Распечатай эту страницу
Вторник, 15 Март 2011 14: 46

Электромагнитный спектр: основные физические характеристики

Оценить этот пункт
(4 голосов)

Наиболее известная форма электромагнитной энергии — солнечный свет. Частота солнечного света (видимого света) является границей между более мощным ионизирующим излучением (рентгеновские лучи, космические лучи) на более высоких частотах и ​​более мягким неионизирующим излучением на более низких частотах. Существует спектр неионизирующего излучения. В контексте этой главы, чуть ниже видимого света находится инфракрасное излучение. Ниже находится широкий диапазон радиочастот, который включает (в порядке убывания) микроволны, сотовое радио, телевидение, FM-радио и AM-радио, короткие волны, используемые в диэлектрических и индукционных нагревателях, и, в нижней части, поля промышленной частоты. Электромагнитный спектр показан на рисунке 1. 

Рисунок 1. Электромагнитный спектр

ЭЛФ010F1

Как видимый свет или звук пронизывают нашу среду, пространство, где мы живем и работаем, так и энергии электромагнитных полей. Кроме того, поскольку большая часть звуковой энергии, которой мы подвергаемся, создается человеческой деятельностью, то же самое происходит и с электромагнитными энергиями: от слабых уровней, излучаемых нашими повседневными электроприборами — теми, которые обеспечивают работу наших радио и телевизоров, — до высоких уровней. уровни, которые практикующие врачи применяют в полезных целях, например, диатермия (тепловая обработка). В целом сила таких энергий быстро уменьшается по мере удаления от источника. Естественные уровни этих месторождений в окружающей среде невысоки.

Неионизирующее излучение (NIR) включает в себя все излучения и поля электромагнитного спектра, энергии которых недостаточно для ионизации вещества. То есть NIR не может передать молекуле или атому достаточно энергии, чтобы разрушить их структуру, удалив один или несколько электронов. Граница между БИК и ионизирующим излучением обычно устанавливается на длине волны около 100 нанометров.

Как и в случае любой формы энергии, энергия NIR может взаимодействовать с биологическими системами, и результат может быть неважным, может быть вредным в разной степени или может быть полезным. При радиочастотном (РЧ) и микроволновом излучении основным механизмом взаимодействия является нагрев, но в низкочастотной части спектра поля высокой интенсивности могут индуцировать токи в организме и тем самым быть опасными. Однако механизмы взаимодействия при слабом поле напряженности неизвестны.

 

 

 

 

 

 

 

 

Количества и единицы

Поля на частотах ниже примерно 300 МГц количественно определяются с точки зрения напряженности электрического поля (E) и напряженность магнитного поля (H). E выражается в вольтах на метр (В/м) и H в амперах на метр (А/м). Оба являются векторными полями, т. е. характеризуются величиной и направлением в каждой точке. Для низкочастотного диапазона магнитное поле часто выражается через плотность потока, B, с единицей СИ Тесла (Тл). Когда обсуждаются поля в нашей повседневной среде, субъединица микротесла (мкТл) обычно является предпочтительной единицей измерения. В некоторой литературе плотность потока выражается в гауссах (G), а преобразование между этими единицами (для полей в воздухе):

1 Т = 104 G или 0.1 мкТл = 1 мГс и 1 А/м = 1.26 мкТл.

Доступны обзоры концепций, величин, единиц и терминологии для защиты от неионизирующего излучения, включая радиочастотное излучение (NCRP 1981; Polk and Postow 1986; WHO 1993).

Термин излучение просто означает энергию, передаваемую волнами. Электромагнитные волны — это волны электрических и магнитных сил, где волновое движение определяется как распространение возмущений в физической системе. Изменение электрического поля сопровождается изменением магнитного поля, и наоборот. Эти явления были описаны в 1865 году Дж. К. Максвеллом в виде четырех уравнений, которые стали известны как уравнения Максвелла.

