Крайне низкочастотные (ELF) и очень низкочастотные (VLF) электрические и магнитные поля охватывают частотный диапазон выше статических (> 0 Гц) полей до 30 кГц. В этой статье ELF определяется как находящийся в диапазоне частот от > 0 до 300 Гц, а VLF — в диапазоне от > 300 Гц до 30 кГц. В диапазоне частот от > 0 до 30 кГц длины волн варьируются от ∞ (бесконечность) до 10 км, поэтому электрические и магнитные поля действуют практически независимо друг от друга и должны рассматриваться отдельно. Напряженность электрического поля (E) измеряется в вольтах на метр (В/м), напряженность магнитного поля (H) измеряется в амперах на метр (А/м), а плотность магнитного потока (B) в тесла (Т).
Рабочие, использующие оборудование, работающее в этом частотном диапазоне, вызвали серьезные споры о возможных неблагоприятных последствиях для здоровья. На сегодняшний день наиболее распространенной частотой является частота 50/60 Гц, используемая для производства, распределения и использования электроэнергии. Опасения, что воздействие магнитных полей частотой 50/60 Гц может быть связано с увеличением заболеваемости раком, подогреваются сообщениями в СМИ, распространением дезинформации и продолжающимися научными дебатами (Repacholi 1990; NRC 1996).
Цель этой статьи — дать обзор следующих тематических областей:
- источники, занятия и приложения
- дозиметрия и измерение
- механизмы взаимодействия и биологические эффекты
- исследования человека и влияние на здоровье
- защитные меры
- нормы профессионального облучения.
Краткие описания предназначены для информирования работников о типах и мощностях полей от основных источников КНЧ и ОНЧ, биологических эффектах, возможных последствиях для здоровья и текущих пределах воздействия. Также дается краткое описание мер предосторожности и защитных мер. В то время как многие работники используют визуальные дисплеи (VDU), в этой статье приведены лишь краткие сведения, поскольку более подробно они рассматриваются в других разделах руководства. Энциклопедия.
Большая часть материала, содержащегося здесь, может быть найдена более подробно в ряде недавних обзоров (WHO 1984, 1987, 1989, 1993; IRPA 1990; ILO 1993; NRPB 1992, 1993; IEEE 1991; Greene 1992; NRC 1996).
Источники профессионального облучения
Уровни профессионального воздействия значительно различаются и сильно зависят от конкретного применения. В таблице 1 дается сводка типичных применений частот в диапазоне от > 0 до 30 кГц.
Таблица 1. Области применения оборудования, работающего в диапазоне частот от > 0 до 30 кГц
частота |
Длина волны (км) |
Типичные области применения |
16.67, 50, 60 Гц |
18,000-5,000 |
Производство, передача и использование электроэнергии, электролитические процессы, индукционный нагрев, дуговые и ковшовые печи, сварка, транспорт и т. д., любое промышленное, коммерческое, медицинское или исследовательское использование электроэнергии. |
0.3–3 кГц |
1,000-100 |
Модуляция вещания, медицинские приложения, электропечи, индукционный нагрев, закалка, пайка, плавка, рафинирование |
3–30 кГц |
100-10 |
Сверхдальняя связь, радионавигация, радиовещательная модуляция, медицинские приложения, индукционный нагрев, закалка, пайка, плавка, очистка, дисплеи |
Производство и распределение электроэнергии
Основными искусственными источниками электрических и магнитных полей частотой 50/60 Гц являются те, которые участвуют в производстве и распределении электроэнергии, а также любое оборудование, использующее электрический ток. Большая часть такого оборудования работает на частоте 50 Гц в большинстве стран и 60 Гц в Северной Америке. Некоторые системы электропоездов работают на частоте 16.67 Гц.
