Вторник, 15 Март 2011 15: 01

Инфракрасное излучение

Оценить этот пункт
(10 голосов)

Инфракрасное излучение — это часть спектра неионизирующего излучения, расположенная между микроволнами и видимым светом. Он является естественной частью окружающей человека среды, и поэтому люди подвергаются его воздействию в небольших количествах во всех сферах повседневной жизни, например, дома или во время отдыха на солнце. Однако очень интенсивное воздействие может быть результатом определенных технических процессов на рабочем месте.

Многие промышленные процессы включают термическое отверждение различных материалов. Используемые источники тепла или сам нагретый материал обычно излучают такие высокие уровни инфракрасного излучения, что большое количество рабочих потенциально подвергается риску облучения.

Понятия и количества

Инфракрасное излучение (ИК) имеет длину волны от 780 нм до 1 мм. По классификации Международной комиссии по освещению (CIE) эта полоса подразделяется на IRA (от 780 нм до 1.4 мкм), IRB (от 1.4 мкм до 3 мкм) и IRC (от 3 мкм до 1 мм). Это подразделение приблизительно соответствует характеристикам поглощения ИК-излучения в ткани, зависящим от длины волны, и возникающим в результате различным биологическим эффектам.

Количество, временное и пространственное распределение инфракрасного излучения описывается различными радиометрическими величинами и единицами. Из-за оптических и физиологических свойств, особенно глаза, обычно проводят различие между небольшими «точечными» источниками и «протяженными» источниками. Критерием для этого различия является значение в радианах угла (α), измеренного в глазу, на который направлен источник. Этот угол можно рассчитать как частное, размер источника света DL разделить на расстояние просмотра r. Протяженные источники — это те, угол обзора которых на глаз превышает α.мин, что обычно составляет 11 миллирадиан. Для всех протяженных источников существует расстояние просмотра, при котором α равно αмин; на больших расстояниях просмотра источник можно рассматривать как точечный источник. В защите от оптического излучения наиболее важными величинами, касающимися протяженных источников, являются сияние (L, выраженное в Вт-2sr-1) И интегрированное во времени сияние (Lp в джм-2sr-1), которые описывают «яркость» источника. Для оценки риска для здоровья наиболее значимые величины, относящиеся к точечным источникам или воздействиям на таких расстояниях от источника, где α< αминявляются интенсивность излучения (E, выраженное в Вт-2), что эквивалентно понятию мощности экспозиционной дозы, а лучистая экспозиция (H, в Джм-2), что эквивалентно концепции дозы облучения.

В некоторых диапазонах спектра биологические эффекты воздействия сильно зависят от длины волны. Поэтому должны использоваться дополнительные спектрорадиометрические величины (например, спектральная яркость, Ll, выраженное в Вт-2 sr-1 nm-1) для сопоставления значений физического излучения источника с применимым спектром действия, относящимся к биологическому эффекту.

 

Источники и воздействие на рабочем месте

Воздействие ИК происходит от различных естественных и искусственных источников. Спектральное излучение этих источников может быть ограничено одной длиной волны (лазер) или может быть распределено по широкому диапазону длин волн.

Различными механизмами генерации оптического излучения в целом являются:

  • тепловое возбуждение (излучение черного тела)
  • газоразряд
  • усиление света за счет вынужденного излучения (лазера), при этом механизм газового разряда имеет меньшее значение в ИК-диапазоне.

 

Излучение наиболее важных источников, используемых во многих промышленных процессах, является результатом теплового возбуждения и может быть аппроксимировано с использованием физических законов излучения черного тела, если известна абсолютная температура источника. Суммарная эмиссия (M, Вт·м-2) излучателя черного тела (рис. 1) описывается законом Стефана-Больцмана:

М (Т) = 5.67 x 10-8T4

и зависит от 4-й степени температуры (T, в К) излучающего тела. Спектральное распределение яркости описывается законом излучения Планка:

и длина волны максимального излучения (λМакс) описывается согласно закону Вина:

λМакс = (2.898 х 10-8) / T

Рисунок 1. Спектральная яркость λМаксизлучателя черного тела при абсолютной температуре, показанной в градусах Кельвина на каждой кривой

ЭЛФ040F1

Многие лазеры, используемые в промышленных и медицинских процессах, излучают очень высокие уровни ИК-излучения. В целом, по сравнению с другими источниками излучения, лазерное излучение имеет некоторые необычные свойства, которые могут влиять на риск после облучения, такие как очень короткая длительность импульса или чрезвычайно высокая интенсивность излучения. Поэтому лазерное излучение подробно обсуждается в другом месте этой главы.

Многие промышленные процессы требуют использования источников, излучающих высокие уровни видимого и инфракрасного излучения, и, таким образом, большое количество рабочих, таких как пекари, стеклодувы, рабочие печи, литейщики, кузнецы, плавильщики и пожарные, потенциально подвергаются риску облучения. В дополнение к лампам необходимо учитывать такие источники, как пламя, газовые горелки, ацетиленовые горелки, лужи расплавленного металла и раскаленные металлические стержни. Они встречаются на литейных, сталелитейных заводах и многих других предприятиях тяжелой промышленности. В таблице 1 приведены некоторые примеры источников ИК-излучения и их приложений.

