Вторник, 15 Март 2011 14: 58

Ультрафиолетовое излучение

Оценить этот пункт
(1 голосов)

Подобно видимому свету, ультрафиолетовое излучение (УФИ) представляет собой форму оптического излучения с более короткими длинами волн и более энергичными фотонами (частицами излучения), чем его видимый аналог. Большинство источников света также излучают некоторое количество ультрафиолетового излучения. УФИ присутствует в солнечном свете, а также испускается большим количеством источников ультрафиолета, используемых в промышленности, науке и медицине. Рабочие могут столкнуться с УФИ в самых разных профессиональных условиях. В некоторых случаях при низком уровне окружающего освещения можно увидеть очень интенсивные источники ближнего ультрафиолета («черный свет»), но обычно ультрафиолетовое излучение невидимо и должно обнаруживаться по свечению материалов, которые флуоресцируют при освещении ультрафиолетовым излучением.

Подобно тому, как свет можно разделить на цвета, которые можно увидеть в радуге, УФ-излучение подразделяется, и его компоненты обычно обозначаются как УФА, УФБ и UVC. Длины волн света и ультрафиолетового излучения обычно выражаются в нанометрах (нм); 1 нм — это одна миллиардная (10-9) метра. UVC (очень коротковолновое UVR) солнечного света поглощается атмосферой и не достигает поверхности Земли. UVC доступен только из искусственных источников, таких как бактерицидные лампы, которые излучают большую часть своей энергии на одной длине волны (254 нм), что очень эффективно для уничтожения бактерий и вирусов на поверхности или в воздухе.

UVB является наиболее биологически опасным ультрафиолетовым излучением для кожи и глаз, и хотя большая часть этой энергии (которая является компонентом солнечного света) поглощается атмосферой, она по-прежнему вызывает солнечные ожоги и другие биологические эффекты. Длинноволновое УФ-излучение, УФА, обычно присутствует в большинстве ламповых источников, а также является наиболее интенсивным УФ-излучением, достигающим Земли. Хотя УФ-А может проникать глубоко в ткани, он не так опасен с биологической точки зрения, как УФ-В, потому что энергия отдельных фотонов меньше, чем у УФ-В или УФ-С.

Источники ультрафиолетового излучения

Солнечный свет

Наибольшее профессиональное облучение УФ-излучением испытывают работники на открытом воздухе под солнечным светом. Энергия солнечного излучения сильно ослабляется озоновым слоем Земли, что ограничивает земное ультрафиолетовое излучение длинами волн более 290-295 нм. Энергия более опасных коротковолновых (УФБ) лучей солнечного света сильно зависит от наклонной траектории движения в атмосфере и меняется в зависимости от времени года и времени суток (Sliney 1986 и 1987; WHO 1994).

Искусственные источники

К наиболее значительным искусственным источникам облучения человека относятся следующие:

Промышленная дуговая сварка. Наиболее значительным источником потенциального воздействия ультрафиолетового излучения является энергия излучения оборудования для дуговой сварки. Уровни ультрафиолетового излучения вокруг оборудования для дуговой сварки очень высоки, и острое повреждение глаз и кожи может произойти в течение трех-десяти минут после воздействия на близком расстоянии в несколько метров. Защита глаз и кожи обязательна.

Промышленные/рабочие УФ-лампы. Многие промышленные и коммерческие процессы, такие как фотохимическое отверждение чернил, красок и пластмасс, включают использование ламп, сильно излучающих в УФ-диапазоне. Хотя вероятность вредного воздействия низка из-за экранирования, в некоторых случаях может произойти случайное воздействие.

«Черные огни». Чёрные огни — это специализированные лампы, которые излучают преимущественно в УФ-диапазоне и обычно используются для неразрушающего контроля с использованием флуоресцентных порошков, для проверки подлинности банкнот и документов, а также для создания спецэффектов в рекламе и на дискотеках. Эти лампы не представляют значительной опасности для человека (за исключением некоторых случаев фотосенсибилизированной кожи).

Медицинское лечение. Лампы УФР используются в медицине для различных диагностических и лечебных целей. Источники УФА обычно используются в диагностических целях. Воздействие на пациента значительно различается в зависимости от типа лечения, и УФ-лампы, используемые в дерматологии, требуют осторожного использования персоналом.

Бактерицидные УФ-лампы. УФО с длинами волн в диапазоне 250–265 нм является наиболее эффективным для стерилизации и дезинфекции, так как соответствует максимуму в спектре поглощения ДНК. В качестве источника УФ излучения часто используют ртутные газоразрядные трубки низкого давления, так как более 90% излучаемой энергии приходится на линию 254 нм. Эти лампы часто называют «бактерицидными лампами», «бактерицидными лампами» или просто «УФ-лампами». Бактерицидные лампы применяются в больницах для борьбы с туберкулезной инфекцией, а также применяются внутри боксов микробиологической безопасности для инактивации воздушно-капельных и поверхностных микроорганизмов. Очень важна правильная установка ламп и использование средств защиты глаз.

Косметический загар. Солярии есть на предприятиях, где клиенты могут получить загар с помощью специальных ламп для загара, которые излучают в основном в диапазоне УФ-А, но также и в некоторой степени УФ-В. Регулярное использование солярия может значительно увеличить ежегодное воздействие УФ-излучения на кожу человека; кроме того, персонал, работающий в соляриях, также может подвергаться воздействию низких уровней. Использование средств защиты глаз, таких как защитные очки или солнцезащитные очки, должно быть обязательным для клиента, и, в зависимости от договоренности, даже сотрудникам могут потребоваться защитные очки.