Линии электропередачи высокого напряжения (ВН) и подстанции связаны с сильнейшими электрическими полями, воздействию которых рабочие могут постоянно подвергаться. Высота проводника, геометрическая конфигурация, поперечное расстояние от линии и напряжение линии передачи, безусловно, являются наиболее важными факторами при рассмотрении максимальной напряженности электрического поля на уровне земли. На поперечных расстояниях, примерно вдвое превышающих высоту линии, напряженность электрического поля уменьшается с расстоянием приблизительно линейно (Zaffanella and Deno, 1978). Внутри зданий вблизи линий электропередачи напряженность электрического поля обычно ниже, чем невозмущенное поле, примерно в 100,000 XNUMX раз, в зависимости от конфигурации здания и конструкционных материалов.
Напряженность магнитного поля от воздушных линий электропередач обычно относительно низка по сравнению с промышленными приложениями, включающими большие токи. Работники электроэнергетики, работающие на подстанциях или обслуживающие линии электропередач, составляют особую группу, подвергающуюся воздействию более сильных полей (в некоторых случаях 5 мТл и выше). В отсутствие ферромагнитных материалов силовые линии магнитного поля образуют концентрические окружности вокруг проводника. Помимо геометрии силового проводника, максимальная плотность магнитного потока определяется только величиной тока. Магнитное поле под высоковольтными линиями электропередачи направлено преимущественно поперек оси линии. Максимальная плотность потока на уровне земли может быть под центральной линией или под внешними проводниками, в зависимости от соотношения фаз между проводниками. Максимальная плотность магнитного потока на уровне земли для типичной двухконтурной воздушной линии электропередачи 500 кВ составляет примерно 35 мкТл на килоампер передаваемого тока (Bernhardt and Matthes 1992). Типичные значения плотности магнитного потока до 0.05 мТл встречаются на рабочих местах вблизи воздушных линий, на подстанциях и электростанциях, работающих на частотах 16 2/3, 50 или 60 Гц (Краузе, 1986).
Промышленные процессы
Профессиональное воздействие магнитных полей происходит преимущественно при работе вблизи промышленного оборудования, использующего большие токи. К таким устройствам относятся устройства, используемые при сварке, электрошлаковом рафинировании, нагреве (печи, индукционные нагреватели) и перемешивании.
Исследования индукционных нагревателей, используемых в промышленности, проведенные в Канаде (Stuchly and Lecuyer, 1985), Польше (Aniolczyk, 1981), Австралии (Repacholi, неопубликованные данные) и Швеции (Lövsund, Oberg and Nilsson, 1982), показывают плотность магнитного потока при местонахождении оператора в диапазоне от 0.7 мкТл до 6 мТл, в зависимости от используемой частоты и расстояния от машины. В своем исследовании магнитных полей промышленного электросталеплавильного и сварочного оборудования Лёвсунд, Оберг и Нильссон (1982) обнаружили, что машины для точечной сварки (50 Гц, 15–106 кА) и печи-ковши (50 Гц, 13–15 кА) создавали поля до 10 мТл на расстоянии до 1 м. В Австралии было обнаружено, что установка индукционного нагрева, работающая в диапазоне частот от 50 Гц до 10 кГц, дает максимальное поле до 2.5 мТл (индукционные печи 50 Гц) в местах, где операторы могут стоять. Кроме того, максимальные поля вокруг индукционных нагревателей, работающих на других частотах, составляли 130 мкТл при 1.8 кГц, 25 мкТл при 2.8 кГц и более 130 мкТл при 9.8 кГц.
Поскольку размеры катушек, создающих магнитные поля, часто малы, воздействие на все тело редко бывает сильным, а скорее на локальное воздействие, главным образом на руки. Плотность магнитного потока на руки оператора может достигать 25 мТл (Lövsund and Mild 1978; Stuchly and Lecuyer 1985). В большинстве случаев плотность потока меньше 1 мТл. Напряженность электрического поля вблизи индукционного нагревателя обычно невелика.
Рабочие в электрохимической промышленности могут подвергаться воздействию сильных электрических и магнитных полей из-за электрических печей или других устройств, использующих большие токи. Например, вблизи индукционных печей и промышленных электролизеров плотность магнитного потока может достигать 50 мТл.