Таблица 1. Различные источники ИК, облученное население и приблизительные уровни облучения

Источник

Применение или подвергающееся воздействию население

Экспозиция

Солнечный свет

Рабочие на открытом воздухе, фермеры, строители, моряки, широкая общественность

500 Вт-2

Лампы накаливания с вольфрамовой нитью

Население в целом и рабочие
Общее освещение, сушка чернил и красок

105-106 Wm-2sr-1

Вольфрамовые галогенные лампы накаливания

(См. лампы накаливания с вольфрамовой нитью)
Копировальные системы (закрепление), общие процессы (сушка, запекание, усадка, размягчение)

50–200 Вт·м-2 (на 50 см)

Светодиоды (например, диод GaAs)

Игрушки, бытовая электроника, технологии передачи данных и т. д.

105 Wm-2sr-1

Ксеноновые дуговые лампы

Прожекторы, солнечные симуляторы, прожекторы
Операторы типографии, работники оптических лабораторий, артисты

107 Wm-2sr-1

Железный расплав

Сталелитейная печь, рабочие сталелитейного завода

105 Wm-2sr-1

Массивы инфракрасных ламп

Промышленное отопление и сушка

103 в 8.103 Wm-2

Инфракрасные лампы в больницах

Инкубаторы

100–300 Вт·м-2

 

Биологические эффекты

Оптическое излучение вообще не проникает очень глубоко в биологические ткани. Следовательно, основными мишенями ИК-облучения являются кожа и глаза. В большинстве условий воздействия основным механизмом взаимодействия ИК является тепловой. Только очень короткие импульсы, которые могут создавать лазеры, но которые здесь не рассматриваются, также могут приводить к механотермическим эффектам. Ожидается, что эффекты ионизации или разрыва химических связей не будут проявляться при ИК-излучении, потому что энергия частиц, составляющая примерно менее 1.6 эВ, слишком мала, чтобы вызывать такие эффекты. По той же причине фотохимические реакции становятся существенными только при более коротких длинах волн в видимой и ультрафиолетовой областях. Различное воздействие ИК на здоровье, зависящее от длины волны, возникает в основном из-за зависящих от длины волны оптических свойств тканей, например, из-за спектрального поглощения среды глаза (рис. 2).

Рис. 2. Спектральное поглощение сред глаза.

ЭЛФ040F2

Воздействие на глаза

В целом глаз хорошо приспособлен для защиты от оптического излучения окружающей среды. Кроме того, глаз физиологически защищен от повреждения яркими источниками света, такими как солнце или лампы высокой интенсивности, за счет реакции отвращения, которая ограничивает продолжительность воздействия долей секунды (приблизительно 0.25 секунды).

ИРА поражает в первую очередь сетчатку из-за прозрачности глазных сред. При непосредственном наблюдении за точечным источником или лазерным лучом свойства фокусировки в области ИРА дополнительно делают сетчатку гораздо более восприимчивой к повреждениям, чем любую другую часть тела. Считается, что при коротких периодах воздействия нагрев радужной оболочки вследствие поглощения видимого или ближнего ИК-диапазона играет роль в развитии помутнений хрусталика.

С увеличением длины волны, превышающей примерно 1 мкм, увеличивается поглощение окулярными средами. Поэтому считается, что поглощение ИРА-излучения как хрусталиком, так и пигментированной радужной оболочкой играет роль в формировании хрусталиковых помутнений. Повреждение хрусталика связано с длинами волн менее 3 мкм (IRA и IRB). Для инфракрасного излучения с длинами волн более 1.4 мкм водянистая влага и хрусталик особенно сильно поглощают.

В области спектра IRB и IRC среды глаза становятся непрозрачными в результате сильного поглощения составляющей их воды. Абсорбция в этой области происходит главным образом в роговице и водянистой влаге. За пределами 1.9 мкм роговица фактически является единственным поглотителем. Поглощение длинноволнового инфракрасного излучения роговицей может привести к повышению температуры глаза из-за теплопроводности. Из-за высокой скорости обновления поверхностных клеток роговицы можно ожидать, что любое повреждение, ограниченное внешним слоем роговицы, будет временным. В диапазоне IRC облучение может вызвать ожог роговицы, аналогичный ожогу кожи. Однако ожоги роговицы маловероятны из-за реакции отвращения, вызванной болезненным ощущением, вызванным сильным воздействием.