Общее освещение. Люминесцентные лампы широко распространены на рабочем месте и уже давно используются в быту. Эти лампы излучают небольшое количество УФ-излучения и составляют лишь несколько процентов от годового УФ-облучения человека. Вольфрамово-галогенные лампы все чаще используются дома и на рабочем месте для различных целей освещения и демонстрации. Неэкранированные галогенные лампы могут излучать уровни ультрафиолетового излучения, достаточные для того, чтобы вызвать острую травму на коротких расстояниях. Установка стеклянных фильтров над этими лампами должна устранить эту опасность.

Биологические эффекты

Кожа

Эритема

Эритема, или «солнечный ожог», представляет собой покраснение кожи, которое обычно появляется через четыре-восемь часов после воздействия УФИ и постепенно исчезает через несколько дней. Тяжелые солнечные ожоги могут сопровождаться образованием волдырей и шелушением кожи. UVB и UVC примерно в 1,000 раз более эффективны в отношении эритемы, чем UVA (Parrish, Jaenicke and Anderson, 1982), но эритема, вызванная более длинными волнами UVB (от 295 до 315 нм), более выражена и сохраняется дольше (Hausser, 1928). Повышенная тяжесть и длительность эритемы являются результатом более глубокого проникновения этих длин волн в эпидермис. Максимальная чувствительность кожи, по-видимому, возникает при длине волны примерно 295 нм (Luckiesh, Holladay and Taylor, 1930; Coblentz, Stair and Hogue, 1931), а гораздо меньшая (приблизительно 0.07) чувствительность возникает при длине волны 315 нм и более длинных волнах (McKinlay and Diffey, 1987).

Минимальная эритемная доза (МЭД) для 295 нм, о которой сообщалось в более поздних исследованиях для незагорелой, слегка пигментированной кожи, составляет от 6 до 30 мДж/см.2 (Эверетт, Олсен и Сайер, 1965; Фриман и др., 1966; Бергер, Урбах и Дэвис, 1968). МЭД на длине волны 254 нм сильно варьируется в зависимости от времени, прошедшего после облучения, и от того, подвергалась ли кожа воздействию солнечного света на улице, но обычно составляет порядка 20 мДж/см.2, или до 0.1 Дж/см2. Пигментация и загар кожи, а главное, утолщение рогового слоя могут увеличить этот МЭД как минимум на порядок.

Фотосенсибилизация

Специалисты по гигиене труда часто сталкиваются с неблагоприятными последствиями профессионального воздействия УФИ на фотосенсибилизированных рабочих. Использование некоторых лекарств может вызвать фотосенсибилизирующий эффект при воздействии УФ-А, равно как и местное применение определенных продуктов, включая некоторые духи, лосьоны для тела и т.д. Реакции на фотосенсибилизирующие агенты включают как фотоаллергию (аллергическая реакция кожи), так и фототоксичность (раздражение кожи) после воздействия УФИ от солнечного света или промышленных источников УФИ. (Реакции фоточувствительности во время использования солярия также распространены.) Такая фотосенсибилизация кожи может быть вызвана нанесением на кожу кремов или мазей, лекарствами, принимаемыми перорально или путем инъекций, или использованием рецептурных ингаляторов (см. рис. 1). ). Врач, назначающий потенциально фотосенсибилизирующее лекарство, всегда должен предупреждать пациента о принятии соответствующих мер для предотвращения побочных эффектов, но пациенту часто говорят избегать только солнечного света, а не источников УФИ (поскольку они редко встречаются среди населения в целом).

Рисунок 1. Некоторые фоносенсибилизирующие вещества

ELF020T1

Задержка эффектов

Хроническое воздействие солнечного света, особенно компонента УФ-В, ускоряет старение кожи и повышает риск развития рака кожи (Fitzpatrick et al., 1974; Forbes and Davies, 1982; Urbach, 1969; Passchier and Bosnjakovic, 1987). Несколько эпидемиологических исследований показали, что заболеваемость раком кожи тесно связана с широтой, высотой над уровнем моря и покровом неба, которые коррелируют с воздействием УФИ (Scotto, Fears and Gori, 1980; ВОЗ, 1993).

Точные количественные зависимости доза-реакция для канцерогенеза кожи человека еще не установлены, хотя люди со светлой кожей, особенно лица кельтского происхождения, гораздо более склонны к развитию рака кожи. Тем не менее, следует отметить, что УФ-облучение, необходимое для выявления опухолей кожи на животных моделях, может осуществляться достаточно медленно, чтобы не возникала эритема, а относительная эффективность (относительно пика при 302 нм), о которой сообщалось в этих исследованиях, варьируется в одних и тех же пределах. как солнечный ожог (Cole, Forbes and Davies, 1986; Sterenborg and van der Leun, 1987).

Глаз

Фотокератит и фотоконъюнктивит

Это острые воспалительные реакции, возникающие в результате воздействия УФВ- и УФС-излучения, которые появляются в течение нескольких часов после чрезмерного воздействия и обычно проходят через один-два дня.

Повреждение сетчатки от яркого света

Хотя термическое повреждение сетчатки от источников света маловероятно, фотохимическое повреждение может произойти при воздействии источников, насыщенных синим светом. Это может привести к временному или постоянному снижению зрения. Однако нормальная реакция отвращения к яркому свету должна предотвращать это явление, если только не предпринимается сознательное усилие смотреть на яркие источники света. Вклад УФИ в повреждение сетчатки, как правило, очень мал, поскольку поглощение линзой ограничивает воздействие на сетчатку.