Блоки визуального отображения
Использование устройств визуального отображения (VDU) или терминалов видеоотображения (VDT), как их еще называют, растет с постоянно возрастающей скоростью. Операторы ВДТ выразили обеспокоенность возможными последствиями выбросов низкоуровневых излучений. Магнитные поля (частота от 15 до 125 кГц) до 0.69 А/м (0.9 мкТл) были измерены в наихудших условиях вблизи поверхности экрана (Bureau of Radiological Health 1981). Этот результат был подтвержден многими исследованиями (Roy et al., 1984; Repacholi, 1985, IRPA, 1988). Всеобъемлющие обзоры измерений и обследований ВДТ, проведенные национальными агентствами и отдельными экспертами, пришли к выводу, что излучение от ВДТ не имеет каких-либо последствий для здоровья (Repacholi 1985; IRPA 1988; ILO 1993a). Нет необходимости выполнять рутинные измерения радиации, поскольку даже в условиях наихудшего случая или режима отказа уровни излучения намного ниже пределов, установленных любыми международными или национальными стандартами (IRPA 1988).
Всеобъемлющий обзор выбросов, сводка применимой научной литературы, стандартов и руководств представлены в документе (ILO 1993a).
Медицинские приложения
Пациентов, страдающих переломами костей, которые плохо заживают или срастаются, лечили импульсными магнитными полями (Bassett, Mitchell and Gaston, 1982; Mitbreit and Manyachin, 1984). Также проводятся исследования по использованию импульсных магнитных полей для ускорения заживления ран и регенерации тканей.
Для стимуляции роста костей используются различные устройства, генерирующие импульсы магнитного поля. Типичным примером является устройство, которое генерирует среднюю плотность магнитного потока около 0.3 мТл, пиковую напряженность около 2.5 мТл и индуцирует пиковые значения напряженности электрического поля в кости в диапазоне от 0.075 до 0.175 В/м (Бассетт, Павлюк и др.). Пилла 1974). Вблизи поверхности обнаженной конечности устройство создает пиковую плотность магнитного потока порядка 1.0 мТл, вызывая пиковую плотность ионного тока примерно от 10 до 100 мА/м.2 (от 1 до 10 мкА/см2) в ткани.
Анализ эффективности
До начала измерений полей КНЧ или ОНЧ важно получить как можно больше информации о характеристиках источника и ситуации облучения. Эта информация необходима для оценки ожидаемой напряженности поля и выбора наиболее подходящей аппаратуры для съемки (Tell, 1983).
Информация об источнике должна включать:
- присутствующие частоты, включая гармоники
- передаваемая мощность
- поляризация (ориентация E поле)
- характеристики модуляции (пиковые и средние значения)
- рабочий цикл, ширина импульса и частота повторения импульсов
- характеристики антенны, такие как тип, коэффициент усиления, ширина луча и скорость сканирования.
Информация о ситуации облучения должна включать:
- расстояние от источника
- наличие каких-либо рассеивающих предметов. Рассеяние на плоских поверхностях может увеличить E поля в 2 раза. Еще большее усиление может быть достигнуто за счет искривленных поверхностей, например угловых отражателей.
Результаты опросов, проведенных в профессиональных условиях, обобщены в таблице 2.
Таблица 2. Профессиональные источники воздействия магнитных полей
Источник |
Магнитный поток |
Расстояние (м) |
ВДЦ |
До 2.8 x 10-4 |
0.3 |
линии высокого напряжения |
До 0.4 |
под линией |
Электростанции |
До 0.27 |
1 |
Сварочные дуги (0–50 Гц) |
0.1-5.8 |
0-0.8 |
Индукционные нагреватели (50–10 кГц) |
0.9-65 |
0.1-1 |
50 Гц печь-ковш |
0.2-8 |
0.5-1 |
Дуговая печь 50 Гц |
До 1 |
2 |
Индукционная мешалка 10 Гц |
0.2-0.3 |
2 |
Электрошлаковая сварка 50 Гц |
0.5-1.7 |
0.2-0.9 |
Терапевтическое оборудование |
1-16 |
1 |
Источник: Аллен, 1991 г.; Бернхардт 1988; Краузе 1986; Лёвсунд, Оберг и Нильссон, 1982 г.; Repacholi, неопубликованные данные; Стачли 1986; Стачли и Лекуйер 1985, 1989.