Воздействие на кожу

Инфракрасное излучение не проникает глубоко в кожу. Поэтому воздействие на кожу очень сильного ИК может привести к локальным термическим воздействиям различной степени тяжести и даже к серьезным ожогам. Воздействие на кожу зависит от оптических свойств кожи, таких как глубина проникновения в зависимости от длины волны (рис. 3). ). Экстенсивное воздействие, особенно при более длинных волнах, может вызвать сильное локальное повышение температуры и ожоги. Пороговые значения для этих эффектов зависят от времени из-за физических свойств процессов теплопереноса в коже. Облучение 10 кВтм-2, например, может вызвать болезненные ощущения в течение 5 секунд, тогда как воздействие мощностью 2 кВт·м-2 не вызовет такой же реакции в течение периодов короче примерно 50 секунд.

Рисунок 3. Глубина проникновения в кожу для разных длин волн

ЭЛФ040F3

Если воздействие продолжается в течение очень длительного времени, даже при значениях значительно ниже болевого порога, тепловая нагрузка на организм человека может быть большой. Особенно, если облучение охватывает все тело, как, например, перед расплавом стали. Результатом может быть дисбаланс в остальном физиологически хорошо сбалансированной системы терморегуляции. Порог переносимости такого воздействия будет зависеть от различных индивидуальных условий и условий окружающей среды, таких как индивидуальная способность системы терморегуляции, фактический обмен веществ в организме во время воздействия или температура окружающей среды, влажность и движение воздуха (скорость ветра). Без какой-либо физической работы максимальное воздействие 300 Втм-2 может выдерживаться в течение восьми часов при определенных условиях окружающей среды, но это значение снижается примерно до 140 Вт·м.-2 при тяжелой физической работе.

Стандарты воздействия

Биологические эффекты ИК-облучения, зависящие от длины волны и продолжительности воздействия, недопустимы только при превышении определенных пороговых значений интенсивности или дозы. Для защиты от таких невыносимых условий облучения международные организации, такие как Всемирная организация здравоохранения (ВОЗ), Международное бюро труда (МОТ), Международный комитет по неионизирующему излучению Международной ассоциации радиационной защиты (INIRC/IRPA) и его преемник, Международная комиссия по защите от неионизирующего излучения (ICNIRP) и Американская конференция государственных специалистов по промышленной гигиене (ACGIH) предложили пределы воздействия инфракрасного излучения как от когерентных, так и от некогерентных оптических источников. Большинство национальных и международных рекомендаций по ограничению воздействия инфракрасного излучения на человека либо основаны на рекомендуемых пороговых предельных значениях (ПДК), опубликованных ACGIH (1993/1994), либо даже идентичны им. Эти пределы широко признаны и часто используются в профессиональных ситуациях. Они основаны на современных научных знаниях и предназначены для предотвращения термического повреждения сетчатки и роговицы и предотвращения возможного отсроченного воздействия на хрусталик глаза.

Пересмотр 1994 г. пределов воздействия ACGIH выглядит следующим образом:

1. Для защиты сетчатки глаза от термического поражения при воздействии видимого света, (например, в случае мощных источников света) спектральная яркость Lλ в Вт/(м²·ср·нм), взвешенных по отношению к функции термической опасности для сетчатки Rλ (см. табл. 2) в интервале длин волн Δλ и суммируется по диапазону длин волн от 400 до 1400 нм, не должен превышать:

в котором t продолжительность просмотра ограничена интервалами от 10-3 до 10 секунд (то есть для случайных условий просмотра, а не фиксированного просмотра), а α - угловой размер источника в радианах, рассчитанный как α = максимальное расширение источника/расстояние до источника Rλ  (Таблица 2 ).

2. Для защиты сетчатки от вредного воздействия инфракрасных тепловых ламп или любого источника ближнего ИК-излучения, когда отсутствуют сильные визуальные стимулы, инфракрасное излучение в диапазоне длин волн от 770 до 1400 нм, наблюдаемое глазом (при диаметре зрачка 7 мм). диаметр) для продолжительных условий просмотра должны быть ограничены:

Этот предел основан на диаметре зрачка 7 мм, поскольку в этом случае реакция отвращения (например, закрытие глаза) может отсутствовать из-за отсутствия видимого света.

3. Во избежание возможных отсроченных эффектов на хрусталик глаза, таких как отсроченная катаракта, и для защиты роговицы от чрезмерного облучения, инфракрасное излучение с длинами волн более 770 нм должно быть ограничено до 100 Вт/м² в течение периодов более 1,000 с. и к:

или на более короткие сроки.

4. Для пациентов с афакией даны отдельные весовые функции и результирующие TLV для диапазона длин волн ультрафиолетового и видимого света (305–700 нм).

Таблица 2. Функция термической опасности сетчатки

Длина волны (нм)

Rλ

Длина волны (нм)

Rλ

400

1.0

460

8.0

405

2.0

465

7.0

410

4.0

470

6.2

415

8.0

475

5.5

420

9.0

480

4.5

425

9.5

485

4.0

430

9.8

490

2.2

435

10.0

495

1.6

440

10.0

500-700

1.0

445

9.7

700-1,050

10((700 - λ ) / 500)

450

9.4

1,050-1,400

0.2

455

9.0

   

Источник: ACGIH, 1996.