Хронические эффекты

Длительное профессиональное воздействие УФИ на протяжении нескольких десятилетий может способствовать возникновению катаракты и таких не связанных с глазами дегенеративных эффектов, как старение кожи и рак кожи, связанные с воздействием солнца. Хроническое воздействие инфракрасного излучения также может увеличить риск катаракты, но это очень маловероятно при наличии средств защиты глаз.

Актиническое ультрафиолетовое излучение (UVB и UVC) сильно поглощается роговицей и конъюнктивой. Чрезмерное воздействие на эти ткани вызывает кератоконъюнктивит, обычно называемый «вспышкой сварщика», «дуговым глазом» или «снежной слепотой». Питтс сообщил о спектре действия и динамике фотокератита в роговице человека, кролика и обезьяны (Pitts, 1974). Латентный период изменяется обратно пропорционально тяжести воздействия и составляет от 1.5 до 24 часов, но обычно длится от 6 до 12 часов; дискомфорт обычно исчезает в течение 48 часов. Далее следует конъюнктивит, который может сопровождаться эритемой кожи лица вокруг век. Конечно, воздействие УФИ редко приводит к необратимому повреждению глаз. Pitts и Tredici (1971) сообщили о пороговых данных для фотокератита у людей для волновых полос шириной 10 нм от 220 до 310 нм. Установлено, что максимальная чувствительность роговицы приходится на длину волны 270 нм, что заметно отличается от максимальной для кожи. Предположительно, излучение с длиной волны 270 нм является биологически более активным из-за отсутствия рогового слоя для ослабления дозы на ткань эпителия роговицы при более коротких длинах волн УФО. Реакция на длину волны, или спектр действия, не менялась так сильно, как спектры действия эритемы, с пороговыми значениями от 4 до 14 мДж/см.2 при 270 нм. Пороговое значение при длине волны 308 нм составляло примерно 100 мДж/см.2.

Многократное воздействие на глаза потенциально опасных уровней УФИ не повышает защитную способность пораженной ткани (роговицы), как это происходит при воздействии на кожу, что приводит к загару и утолщению рогового слоя. Рингволд и его коллеги изучали свойства поглощения УФ-излучения роговицей (Ringvold, 1980a) и водянистой влагой (Ringvold, 1980b), а также влияние УФ-В-излучения на эпителий роговицы (Ringvold, 1983), строму роговицы (Ringvold and Davanger, 1985) и эндотелий роговицы (Ringvold, Davanger and Olsen 1982; Olsen and Ringvold 1982). Их электронно-микроскопические исследования показали, что ткань роговицы обладает замечательными свойствами восстановления и восстановления. Хотя можно было легко обнаружить значительное повреждение всех этих слоев, по-видимому, первоначально появляющееся в клеточных мембранах, морфологическое восстановление было полным через неделю. Деструкция кератоцитов в стромальном слое была очевидной, а восстановление эндотелия было выраженным, несмотря на нормальное отсутствие быстрого обновления клеток в эндотелии. Каллен и др. (1984) изучали стойкое повреждение эндотелия при постоянном воздействии УФИ. Райли и др. (1987) также изучили эндотелий роговицы после воздействия УФ-В и пришли к выводу, что тяжелые единичные повреждения вряд ли будут иметь отсроченные последствия; однако они также пришли к выводу, что хроническое воздействие может ускорить изменения в эндотелии, связанные со старением роговицы.

Волны с длиной волны более 295 нм могут проходить через роговицу и почти полностью поглощаются хрусталиком. Питтс, Каллен и Хакер (1977b) показали, что катаракта может быть вызвана у кроликов длинами волн в диапазоне 295–320 нм. Пороги преходящего помутнения варьировались от 0.15 до 12.6 Дж/см.2, в зависимости от длины волны, с минимальным порогом 300 нм. Постоянные помутнения требовали большей радиационной экспозиции. Никакого двояковыпуклого эффекта в диапазоне длин волн от 325 до 395 нм не отмечалось даже при гораздо более высоких дозах излучения от 28 до 162 Дж/см.2 (Питтс, Каллен и Хакер, 1977а; Цуклич и Коннолли, 1976). Эти исследования ясно иллюстрируют особую опасность спектральной полосы 300-315 нм, как и следовало ожидать, поскольку фотоны этих длин волн эффективно проникают и обладают достаточной энергией, чтобы вызвать фотохимическое повреждение.

Тейлор и др. (1988) предоставили эпидемиологические доказательства того, что ультрафиолетовое излучение солнечного света является этиологическим фактором старческой катаракты, но не выявили корреляции катаракты с воздействием УФ-А. Гипотеза о том, что УФА может вызывать катаракту, хотя когда-то была широко распространена из-за сильного поглощения УФ-А хрусталиком, не была подтверждена ни экспериментальными лабораторными исследованиями, ни эпидемиологическими исследованиями. Из лабораторных экспериментальных данных, показавших, что пороги для фотокератита ниже, чем для катарактогенеза, следует сделать вывод, что уровни ниже тех, которые необходимы для ежедневного возникновения фотокератита, следует считать опасными для ткани хрусталика. Даже если предположить, что роговица подвергается воздействию уровня, почти эквивалентного порогу фотокератита, можно оценить, что суточная доза УФИ на хрусталик при 308 нм будет меньше 120 мДж/см.2 в течение 12 часов на открытом воздухе (Sliney 1987). Действительно, более реалистичное среднее дневное воздействие было бы меньше половины этого значения.

