantes não-chumbo vendáveis ​​(por exemplo, ouro, prata, bismuto, zinco e óxidos metálicos como antimônio, arsênico, estanho e óxido de cobre). O chumbo é refinado em uma chaleira de ferro fundido em cinco estágios. Antimônio, estanho e arsênico são removidos primeiro. Em seguida, o zinco é adicionado e o ouro e a prata são removidos da escória de zinco. Em seguida, o chumbo é refinado por remoção a vácuo (destilação) do zinco. O refino continua com a adição de cálcio e magnésio. Esses dois materiais se combinam com o bismuto para formar um composto insolúvel que é retirado da chaleira. Na etapa final, soda cáustica e/ou nitratos podem ser adicionados ao chumbo para remover quaisquer vestígios remanescentes de impurezas metálicas. O chumbo refinado terá uma pureza de 99.90 a 99.99% e pode ser misturado com outros metais para formar ligas ou pode ser fundido diretamente em formas.

Perigos e sua prevenção

Os principais perigos são a exposição a poeiras de minério durante o processamento e fundição do minério, vapores metálicos (incluindo chumbo, arsênico e antimônio) durante a fundição, dióxido de enxofre e monóxido de carbono durante a maioria das operações de fundição, ruído das operações de moagem e britagem e de fornos e estresse térmico das fornalhas.

As precauções incluem: LEV para poeira durante as operações de transferência; exaustão local e ventilação de diluição para dióxido de enxofre e monóxido de carbono; um programa de controle de ruído e proteção auditiva; e roupas e escudos de proteção, pausas para descanso e fluidos para estresse por calor. A proteção respiratória é comumente usada para proteção contra poeira, fumaça e dióxido de enxofre. O monitoramento biológico para chumbo é essencial.

A Tabela 2 lista poluentes ambientais para várias etapas na fundição e refino de chumbo.

Tabela 2. Entradas de materiais de processo e saídas de poluição para fundição e refino de chumbo

Processo

entrada de material

Emissões de ar

Resíduos de processo

Outros resíduos

Sinterização de chumbo

Minério de chumbo, ferro, sílica, fluxo de calcário, coque, soda, cinza, pirita, zinco, soda cáustica, poeira de despoluição

Dióxido de enxofre, material particulado contendo cádmio e chumbo

   

fundição de chumbo

Sinter de chumbo, coque

Dióxido de enxofre, material particulado contendo cádmio e chumbo

Efluentes de lavagem de plantas, água de granulação de escória

Escória contendo impurezas como zinco, ferro, sílica e cal, sólidos de represamento de superfície

escória de chumbo

Barras de chumbo, carbonato de sódio, enxofre, pó de manga, coque

   

Escória contendo impurezas como cobre, sólidos de represamento de superfície

refino de chumbo

lingote de escória de chumbo

     

 

zinco

O concentrado de zinco é produzido pela separação do minério, que pode conter apenas 2% de zinco, do estéril por britagem e flotação, um processo normalmente realizado no local de mineração. O concentrado de zinco é então reduzido a zinco metálico de duas maneiras: pirometalurgicamente por destilação (retorta em um forno) ou hidrometalurgicamente por eletroextração. Este último responde por aproximadamente 80% do refino total de zinco.

Quatro estágios de processamento são geralmente usados ​​no refino hidrometalúrgico de zinco: calcinação, lixiviação, purificação e separação eletrolítica. A calcinação, ou torrefação, é um processo de alta temperatura (700 a 1000 °C) que converte o concentrado de sulfeto de zinco em um óxido de zinco impuro chamado calcino. Os tipos de torradores incluem fornalha múltipla, suspensão ou leito fluidizado. Em geral, a calcinação começa com a mistura de materiais contendo zinco com carvão. Esta mistura é então aquecida, ou torrada, para vaporizar o óxido de zinco que é então removido da câmara de reação com o fluxo de gás resultante. A corrente de gás é direcionada para a área da manga (filtro) onde o óxido de zinco é capturado na poeira da manga.

Todos os processos de calcinação geram dióxido de enxofre, que é controlado e convertido em ácido sulfúrico como subproduto comercializável do processo.

O processamento eletrolítico da calcina dessulfurizada consiste em três etapas básicas: lixiviação, purificação e eletrólise. A lixiviação refere-se à dissolução da calcina capturada em uma solução de ácido sulfúrico para formar uma solução de sulfato de zinco. A calcina pode ser lixiviada uma ou duas vezes. No método de lixiviação dupla, a calcina é dissolvida em uma solução levemente ácida para remover os sulfatos. A calcina é então lixiviada uma segunda vez em uma solução mais forte que dissolve o zinco. Esta segunda etapa de lixiviação é, na verdade, o início da terceira etapa de purificação porque muitas das impurezas de ferro saem da solução, assim como o zinco.

Após a lixiviação, a solução é purificada em duas ou mais etapas pela adição de pó de zinco. A solução é purificada à medida que a poeira força a precipitação de elementos deletérios para que possam ser filtrados. A purificação é geralmente realizada em grandes tanques de agitação. O processo ocorre em temperaturas que variam de 40 a 85°C e pressões que variam de atmosférica a 2.4 atmosferas. Os elementos recuperados durante a purificação incluem o cobre como um bolo e o cádmio como um metal. Após a purificação, a solução está pronta para a etapa final, eletroextração.