Анализ эффективности

Доступны надежные радиометрические методы и приборы, позволяющие анализировать риск для кожи и глаз в результате воздействия источников оптического излучения. Для характеристики обычного источника света обычно очень полезно измерять яркость. Для определения условий опасного облучения от оптических источников большее значение имеют освещенность и радиационная экспозиция. Оценка широкополосных источников более сложна, чем оценка источников, излучающих на одной длине волны или в очень узком диапазоне, поскольку необходимо учитывать спектральные характеристики и размер источника. Спектр некоторых ламп состоит как из непрерывного излучения в широком диапазоне длин волн, так и из излучения на определенных одиночных длинах волн (линий). В представление этих спектров могут быть внесены значительные ошибки, если доля энергии в каждой линии не будет должным образом добавлена ​​к континууму.

Для оценки опасности для здоровья значения воздействия должны быть измерены на предельном отверстии, для которого установлены нормы воздействия. Обычно апертура 1 мм считается наименьшим практическим размером апертуры. Длины волн более 0.1 мм представляют трудности из-за значительных дифракционных эффектов, создаваемых апертурой 1 мм. Для этого диапазона длин волн была принята апертура 1 см² (диаметр 11 мм), поскольку горячие точки в этом диапазоне больше, чем на более коротких длинах волн. Для оценки опасностей для сетчатки размер апертуры определялся средним размером зрачка, поэтому была выбрана апертура 7 мм.

Вообще измерения в оптической области очень сложны. Измерения, проведенные необученным персоналом, могут привести к неверным выводам. Подробное описание процедур измерения можно найти у Sliney and Wolbarsht (1980).

Защитные меры

Наиболее эффективной стандартной защитой от воздействия оптического излучения является полная изоляция источника и всех путей излучения, которые могут выходить из источника. С помощью таких мер в большинстве случаев должно быть легко достигнуто соблюдение пределов воздействия. В противном случае применяется личная защита. Например, следует использовать имеющиеся средства защиты глаз в виде подходящих защитных очков или козырьков или защитной одежды. Если условия работы не позволяют применить такие меры, может потребоваться административный контроль и ограниченный доступ к очень интенсивным источникам. В некоторых случаях сокращение либо мощности источника, либо рабочего времени (рабочие паузы для восстановления после теплового удара), либо того и другого может быть возможной мерой защиты рабочего.

Заключение

В целом, инфракрасное излучение от наиболее распространенных источников, таких как лампы, или от большинства промышленных применений не представляет опасности для рабочих. Однако на некоторых рабочих местах ИК может представлять опасность для здоровья работника. Кроме того, наблюдается быстрый рост применения и использования ламп специального назначения и высокотемпературных процессов в промышленности, науке и медицине. Если воздействие от этих применений достаточно велико, нельзя исключить вредные последствия (в основном для глаз, но также и для кожи). Ожидается, что значение международно признанных стандартов воздействия оптического излучения будет возрастать. Чтобы защитить работника от чрезмерного воздействия, должны быть обязательными защитные меры, такие как экранирование (щитки для глаз) или защитная одежда.

Основными неблагоприятными биологическими эффектами, связанными с инфракрасным излучением, являются катаракты, известные как катаракта стеклодува или печника. Длительное воздействие даже при относительно низких уровнях вызывает тепловой стресс в организме человека. При таких условиях воздействия необходимо учитывать дополнительные факторы, такие как температура тела и потери тепла при испарении, а также факторы окружающей среды.

Для информирования и обучения рабочих в промышленно развитых странах были разработаны некоторые практические руководства. Подробное резюме можно найти у Sliney and Wolbarsht (1980).

 

Назад

Читать 22292 раз Последнее изменение четверг, 13 октября 2011 г., 21:31

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Радиация: неионизирующие ссылки

Аллен, СГ. 1991. Измерения радиочастотного поля и оценка опасности. J Radiol Protect 11: 49-62.

Американская конференция государственных промышленных гигиенистов (ACGIH). 1992. Документация по пороговым значениям. Цинциннати, Огайо: ACGIH.

—. 1993. Пороговые значения для химических веществ и физических агентов и индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

—. 1994а. Годовой отчет Комитета ACGIH по предельным значениям физических агентов. Цинциннати, Огайо: ACGIH.

—. 1994б. TLV, пороговые значения и индексы биологического воздействия за 1994-1995 гг. Цинциннати, Огайо: ACGIH.

—. 1995. 1995-1996 Пороговые предельные значения для химических веществ и физических агентов и индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

—. 1996. TLV© и BEI©. Пороговые значения для химических веществ и физических агентов; Индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

Американский национальный институт стандартов (ANSI). 1993. Безопасное использование лазеров. Стандарт № Z-136.1. Нью-Йорк: ANSI.

Аниольчик, Р. 1981. Измерения гигиенической оценки электромагнитных полей в среде диатермии, сварочных аппаратов и индукционных нагревателей. Медицинская практика 32:119-128.