Хэм и др. (1982) определили спектр действия УФО на фоторетинит в диапазоне 320–400 нм. Они показали, что пороги в видимом спектральном диапазоне, составлявшие от 20 до 30 Дж/см2 при 440 нм были снижены примерно до 5 Дж/см2 для полосы 10 нм с центром на 325 нм. Спектр действия монотонно увеличивался с уменьшением длины волны. Поэтому мы должны заключить, что уровни значительно ниже 5 Дж/см2 при 308 нм должны вызывать поражения сетчатки, хотя эти поражения не проявляются в течение 24–48 часов после облучения. Нет опубликованных данных о порогах повреждения сетчатки ниже 325 нм, и можно только ожидать, что картина спектра действия фотохимического повреждения тканей роговицы и хрусталика применима и к сетчатке, что приводит к порогу повреждения порядка 0.1 Дж/см2.

Хотя было ясно показано, что УФВ-излучение оказывает мутагенное и канцерогенное воздействие на кожу, весьма примечательна крайняя редкость канцерогенеза в роговице и конъюнктиве. По-видимому, нет научных доказательств связи воздействия УФИ с раком роговицы или конъюнктивы у людей, хотя это не относится к крупному рогатому скоту. Это предполагает очень эффективную иммунную систему, действующую в человеческом глазу, поскольку, безусловно, есть работники, работающие на открытом воздухе, которые получают УФ-облучение, сравнимое с облучением крупного рогатого скота. Этот вывод также подтверждается тем фактом, что у людей, страдающих дефектным иммунным ответом, как при пигментной ксеродерме, часто развиваются новообразования роговицы и конъюнктивы (Stenson 1982).

Стандарты безопасности

Были разработаны пределы профессионального воздействия (EL) для УФИ, которые включают кривую спектра действия, охватывающую пороговые данные для острых эффектов, полученные в исследованиях минимальной эритемы и кератоконъюнктивита (Sliney 1972; IRPA 1989). Эта кривая существенно не отличается от данных коллективного порога, учитывая ошибки измерения и различия в индивидуальной реакции, и находится значительно ниже катарактогенных порогов УФ-В.

Самая низкая EL для УФ-излучения составляет 270 нм (0.003 Дж/см2 при 270 нм), а, например, при 308 нм составляет 0.12 Дж/см2 (ACGIH 1995, IRPA 1988). Независимо от того, происходит ли воздействие в результате нескольких импульсных воздействий в течение дня, однократного очень короткого воздействия или в результате 8-часового воздействия мощностью в несколько микроватт на квадратный сантиметр, биологическая опасность одинакова, и вышеуказанные ограничения применяются к полный рабочий день.

Охрана труда

Профессиональное воздействие УФИ должно быть сведено к минимуму, где это практически возможно. Применительно к искусственным источникам, по возможности, приоритет следует отдавать таким техническим мерам, как фильтрация, экранирование и ограждение. Административный контроль, такой как ограничение доступа, может снизить требования к личной защите.

Рабочие на открытом воздухе, такие как сельскохозяйственные рабочие, рабочие, строители, рыбаки и т. д., могут свести к минимуму свой риск воздействия солнечного УФ-излучения, надевая соответствующую одежду из плотной ткани и, что наиболее важно, шляпу с полями, чтобы уменьшить воздействие на лицо и шею. На открытые участки кожи можно наносить солнцезащитные кремы, чтобы уменьшить дальнейшее воздействие. Рабочие на открытом воздухе должны иметь доступ к тени и быть обеспечены всеми необходимыми защитными мерами, упомянутыми выше.

В промышленности существует множество источников, способных вызвать острую травму глаз в течение короткого времени воздействия. Доступны различные средства защиты глаз с различной степенью защиты, соответствующей предполагаемому использованию. К предназначенным для промышленного применения относятся сварочные маски (обеспечивающие дополнительную защиту как от интенсивного видимого, так и инфракрасного излучения, а также защиту лица), лицевые щитки, защитные очки и очки, поглощающие УФ-излучение. Как правило, защитные очки, предназначенные для промышленного использования, должны плотно прилегать к лицу, чтобы не было зазоров, через которые УФ-излучение может попасть прямо в глаза, и они должны быть хорошо сконструированы для предотвращения физических травм.

Уместность и выбор защитных очков зависит от следующих моментов:

  • интенсивность и спектральные характеристики излучения источника УФИ
  • модели поведения людей вблизи источников УФИ (важно расстояние и время воздействия)
  • передаточные свойства материала защитных очков
  • конструкция оправы очков для предотвращения периферийного воздействия на глаза прямого непоглощенного ультрафиолетового излучения.

 

В ситуациях промышленного воздействия степень опасности для глаз можно оценить путем измерения и сравнения с рекомендуемыми пределами воздействия (Duchene, Lakey and Repacholi 1991).

Анализ эффективности

Из-за сильной зависимости биологических эффектов от длины волны основным измерением любого источника УФИ является его спектральная мощность или спектральное распределение излучения. Это должно быть измерено с помощью спектрорадиометра, который состоит из подходящей входной оптики, монохроматора и детектора УФ-излучения и считывания. Такой инструмент обычно не используется в профессиональной гигиене.