Электромагнитные волны характеризуются набором параметров, включающих частоту (f), длина волны (λ), напряженность электрического поля, напряженность магнитного поля, электрическая поляризация (P) (направление E поле), скорость распространения (c) и вектор Пойнтинга (S). фигура 2  иллюстрирует распространение электромагнитной волны в свободном пространстве. Частота определяется как количество полных изменений электрического или магнитного поля в данной точке в секунду и выражается в герцах (Гц). Длина волны — это расстояние между двумя последовательными гребнями или впадинами волны (максимумами или минимумами). Частота, длина волны и скорость волны (v) взаимосвязаны следующим образом:

v = f λ

Рисунок 2. Плоская волна, распространяющаяся со скоростью света в направлении х

ЭЛФ010F2

Скорость электромагнитной волны в свободном пространстве равна скорости света, но скорость в материалах зависит от электрических свойств материала, т. е. от его диэлектрической проницаемости (ε) и магнитной проницаемости (μ). Диэлектрическая проницаемость касается взаимодействия материала с электрическим полем, а магнитная проницаемость выражает взаимодействие с магнитным полем. Биологические вещества имеют диэлектрическую проницаемость, которая сильно отличается от диэлектрической проницаемости свободного пространства, поскольку зависит от длины волны (особенно в радиочастотном диапазоне) и типа ткани. Однако проницаемость биологических веществ равна проницаемости свободного пространства.

В плоской волне, как показано на рисунке 2 , электрическое поле перпендикулярно магнитному полю, а направление распространения перпендикулярно как электрическому, так и магнитному полям.

 

 

 

Для плоской волны отношение величины напряженности электрического поля к величине напряженности магнитного поля, которая является постоянной, называется характеристическим сопротивлением (Z):

Z = E/H

В свободном пространстве, Z= 120π ≈ 377 Ом но иначе Z зависит от диэлектрической и магнитной проницаемости материала, через который проходит волна.

Перенос энергии описывается вектором Пойнтинга, который представляет величину и направление плотности электромагнитного потока:

S = E x H

Для распространяющейся волны интеграл от S по любой поверхности представляет собой мгновенную мощность, передаваемую через эту поверхность (плотность мощности). Величина вектора Пойнтинга выражается в ваттах на квадратный метр (Вт/м2) (в некоторых источниках единица измерения мВт/см2 используется — перевод в единицы СИ 1 мВт/см2 = 10 Вт/м2), а для плоских волн связано со значениями напряженностей электрического и магнитного полей:

S = E2 / 120π = E2 / 377

и

S = 120 π H2 = 377 H2

Не все условия воздействия, встречающиеся на практике, могут быть представлены плоскими волнами. На расстояниях, близких к источникам радиочастотного излучения, соотношения, характерные для плоских волн, не выполняются. Электромагнитное поле, излучаемое антенной, можно разделить на две области: зону ближнего поля и зону дальнего поля. Граница между этими зонами обычно проводится по:

r = 2a2 / λ

в котором a - наибольший размер антенны.

В ближней зоне воздействие должно характеризоваться как электрическим, так и магнитным полями. В дальней зоне достаточно одного из них, так как они связаны приведенными выше уравнениями, включающими E и H. На практике ситуация ближнего поля часто реализуется на частотах ниже 300 МГц.

Воздействие радиочастотных полей дополнительно осложняется взаимодействием электромагнитных волн с объектами. В общем, когда электромагнитные волны сталкиваются с объектом, часть падающей энергии отражается, часть поглощается, а часть передается. Пропорции энергии, передаваемой, поглощаемой или отражаемой объектом, зависят от частоты и поляризации поля, а также от электрических свойств и формы объекта. Наложение падающей и отраженной волн приводит к стоячим волнам и пространственно-неоднородному распределению поля. Поскольку волны полностью отражаются от металлических предметов, вблизи таких предметов образуются стоячие волны.

Поскольку взаимодействие радиочастотных полей с биологическими системами зависит от многих различных характеристик поля, а поля, встречающиеся на практике, сложны, при описании воздействия радиочастотных полей следует учитывать следующие факторы:

  • происходит ли облучение в ближней или дальней зоне
  • если ближнее поле, то значения для обоих E и H нужны; если дальнее поле, то либо E or H
  • пространственное изменение величины поля (полей)
  • поляризация поля, то есть направление электрического поля по отношению к направлению распространения волны.

 

При воздействии низкочастотных магнитных полей до сих пор неясно, что является единственным важным соображением: напряженность поля или плотность потока. Может оказаться, что важны и другие факторы, например время экспозиции или быстрота изменения поля.

Термин электромагнитное поле (ЭМП), как это используется в средствах массовой информации и популярной прессе, обычно относится к электрическим и магнитным полям в низкочастотном конце спектра, но также может использоваться в гораздо более широком смысле, чтобы включить весь спектр электромагнитное излучение. Обратите внимание, что в области низких частот E и B поля не связаны или взаимосвязаны так же, как на более высоких частотах, и поэтому правильнее называть их «электрическими и магнитными полями», а не ЭМП.

 

Назад

Читать 13204 раз Последнее изменение Среда, 17 августа 2011 г., 17:44