Бассетт, CAL, С.Н. Митчелл и С.Р. Гастон. 1982. Лечение импульсным электромагнитным полем при несросшихся переломах и неудачных артродезах. J Am Med Assoc 247: 623-628.

Bassett, CAL, RJ Pawluk и AA Pilla. 1974. Усиление восстановления костей индуктивно связанными электромагнитными полями. Наука 184:575-577.

Бергер Д., Урбах Ф. и Дэвис Р. Э. 1968. Спектр действия эритемы, индуцированной ультрафиолетовым излучением. В предварительном отчете XIII. Congressus Internationalis Dermatologiae, Munchen, под редакцией W Jadasson и CG Schirren. Нью-Йорк: Springer-Verlag.

Бернхардт, Дж. Х. 1988а. Установление частотно-зависимых пределов для электрических и магнитных полей и оценка косвенных эффектов. Рад Энвир Биофиз 27:1.

Бернхардт, Дж. Х. и Р. Маттес. 1992. КНЧ и РЧ электромагнитные источники. В книге «Защита от неионизирующего излучения» под редакцией М. В. Грина. Ванкувер: UBC Press.

Бини, М., А. Чекуччи, А. Игнести, Л. Милланта, Р. Олми, Н. Рубино и Р. Ванни. 1986. Воздействие на рабочих интенсивных радиочастотных электрических полей, вытекающих из пластиковых уплотнителей. J Микроволновая мощность 21:33-40.

Бур, Э., Э. Саттер и Голландский совет здравоохранения. 1989. Динамические фильтры для защитных устройств. В Дозиметрии лазерного излучения в медицине и биологии под редакцией Г. Дж. Мюллера и Д. Х. Слайни. Беллингем, Вашингтон: SPIE.

Бюро радиологического здоровья. 1981. Оценка излучения от терминалов видеодисплея. Роквилл, Мэриленд: Бюро радиологического здоровья.

Клее, А. и А. Майер. 1980. Риск лежит в основе промышленного использования лазеров. В Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, № 99 Paris: Institut National de Recherche et de Sécurité.

Кобленц, В. Р., Р. Стейр и Дж. М. Хог. 1931. Спектральная эритематозная связь кожи с ультрафиолетовым излучением. В Трудах Национальной академии наук Соединенных Штатов Америки Вашингтон, округ Колумбия: Национальная академия наук.

Коул, Калифорния, Д. Ф. Форбс и П. Д. Дэвис. 1986. Спектр действия УФ фотоканцерогенеза. Фотохим Фотобиол 43(3):275-284.

Международная комиссия по освещению (CIE). 1987. Международный словарь освещения. Вена: CIE.

Каллен, А. П., Чоу Б. Р., Холл М. Г. и Джени С. Э. 1984. Ультрафиолет-В повреждает эндотелий роговицы. Am J Optom Phys Opt 61 (7): 473-478.

Дюшен, А., Дж. Лейки и М. Репачоли. 1991. Руководство IRPA по защите от неионизирующего излучения. Нью-Йорк: Пергамон.

Элдер, Дж. А., П. А. Черки, К. Стачли, К. Ханссон Милд и А. Р. Шеппард. 1989. Радиочастотное излучение. В книге «Защита от неионизирующего излучения» под редакцией MJ Suess и DA Benwell-Morison. Женева: ВОЗ.

Эриксен, П. 1985. Оптические спектры с временным разрешением от зажигания сварочной дуги MIG. Am Ind Hyg Assoc J 46:101-104.

Эверетт, М.А., Р.Л. Олсен и Р.М. Сэйер. 1965. Ультрафиолетовая эритема. Арх Дерматол 92: 713-719.

Фитцпатрик, Т.Б., М.А. Патхак, Л.С. Харбер, М. Сейджи и А. Кукита. 1974. Солнечный свет и человек, нормальные и ненормальные фотобиологические реакции. Токио: ун-т. Токийской прессы.

Forbes, PD и PD Davies. 1982. Факторы, влияющие на фотоканцерогенез. Глава. 7 в Фотоиммунологии, под редакцией Дж. А. М. Пэрриша, Л. Крипке и В. Л. Морисона. Нью-Йорк: Пленум.

Фриман Р.С., Д.У. Оуэнс, Дж.М. Нокс и Х.Т. Хадсон. 1966. Относительные потребности в энергии для эритематозной реакции кожи на монохроматические длины волн ультрафиолета, присутствующие в солнечном спектре. Дж. Инвест Дерматол 47:586-592.

Грандольфо, М. и К. Ханссон Милд. 1989. Всемирная общественная и профессиональная радиочастотная и микроволновая защита. В электромагнитном биовзаимодействии. Механизмы, стандарты безопасности, руководства по защите, под редакцией Дж. Франческетти, О.П. Ганди и М. Грандольфо. Нью-Йорк: Пленум.

Грин, МВт. 1992. Неионизирующее излучение. 2-й Международный семинар по неионизирующему излучению, 10-14 мая, Ванкувер.