Во многих практических ситуациях широкополосный УФ-метр используется для определения безопасной продолжительности воздействия. В целях безопасности спектральную характеристику можно настроить так, чтобы она соответствовала спектральной функции, используемой в рекомендациях по воздействию ACGIH и IRPA. Если соответствующие инструменты не используются, это может привести к серьезным ошибкам в оценке опасности. Имеются также персональные дозиметры ультрафиолетового излучения (например, полисульфоновая пленка), но их применение в основном ограничивается исследованиями в области безопасности труда, а не исследованиями по оценке опасности.

Выводы

Молекулярные повреждения ключевых клеточных компонентов, возникающие в результате воздействия УФ-излучения, происходят постоянно, и существуют механизмы восстановления для борьбы с воздействием ультрафиолетового излучения на кожу и ткани глаза. Только когда эти репарационные механизмы перегружены, становится очевидным острое биологическое повреждение (Smith, 1988). По этим причинам сведение к минимуму воздействия УФИ на рабочем месте продолжает оставаться важным предметом озабоченности работников по охране труда и технике безопасности.

 

Назад

Читать 7121 раз Последнее изменение Среда, 17 августа 2011 г., 17:53

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Радиация: неионизирующие ссылки

Аллен, СГ. 1991. Измерения радиочастотного поля и оценка опасности. J Radiol Protect 11: 49-62.

Американская конференция государственных промышленных гигиенистов (ACGIH). 1992. Документация по пороговым значениям. Цинциннати, Огайо: ACGIH.

—. 1993. Пороговые значения для химических веществ и физических агентов и индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

—. 1994а. Годовой отчет Комитета ACGIH по предельным значениям физических агентов. Цинциннати, Огайо: ACGIH.

—. 1994б. TLV, пороговые значения и индексы биологического воздействия за 1994-1995 гг. Цинциннати, Огайо: ACGIH.

—. 1995. 1995-1996 Пороговые предельные значения для химических веществ и физических агентов и индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

—. 1996. TLV© и BEI©. Пороговые значения для химических веществ и физических агентов; Индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

Американский национальный институт стандартов (ANSI). 1993. Безопасное использование лазеров. Стандарт № Z-136.1. Нью-Йорк: ANSI.

Аниольчик, Р. 1981. Измерения гигиенической оценки электромагнитных полей в среде диатермии, сварочных аппаратов и индукционных нагревателей. Медицинская практика 32:119-128.

Бассетт, CAL, С.Н. Митчелл и С.Р. Гастон. 1982. Лечение импульсным электромагнитным полем при несросшихся переломах и неудачных артродезах. J Am Med Assoc 247: 623-628.

Bassett, CAL, RJ Pawluk и AA Pilla. 1974. Усиление восстановления костей индуктивно связанными электромагнитными полями. Наука 184:575-577.

Бергер Д., Урбах Ф. и Дэвис Р. Э. 1968. Спектр действия эритемы, индуцированной ультрафиолетовым излучением. В предварительном отчете XIII. Congressus Internationalis Dermatologiae, Munchen, под редакцией W Jadasson и CG Schirren. Нью-Йорк: Springer-Verlag.

Бернхардт, Дж. Х. 1988а. Установление частотно-зависимых пределов для электрических и магнитных полей и оценка косвенных эффектов. Рад Энвир Биофиз 27:1.

Бернхардт, Дж. Х. и Р. Маттес. 1992. КНЧ и РЧ электромагнитные источники. В книге «Защита от неионизирующего излучения» под редакцией М. В. Грина. Ванкувер: UBC Press.

Бини, М., А. Чекуччи, А. Игнести, Л. Милланта, Р. Олми, Н. Рубино и Р. Ванни. 1986. Воздействие на рабочих интенсивных радиочастотных электрических полей, вытекающих из пластиковых уплотнителей. J Микроволновая мощность 21:33-40.

Бур, Э., Э. Саттер и Голландский совет здравоохранения. 1989. Динамические фильтры для защитных устройств. В Дозиметрии лазерного излучения в медицине и биологии под редакцией Г. Дж. Мюллера и Д. Х. Слайни. Беллингем, Вашингтон: SPIE.

Бюро радиологического здоровья. 1981. Оценка излучения от терминалов видеодисплея. Роквилл, Мэриленд: Бюро радиологического здоровья.

Клее, А. и А. Майер. 1980. Риск лежит в основе промышленного использования лазеров. В Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, № 99 Paris: Institut National de Recherche et de Sécurité.

Кобленц, В. Р., Р. Стейр и Дж. М. Хог. 1931. Спектральная эритематозная связь кожи с ультрафиолетовым излучением. В Трудах Национальной академии наук Соединенных Штатов Америки Вашингтон, округ Колумбия: Национальная академия наук.

Коул, Калифорния, Д. Ф. Форбс и П. Д. Дэвис. 1986. Спектр действия УФ фотоканцерогенеза. Фотохим Фотобиол 43(3):275-284.

Международная комиссия по освещению (CIE). 1987. Международный словарь освещения. Вена: CIE.

Каллен, А. П., Чоу Б. Р., Холл М. Г. и Джени С. Э. 1984. Ультрафиолет-В повреждает эндотелий роговицы. Am J Optom Phys Opt 61 (7): 473-478.

Дюшен, А., Дж. Лейки и М. Репачоли. 1991. Руководство IRPA по защите от неионизирующего излучения. Нью-Йорк: Пергамон.

Элдер, Дж. А., П. А. Черки, К. Стачли, К. Ханссон Милд и А. Р. Шеппард. 1989. Радиочастотное излучение. В книге «Защита от неионизирующего излучения» под редакцией MJ Suess и DA Benwell-Morison. Женева: ВОЗ.