A eletroextração de zinco ocorre em uma célula eletrolítica e envolve a execução de uma corrente elétrica de um ânodo de liga de chumbo-prata através da solução aquosa de zinco. Este processo carrega o zinco suspenso e o força a se depositar em um cátodo de alumínio que é imerso na solução. A cada 24 a 48 horas, cada célula é desligada, os cátodos revestidos de zinco são removidos e enxaguados, e o zinco removido mecanicamente das placas de alumínio. O concentrado de zinco é então derretido e fundido em lingotes e geralmente chega a 99.995% de pureza.

As fundições eletrolíticas de zinco contêm até várias centenas de células. Uma parte da energia elétrica é convertida em calor, o que aumenta a temperatura do eletrólito. As células eletrolíticas operam em faixas de temperatura de 30 a 35°C à pressão atmosférica. Durante a extração eletrolítica, uma parte do eletrólito passa por torres de resfriamento para diminuir sua temperatura e evaporar a água coletada durante o processo.

Perigos e sua prevenção

Os principais riscos são a exposição a poeiras de minério durante o processamento e fundição do minério, vapores metálicos (incluindo zinco e chumbo) durante o refino e torrefação, dióxido de enxofre e monóxido de carbono durante a maioria das operações de fundição, ruído das operações de britagem e moagem e de fornos, estresse térmico de fornos e ácido sulfúrico e perigos elétricos durante processos eletrolíticos.

As precauções incluem: LEV para poeira durante as operações de transferência; exaustão local e ventilação de diluição para dióxido de enxofre e monóxido de carbono; um programa de controle de ruído e proteção auditiva; roupas de proteção e escudos, pausas para descanso e fluidos para estresse térmico; e LEV, EPI e precauções elétricas para processos eletrolíticos. A proteção respiratória é comumente usada para proteção contra poeira, fumaça e dióxido de enxofre.

A Tabela 3 lista os poluentes ambientais para várias etapas na fundição e refino de zinco.

Tabela 3. Entradas de materiais de processo e saídas de poluição para fundição e refino de zinco

Processo

entrada de material

Emissões de ar

Resíduos de processo

Outros resíduos

calcinação de zinco

minério de zinco, coque

Dióxido de enxofre, material particulado contendo zinco e chumbo

 

Pasta de purga de usina ácida

lixiviação de zinco

Calcina de zinco, ácido sulfúrico, calcário, eletrólito gasto

 

Águas residuais contendo ácido sulfúrico

 

purificação de zinco

Solução de ácido de zinco, pó de zinco

 

Águas residuais contendo ácido sulfúrico, ferro

Torta de cobre, cádmio

eletroextração de zinco

Zinco em ácido sulfúrico/solução aquosa, ânodos de liga de chumbo-prata, cátodos de alumínio, carbonato de bário ou estrôncio, aditivos coloidais

 

ácido sulfúrico diluído

Limos/lamas de células eletrolíticas

 

Voltar

Leia 21813 vezes Última modificação em quarta-feira, 10 de agosto de 2011 23:11

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências da indústria de processamento de metal e metalurgia

Buonicore, AJ e WT Davis (eds.). 1992. Manual de Engenharia de Poluição do Ar. Nova York: Van Nostrand Reinhold/Air and Waste Management Association.

Agência de Proteção Ambiental (EPA). 1995. Perfil da Indústria de Metais Não Ferrosos. EPA/310-R-95-010. Washington, DC: EPA.

Associação Internacional para Pesquisa sobre o Câncer (IARC). 1984. Monografias sobre a Avaliação de Riscos Carcinogênicos para Humanos. Vol. 34. Lyon: IARC.

Johnson A, CY Moira, L MacLean, E Atkins, A Dybunico, F Cheng e D Enarson. 1985. Anormalidades respiratórias entre trabalhadores da indústria siderúrgica. Brit J Ind Med 42:94–100.

Kronenberg RS, JC Levin, RF Dodson, JGN Garcia e DE Griffith. 1991. Doença relacionada ao amianto em funcionários de uma siderúrgica e de uma fábrica de garrafas de vidro. Ann NY Acad Sci 643:397–403.

Landrigan, PJ, MG Cherniack, FA Lewis, LR Catlett e RW Hornung. 1986. Silicose em uma fundição de ferro fundido cinzento. A persistência de uma doença antiga. Scand J Work Environ Health 12:32–39.

Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH). 1996. Critérios para um Padrão Recomendado: Exposições Ocupacionais a Fluidos de Usinagem. Cincinatti, OH: NIOSH.

Palheta, D. e A. Taylor. 1995. Mercúrio em amostras ambientais e biológicas de uma área de mineração de ouro na Região Amazônica do Brasil. Ciência do Meio Ambiente Total 168:63-69.

Thomas, PR e Clarke D. 1992 Dedo branco vibratório e contratura de Dupuytren: eles estão relacionados? Occup Med 42(3):155–158.