Хэм, WTJ. 1989. Фотопатология и природа поражения сетчатки синим светом и ближним ультрафиолетом, вызванным лазерами и другими оптическими источниками. В «Применении лазеров в медицине и биологии» под редакцией М.Л. Вольбаршта. Нью-Йорк: Пленум.

Хэм, В. Т., Х. А. Мюллер, Дж. Дж. Руффоло, Д. Герри III и Р. К. Герри. 1982. Спектр действия при повреждении сетчатки ближним ультрафиолетовым излучением у афакичной обезьяны. Am J Ophthalmol 93(3):299-306.

Ханссон Милд, К. 1980. Профессиональное воздействие радиочастотных электромагнитных полей. Протокол IEEE 68:12-17.

Хауссер, КВ. 1928. Влияние длины волны в радиационной биологии. Стралентерапия 28:25-44.

Институт инженеров по электротехнике и электронике (IEEE). 1990а. IEEE COMAR Позиция РФ и микроволн. Нью-Йорк: IEEE.

—. 1990б. Заявление о позиции IEEE COMAR по аспектам воздействия на здоровье электрических и магнитных полей от радиочастотных герметиков и диэлектрических нагревателей. Нью-Йорк: IEEE.

—. 1991. Стандарт IEEE для уровней безопасности в отношении воздействия на человека радиочастотных электромагнитных полей от 3 кГц до 300 ГГц. Нью-Йорк: IEEE.

Международная комиссия по защите от неионизирующего излучения (ICNIRP). 1994. Руководство по ограничениям воздействия статических магнитных полей. Здоровье Phys 66:100-106.

—. 1995. Руководство по допустимым пределам воздействия лазерного излучения на человека.

Заявление ICNIRP. 1996. Проблемы со здоровьем, связанные с использованием портативных радиотелефонов и базовых передатчиков. Физика здоровья, 70:587-593.

Международная электротехническая комиссия (МЭК). 1993. Стандарт МЭК № 825-1. Женева: МЭК.

Международное бюро труда (МОТ). 1993а. Защита от электрических и магнитных полей промышленной частоты. Серия «Безопасность и гигиена труда», № 69. Женева: МОТ.

Международная ассоциация радиационной защиты (IRPA). 1985. Руководство по ограничениям воздействия лазерного излучения на человека. Health Phys 48 (2): 341-359.

—. 1988а. Изменение: рекомендации по незначительным обновлениям руководящих принципов IRPA 1985 по ограничениям воздействия лазерного излучения. Health Phys 54 (5): 573-573.

—. 1988б. Руководство по пределам воздействия радиочастотных электромагнитных полей в диапазоне частот от 100 кГц до 300 ГГц. Физика здоровья 54:115-123.

—. 1989 г. Предлагаемое изменение в руководящих принципах IRPA 1985 г. ограничения воздействия ультрафиолетового излучения. Health Phys 56 (6): 971-972.

Международная ассоциация радиационной защиты (IRPA) и Международный комитет по неионизирующему излучению. 1990. Временные рекомендации по ограничениям воздействия электрических и магнитных полей частотой 50/60 Гц. Health Phys 58 (1): 113-122.

Колмодин-Хедман, Б., К. Ханссон Милд, Э. Йонссон, М. С. Андерсон и А. Эрикссон. 1988. Проблемы со здоровьем при работе на машинах для сварки пластмасс и при воздействии радиочастотных электромагнитных полей. Int Arch Occup Environ Health 60: 243-247.

Краузе, Н. 1986. Воздействие на людей статических и переменных во времени магнитных полей в технике, медицине, исследованиях и общественной жизни: Дозиметрические аспекты. В книге «Биологические эффекты статических и сверхнизкочастотных магнитных полей» под редакцией Дж. Х. Бернхардта. Мюнхен: MMV Medizin Verlag.

Лёвсунд, П. и К. Х. Милд. 1978. Низкочастотное электромагнитное поле вблизи некоторых индукционных нагревателей. Стокгольм: Стокгольмский совет по охране труда и технике безопасности.

Лёвсунд П., Оберг П.А. и Нильссон С.Г. 1982. Магнитные поля СНЧ в электросталеплавильной и сварочной промышленности. Radio Sci 17 (5S): 355-385.

Лакиш, М.Л., Л. Холладей и А.Х. Тейлор. 1930. Реакция незагорелой кожи человека на ультрафиолетовое излучение. J Optic Soc Am 20:423-432.

МакКинли, А. Ф. и Б. Диффи. 1987. Эталонный спектр действия при эритеме кожи человека, вызванной ультрафиолетом. В книге «Воздействие ультрафиолетового излучения на человека: риски и правила» под редакцией В. Ф. Пасшира и Б. Ф. М. Босняковича. Нью-Йорк: Excerpta medica Division, Elsevier Science Publishers.