Эриксен, П. 1985. Оптические спектры с временным разрешением от зажигания сварочной дуги MIG. Am Ind Hyg Assoc J 46:101-104.

Эверетт, М.А., Р.Л. Олсен и Р.М. Сэйер. 1965. Ультрафиолетовая эритема. Арх Дерматол 92: 713-719.

Фитцпатрик, Т.Б., М.А. Патхак, Л.С. Харбер, М. Сейджи и А. Кукита. 1974. Солнечный свет и человек, нормальные и ненормальные фотобиологические реакции. Токио: ун-т. Токийской прессы.

Forbes, PD и PD Davies. 1982. Факторы, влияющие на фотоканцерогенез. Глава. 7 в Фотоиммунологии, под редакцией Дж. А. М. Пэрриша, Л. Крипке и В. Л. Морисона. Нью-Йорк: Пленум.

Фриман Р.С., Д.У. Оуэнс, Дж.М. Нокс и Х.Т. Хадсон. 1966. Относительные потребности в энергии для эритематозной реакции кожи на монохроматические длины волн ультрафиолета, присутствующие в солнечном спектре. Дж. Инвест Дерматол 47:586-592.

Грандольфо, М. и К. Ханссон Милд. 1989. Всемирная общественная и профессиональная радиочастотная и микроволновая защита. В электромагнитном биовзаимодействии. Механизмы, стандарты безопасности, руководства по защите, под редакцией Дж. Франческетти, О.П. Ганди и М. Грандольфо. Нью-Йорк: Пленум.

Грин, МВт. 1992. Неионизирующее излучение. 2-й Международный семинар по неионизирующему излучению, 10-14 мая, Ванкувер.

Хэм, WTJ. 1989. Фотопатология и природа поражения сетчатки синим светом и ближним ультрафиолетом, вызванным лазерами и другими оптическими источниками. В «Применении лазеров в медицине и биологии» под редакцией М.Л. Вольбаршта. Нью-Йорк: Пленум.

Хэм, В. Т., Х. А. Мюллер, Дж. Дж. Руффоло, Д. Герри III и Р. К. Герри. 1982. Спектр действия при повреждении сетчатки ближним ультрафиолетовым излучением у афакичной обезьяны. Am J Ophthalmol 93(3):299-306.

Ханссон Милд, К. 1980. Профессиональное воздействие радиочастотных электромагнитных полей. Протокол IEEE 68:12-17.

Хауссер, КВ. 1928. Влияние длины волны в радиационной биологии. Стралентерапия 28:25-44.

Институт инженеров по электротехнике и электронике (IEEE). 1990а. IEEE COMAR Позиция РФ и микроволн. Нью-Йорк: IEEE.

—. 1990б. Заявление о позиции IEEE COMAR по аспектам воздействия на здоровье электрических и магнитных полей от радиочастотных герметиков и диэлектрических нагревателей. Нью-Йорк: IEEE.

—. 1991. Стандарт IEEE для уровней безопасности в отношении воздействия на человека радиочастотных электромагнитных полей от 3 кГц до 300 ГГц. Нью-Йорк: IEEE.

Международная комиссия по защите от неионизирующего излучения (ICNIRP). 1994. Руководство по ограничениям воздействия статических магнитных полей. Здоровье Phys 66:100-106.

—. 1995. Руководство по допустимым пределам воздействия лазерного излучения на человека.

Заявление ICNIRP. 1996. Проблемы со здоровьем, связанные с использованием портативных радиотелефонов и базовых передатчиков. Физика здоровья, 70:587-593.

Международная электротехническая комиссия (МЭК). 1993. Стандарт МЭК № 825-1. Женева: МЭК.

Международное бюро труда (МОТ). 1993а. Защита от электрических и магнитных полей промышленной частоты. Серия «Безопасность и гигиена труда», № 69. Женева: МОТ.

Международная ассоциация радиационной защиты (IRPA). 1985. Руководство по ограничениям воздействия лазерного излучения на человека. Health Phys 48 (2): 341-359.

—. 1988а. Изменение: рекомендации по незначительным обновлениям руководящих принципов IRPA 1985 по ограничениям воздействия лазерного излучения. Health Phys 54 (5): 573-573.

—. 1988б. Руководство по пределам воздействия радиочастотных электромагнитных полей в диапазоне частот от 100 кГц до 300 ГГц. Физика здоровья 54:115-123.

—. 1989 г. Предлагаемое изменение в руководящих принципах IRPA 1985 г. ограничения воздействия ультрафиолетового излучения. Health Phys 56 (6): 971-972.

Международная ассоциация радиационной защиты (IRPA) и Международный комитет по неионизирующему излучению. 1990. Временные рекомендации по ограничениям воздействия электрических и магнитных полей частотой 50/60 Гц. Health Phys 58 (1): 113-122.

Колмодин-Хедман, Б., К. Ханссон Милд, Э. Йонссон, М. С. Андерсон и А. Эрикссон. 1988. Проблемы со здоровьем при работе на машинах для сварки пластмасс и при воздействии радиочастотных электромагнитных полей. Int Arch Occup Environ Health 60: 243-247.

Краузе, Н. 1986. Воздействие на людей статических и переменных во времени магнитных полей в технике, медицине, исследованиях и общественной жизни: Дозиметрические аспекты. В книге «Биологические эффекты статических и сверхнизкочастотных магнитных полей» под редакцией Дж. Х. Бернхардта. Мюнхен: MMV Medizin Verlag.