МакКинлей, А., Дж. Б. Андерсен, Дж. Х. Бернхардт, М. Грандольфо, К. А. Хоссманн, Ф. Э. ван Левен, К. Ханссон Милд, А. Дж. Свердлоу, Л. Вершаев и Б. Вейрет. Предложение исследовательской программы группы экспертов Европейской комиссии. Возможные последствия для здоровья, связанные с использованием радиотелефонов. Неопубликованный отчет.

Митбриет И.М. и Манячин В.Д. 1984. Влияние магнитных полей на восстановление костей. Москва, Наука, 292-296.

Национальный совет по радиационной защите и измерениям (NCRP). 1981. Радиочастотные электромагнитные поля. Свойства, количества и единицы, биофизическое взаимодействие и измерения. Бетесда, Мэриленд: NCRP.

—. 1986. Биологические эффекты и критерии воздействия радиочастотных электромагнитных полей. Отчет № 86. Bethesda, MD: NCRP.

Национальный совет по радиологической защите (NRPB). 1992. Электромагнитные поля и риск рака. Том. 3(1). Чилтон, Великобритания: NRPB.

—. 1993. Ограничения на воздействие на человека статических и изменяющихся во времени электромагнитных полей и излучений. Дидкот, Великобритания: NRPB.

Национальный исследовательский совет (NRC). 1996. Возможные последствия для здоровья от воздействия электрических и магнитных полей в жилых помещениях. Вашингтон: NAS Press. 314.

Олсен, Э. Г. и Рингволд. 1982. Эндотелий роговицы человека и ультрафиолетовое излучение. Acta Ophthalmol 60:54-56.

Пэрриш, Дж. А., К. Ф. Янике и Р. Р. Андерсон. 1982. Эритема и меланогенез: спектры действия нормальной кожи человека. Фотохим Фотобиол 36(2):187-191.

Пасшир, В.Ф. и Б.Ф.М. Боснякович. 1987. Воздействие ультрафиолетового излучения на человека: риски и правила. Нью-Йорк: Excerpta Medica Division, Elsevier Science Publishers.

Питтс, ДГ. 1974. Спектр действия ультрафиолета человека. Am J Optom Phys Opt 51 (12): 946-960.

Питтс, Д.Г. и Т.Дж. Тредичи. 1971. Воздействие ультрафиолета на глаза. Am Ind Hyg Assoc J 32(4):235-246.

Питтс, Д.Г., А.П. Каллен и П.Д. Хакер. 1977а. Глазные эффекты ультрафиолетового излучения от 295 до 365 нм. Invest Ophthalmol Vis Sci 16(10):932-939.

—. 1977б. Ультрафиолетовые эффекты от 295 до 400 нм в глазу кролика. Цинциннати, Огайо: Национальный институт охраны труда и здоровья (NIOSH).

Полк, С. и Э. Постоу. 1986. Справочник CRC по биологическим эффектам электромагнитных полей. Бока-Ратон: CRC Press.

Репачоли, МХ. 1985. Терминалы видеодисплея – должны ли волноваться операторы? Austalas Phys Eng Sci Med 8 (2): 51-61.

—. 1990. Рак в результате воздействия электрических и магнитных полей частотой 50760 Гц: основные научные дебаты. Austalas Phys Eng Sci Med 13 (1): 4-17.

Репачоли, М., А. Бастен, В. Гебски, Д. Нунан, Дж. Финник и А. В. Харрис. 1997. Лимфомы у трансгенных мышей E-Pim1, подвергшихся воздействию импульсных электромагнитных полей с частотой 900 МГц. Радиационные исследования, 147:631-640.

Райли, М.В., С. Сьюзан, М.И. Петерс и К.А. Шварц. 1987. Влияние УФ-В облучения на эндотелий роговицы. Curr Eye Res 6 (8): 1021-1033.

Рингволд, А. 1980а. Роговица и ультрафиолетовое излучение. Acta Ophthalmol 58:63-68.

—. 1980б. Водянистая влага и ультрафиолетовое излучение. Acta Ophthalmol 58:69-82.

—. 1983. Повреждение эпителия роговицы, вызванное ультрафиолетовым излучением. Acta Ophthalmol 61: 898-907.

Рингволд, А. и М. Давангер. 1985. Изменения стромы роговицы кроликов, вызванные УФ-излучением. Acta Ophthalmol 63: 601-606.

Рингволд, А., М. Давангер и Э. Г. Олсен. 1982. Изменения эндотелия роговицы после ультрафиолетового облучения. Acta Ophthalmol 60:41-53.

Робертс, Нью-Джерси и С. М. Майклсон. 1985. Эпидемиологические исследования воздействия радиочастотного излучения на человека: критический обзор. Int Arch Occup Environ Health 56:169-178.

Рой, Ч.Р., К. Х. Джойнер, Х. П. Гис и М. Дж. Бангай. 1984. Измерение электромагнитного излучения терминалов визуального отображения (ВДЦ). Рад Прот Аустрал 2(1):26-30.

Скотто, Дж., Т. Р. Страхи и Г. Б. Гори. 1980. Измерения ультрафиолетового излучения в Соединенных Штатах и ​​сравнение с данными о раке кожи. Вашингтон, округ Колумбия: Типография правительства США.

Сенкевич, З. Дж., Р. Д. Саундер и С. И. Ковальчук. 1991. Биологические эффекты воздействия неионизирующих электромагнитных полей и излучения. 11 Крайне низкочастотные электрические и магнитные поля. Дидкот, Великобритания: Национальный совет по радиационной защите.

Сильверман, К. 1990. Эпидемиологические исследования рака и электромагнитных полей. В гл. 17 в «Биологические эффекты и медицинские применения электромагнитной энергии» под редакцией О.П. Ганди. Энгельвуд Клиффс, Нью-Джерси: Прентис Холл.

Слайни, Д.Х. 1972. Достоинства спектра действия огибающей для критериев воздействия ультрафиолетового излучения. Am Ind Hyg Assoc J 33:644-653.

—. 1986. Физические факторы катарактогенеза: атмосферное ультрафиолетовое излучение и температура. Invest Ophthalmol Vis Sci 27(5):781-790.

—. 1987. Оценка воздействия солнечного ультрафиолетового излучения на имплантат интраокулярной линзы. J Cataract Refract Surg 13(5):296-301.

—. 1992. Руководство по технике безопасности по новым сварочным фильтрам. Сварка J 71(9):45-47.
Слайни, Д.Х. и М.Л. Вольбаршт. 1980. Безопасность с лазерами и другими источниками оптического излучения. Нью-Йорк: Пленум.

Стенсон, С. 1982. Окулярные признаки пигментной ксеродермы: отчет о двух случаях. Энн Офтальмол 14 (6): 580-585.

Sterenborg, HJCM и JC van der Leun. 1987. Спектры действия ультрафиолетового излучения на онкогенез. В книге «Воздействие ультрафиолетового излучения на человека: риски и правила» под редакцией В. Ф. Пасшира и Б. Ф. М. Босняковича. Нью-Йорк: Excerpta Medica Division, Elsevier Science Publishers.

Стачли, М.А. 1986. Воздействие на человека статических и изменяющихся во времени магнитных полей. Health Phys 51 (2): 215-225.

Stuchly, MA и DW Lecuyer. 1985. Индукционный нагрев и воздействие электромагнитных полей на оператора. Здоровье Phys 49: 693-700.

—. 1989. Воздействие электромагнитных полей при дуговой сварке. Здоровье Phys 56: 297-302.

Шмигельски, С., М. Белец, С. Липски и Г. Сокольска. 1988. Иммунологические и связанные с раком аспекты воздействия низкочастотных микроволновых и радиочастотных полей. В «Современном биоэлектричестве» под редакцией А. А. Марио. Нью-Йорк: Марсель Деккер.

Taylor, HR, SK West, FS Rosenthal, B Munoz, HS Newland, H Abbey и EA Emmett. 1988. Влияние ультрафиолетового излучения на образование катаракты. New Engl J Med 319: 1429-1433.

Скажи, РА. 1983. Приборы для измерения электромагнитных полей: оборудование, калибровка и отдельные приложения. В книге «Биологические эффекты и дозиметрия неионизирующего излучения, радиочастотных и микроволновых энергий» под редакцией М. Грандольфо, С. М. Майклсона и А. Ринди. Нью-Йорк: Пленум.

Урбах, Ф. 1969. Биологические эффекты ультрафиолетового излучения. Нью-Йорк: Пергамон.

Всемирная организация здравоохранения (ВОЗ). 1981. Радиочастота и микроволны. Критерии гигиены окружающей среды, № 16. Женева: ВОЗ.

—. 1982. Лазеры и оптическое излучение. Критерии гигиены окружающей среды, № 23. Женева: ВОЗ.

—. 1987. Магнитные поля. Критерии гигиены окружающей среды, № 69. Женева: ВОЗ.

—. 1989. Защита от неионизационного излучения. Копенгаген: Европейское региональное бюро ВОЗ.

—. 1993. Электромагнитные поля от 300 Гц до 300 ГГц. Критерии гигиены окружающей среды, № 137. Женева: ВОЗ.

—. 1994. Ультрафиолетовое излучение. Критерии гигиены окружающей среды, № 160. Женева: ВОЗ.

Всемирная организация здравоохранения (ВОЗ), Программа Организации Объединенных Наций по окружающей среде (ЮНЕП) и Международная ассоциация радиационной защиты (IRPA). 1984. Чрезвычайно низкая частота (ELF). Критерии гигиены окружающей среды, № 35. Женева: ВОЗ.

Zaffanella, LE и DW DeNo. 1978. Электростатические и электромагнитные эффекты линий электропередачи сверхвысокого напряжения. Пало-Альто, Калифорния: Исследовательский институт электроэнергетики.

Цуклич, Дж. А. и Дж. С. Коннолли. 1976. Поражение глаз, вызванное лазерным излучением ближнего ультрафиолета. Invest Ophthalmol Vis Sci 15(9):760-764.