Лёвсунд, П. и К. Х. Милд. 1978. Низкочастотное электромагнитное поле вблизи некоторых индукционных нагревателей. Стокгольм: Стокгольмский совет по охране труда и технике безопасности.

Лёвсунд П., Оберг П.А. и Нильссон С.Г. 1982. Магнитные поля СНЧ в электросталеплавильной и сварочной промышленности. Radio Sci 17 (5S): 355-385.

Лакиш, М.Л., Л. Холладей и А.Х. Тейлор. 1930. Реакция незагорелой кожи человека на ультрафиолетовое излучение. J Optic Soc Am 20:423-432.

МакКинли, А. Ф. и Б. Диффи. 1987. Эталонный спектр действия при эритеме кожи человека, вызванной ультрафиолетом. В книге «Воздействие ультрафиолетового излучения на человека: риски и правила» под редакцией В. Ф. Пасшира и Б. Ф. М. Босняковича. Нью-Йорк: Excerpta medica Division, Elsevier Science Publishers.

МакКинлей, А., Дж. Б. Андерсен, Дж. Х. Бернхардт, М. Грандольфо, К. А. Хоссманн, Ф. Э. ван Левен, К. Ханссон Милд, А. Дж. Свердлоу, Л. Вершаев и Б. Вейрет. Предложение исследовательской программы группы экспертов Европейской комиссии. Возможные последствия для здоровья, связанные с использованием радиотелефонов. Неопубликованный отчет.

Митбриет И.М. и Манячин В.Д. 1984. Влияние магнитных полей на восстановление костей. Москва, Наука, 292-296.

Национальный совет по радиационной защите и измерениям (NCRP). 1981. Радиочастотные электромагнитные поля. Свойства, количества и единицы, биофизическое взаимодействие и измерения. Бетесда, Мэриленд: NCRP.

—. 1986. Биологические эффекты и критерии воздействия радиочастотных электромагнитных полей. Отчет № 86. Bethesda, MD: NCRP.

Национальный совет по радиологической защите (NRPB). 1992. Электромагнитные поля и риск рака. Том. 3(1). Чилтон, Великобритания: NRPB.

—. 1993. Ограничения на воздействие на человека статических и изменяющихся во времени электромагнитных полей и излучений. Дидкот, Великобритания: NRPB.

Национальный исследовательский совет (NRC). 1996. Возможные последствия для здоровья от воздействия электрических и магнитных полей в жилых помещениях. Вашингтон: NAS Press. 314.

Олсен, Э. Г. и Рингволд. 1982. Эндотелий роговицы человека и ультрафиолетовое излучение. Acta Ophthalmol 60:54-56.

Пэрриш, Дж. А., К. Ф. Янике и Р. Р. Андерсон. 1982. Эритема и меланогенез: спектры действия нормальной кожи человека. Фотохим Фотобиол 36(2):187-191.

Пасшир, В.Ф. и Б.Ф.М. Боснякович. 1987. Воздействие ультрафиолетового излучения на человека: риски и правила. Нью-Йорк: Excerpta Medica Division, Elsevier Science Publishers.

Питтс, ДГ. 1974. Спектр действия ультрафиолета человека. Am J Optom Phys Opt 51 (12): 946-960.

Питтс, Д.Г. и Т.Дж. Тредичи. 1971. Воздействие ультрафиолета на глаза. Am Ind Hyg Assoc J 32(4):235-246.

Питтс, Д.Г., А.П. Каллен и П.Д. Хакер. 1977а. Глазные эффекты ультрафиолетового излучения от 295 до 365 нм. Invest Ophthalmol Vis Sci 16(10):932-939.

—. 1977б. Ультрафиолетовые эффекты от 295 до 400 нм в глазу кролика. Цинциннати, Огайо: Национальный институт охраны труда и здоровья (NIOSH).

Полк, С. и Э. Постоу. 1986. Справочник CRC по биологическим эффектам электромагнитных полей. Бока-Ратон: CRC Press.

Репачоли, МХ. 1985. Терминалы видеодисплея – должны ли волноваться операторы? Austalas Phys Eng Sci Med 8 (2): 51-61.

—. 1990. Рак в результате воздействия электрических и магнитных полей частотой 50760 Гц: основные научные дебаты. Austalas Phys Eng Sci Med 13 (1): 4-17.

Репачоли, М., А. Бастен, В. Гебски, Д. Нунан, Дж. Финник и А. В. Харрис. 1997. Лимфомы у трансгенных мышей E-Pim1, подвергшихся воздействию импульсных электромагнитных полей с частотой 900 МГц. Радиационные исследования, 147:631-640.

Райли, М.В., С. Сьюзан, М.И. Петерс и К.А. Шварц. 1987. Влияние УФ-В облучения на эндотелий роговицы. Curr Eye Res 6 (8): 1021-1033.

Рингволд, А. 1980а. Роговица и ультрафиолетовое излучение. Acta Ophthalmol 58:63-68.

—. 1980б. Водянистая влага и ультрафиолетовое излучение. Acta Ophthalmol 58:69-82.

—. 1983. Повреждение эпителия роговицы, вызванное ультрафиолетовым излучением. Acta Ophthalmol 61: 898-907.

Рингволд, А. и М. Давангер. 1985. Изменения стромы роговицы кроликов, вызванные УФ-излучением. Acta Ophthalmol 63: 601-606.

Рингволд, А., М. Давангер и Э. Г. Олсен. 1982. Изменения эндотелия роговицы после ультрафиолетового облучения. Acta Ophthalmol 60:41-53.

Робертс, Нью-Джерси и С. М. Майклсон. 1985. Эпидемиологические исследования воздействия радиочастотного излучения на человека: критический обзор. Int Arch Occup Environ Health 56:169-178.

Рой, Ч.Р., К. Х. Джойнер, Х. П. Гис и М. Дж. Бангай. 1984. Измерение электромагнитного излучения терминалов визуального отображения (ВДЦ). Рад Прот Аустрал 2(1):26-30.

Скотто, Дж., Т. Р. Страхи и Г. Б. Гори. 1980. Измерения ультрафиолетового излучения в Соединенных Штатах и ​​сравнение с данными о раке кожи. Вашингтон, округ Колумбия: Типография правительства США.

Сенкевич, З. Дж., Р. Д. Саундер и С. И. Ковальчук. 1991. Биологические эффекты воздействия неионизирующих электромагнитных полей и излучения. 11 Крайне низкочастотные электрические и магнитные поля. Дидкот, Великобритания: Национальный совет по радиационной защите.

Сильверман, К. 1990. Эпидемиологические исследования рака и электромагнитных полей. В гл. 17 в «Биологические эффекты и медицинские применения электромагнитной энергии» под редакцией О.П. Ганди. Энгельвуд Клиффс, Нью-Джерси: Прентис Холл.

Слайни, Д.Х. 1972. Достоинства спектра действия огибающей для критериев воздействия ультрафиолетового излучения. Am Ind Hyg Assoc J 33:644-653.

—. 1986. Физические факторы катарактогенеза: атмосферное ультрафиолетовое излучение и температура. Invest Ophthalmol Vis Sci 27(5):781-790.

—. 1987. Оценка воздействия солнечного ультрафиолетового излучения на имплантат интраокулярной линзы. J Cataract Refract Surg 13(5):296-301.

—. 1992. Руководство по технике безопасности по новым сварочным фильтрам. Сварка J 71(9):45-47.
Слайни, Д.Х. и М.Л. Вольбаршт. 1980. Безопасность с лазерами и другими источниками оптического излучения. Нью-Йорк: Пленум.

Стенсон, С. 1982. Окулярные признаки пигментной ксеродермы: отчет о двух случаях. Энн Офтальмол 14 (6): 580-585.

Sterenborg, HJCM и JC van der Leun. 1987. Спектры действия ультрафиолетового излучения на онкогенез. В книге «Воздействие ультрафиолетового излучения на человека: риски и правила» под редакцией В. Ф. Пасшира и Б. Ф. М. Босняковича. Нью-Йорк: Excerpta Medica Division, Elsevier Science Publishers.

Стачли, М.А. 1986. Воздействие на человека статических и изменяющихся во времени магнитных полей. Health Phys 51 (2): 215-225.

Stuchly, MA и DW Lecuyer. 1985. Индукционный нагрев и воздействие электромагнитных полей на оператора. Здоровье Phys 49: 693-700.

—. 1989. Воздействие электромагнитных полей при дуговой сварке. Здоровье Phys 56: 297-302.

Шмигельски, С., М. Белец, С. Липски и Г. Сокольска. 1988. Иммунологические и связанные с раком аспекты воздействия низкочастотных микроволновых и радиочастотных полей. В «Современном биоэлектричестве» под редакцией А. А. Марио. Нью-Йорк: Марсель Деккер.

Taylor, HR, SK West, FS Rosenthal, B Munoz, HS Newland, H Abbey и EA Emmett. 1988. Влияние ультрафиолетового излучения на образование катаракты. New Engl J Med 319: 1429-1433.

Скажи, РА. 1983. Приборы для измерения электромагнитных полей: оборудование, калибровка и отдельные приложения. В книге «Биологические эффекты и дозиметрия неионизирующего излучения, радиочастотных и микроволновых энергий» под редакцией М. Грандольфо, С. М. Майклсона и А. Ринди. Нью-Йорк: Пленум.

Урбах, Ф. 1969. Биологические эффекты ультрафиолетового излучения. Нью-Йорк: Пергамон.

Всемирная организация здравоохранения (ВОЗ). 1981. Радиочастота и микроволны. Критерии гигиены окружающей среды, № 16. Женева: ВОЗ.

—. 1982. Лазеры и оптическое излучение. Критерии гигиены окружающей среды, № 23. Женева: ВОЗ.

—. 1987. Магнитные поля. Критерии гигиены окружающей среды, № 69. Женева: ВОЗ.

—. 1989. Защита от неионизационного излучения. Копенгаген: Европейское региональное бюро ВОЗ.

—. 1993. Электромагнитные поля от 300 Гц до 300 ГГц. Критерии гигиены окружающей среды, № 137. Женева: ВОЗ.

—. 1994. Ультрафиолетовое излучение. Критерии гигиены окружающей среды, № 160. Женева: ВОЗ.

Всемирная организация здравоохранения (ВОЗ), Программа Организации Объединенных Наций по окружающей среде (ЮНЕП) и Международная ассоциация радиационной защиты (IRPA). 1984. Чрезвычайно низкая частота (ELF). Критерии гигиены окружающей среды, № 35. Женева: ВОЗ.

Zaffanella, LE и DW DeNo. 1978. Электростатические и электромагнитные эффекты линий электропередачи сверхвысокого напряжения. Пало-Альто, Калифорния: Исследовательский институт электроэнергетики.

Цуклич, Дж. А. и Дж. С. Коннолли. 1976. Поражение глаз, вызванное лазерным излучением ближнего ультрафиолета. Invest Ophthalmol Vis Sci 15(9):760-764.