Измерительные приборы
Прибор для измерения электрического или магнитного поля состоит из трех основных частей: зонда, выводов и монитора. Для обеспечения надлежащих измерений требуются или желательны следующие характеристики приборов:
- Зонд должен реагировать только на E поле или H поле, а не к обоим одновременно.
- Зонд не должен создавать значительных возмущений поля.
- Провода от зонда к монитору не должны существенно возмущать поле на зонде или передавать энергию поля.
- Частотная характеристика пробника должна охватывать диапазон частот, требуемый для измерения.
- При использовании в реактивном ближнем поле размеры датчика зонда предпочтительно должны быть меньше четверти длины волны на самой высокой имеющейся частоте.
- Прибор должен показывать среднеквадратичное (среднеквадратичное) значение измеряемого параметра поля.
- Время отклика прибора должно быть известно. Желательно иметь время отклика около 1 секунды или меньше, чтобы легко обнаруживались прерывистые поля.
- Зонд должен реагировать на все компоненты поляризации поля. Это может быть достигнуто либо собственным изотропным откликом, либо физическим вращением зонда в трех ортогональных направлениях.
- Хорошая защита от перегрузки, работа от батареи, портативность и прочная конструкция — другие желательные характеристики.
- Приборы обеспечивают индикацию одного или нескольких из следующих параметров: среднее E поле (В/м) или средний квадрат E поле (В2/m2); в среднем H поле (А/м) или средний квадрат H поле (А2/m2).
Обзоры
Опросы обычно проводятся, чтобы определить, находятся ли поля, существующие на рабочем месте, ниже пределов, установленных национальными стандартами. Таким образом, лицо, проводящее измерения, должно быть полностью знакомо с этими стандартами.
Все занятые и доступные места должны быть обследованы. Оператор испытуемого оборудования и инспектор должны находиться как можно дальше от зоны испытаний. Все обычно присутствующие объекты, которые могут отражать или поглощать энергию, должны быть на своих местах. Инспектор должен принять меры предосторожности против радиочастотных (РЧ) ожогов и поражения электрическим током, особенно вблизи мощных низкочастотных систем.
Механизмы взаимодействия и биологические эффекты
Механизмы взаимодействия
Единственными установленными механизмами, с помощью которых поля КНЧ и ОНЧ взаимодействуют с биологическими системами, являются:
- Электрические поля, которые индуцируют поверхностный заряд на открытом теле, что приводит к возникновению токов (измеряется в мА/м).2) внутри тела, величина которого связана с поверхностной плотностью заряда. В зависимости от условий воздействия, размера, формы и положения облучаемого тела в поле плотность поверхностного заряда может сильно меняться, что приводит к изменчивому и неравномерному распределению токов внутри тела.
- Магнитные поля также действуют на человека, вызывая электрические поля и токи внутри тела.
- Электрические заряды, индуцированные в проводящем объекте (например, автомобиле), подвергающемся воздействию электрических полей СНЧ или СНЧ, могут вызвать прохождение тока через человека, находящегося с ним в контакте.
- Взаимодействие магнитного поля с проводником (например, с проволочным забором) вызывает прохождение электрических токов (той же частоты, что и воздействующее поле) через тело человека, находящегося с ним в контакте.
- Переходные разряды (искры) могут возникать, когда люди и металлические предметы, находящиеся под воздействием сильного электрического поля, оказываются на достаточно близком расстоянии друг от друга.
- Электрические или магнитные поля могут мешать работе имплантированных медицинских устройств (например, монополярных кардиостимуляторов) и вызывать сбои в работе устройства.
Первые два взаимодействия, перечисленные выше, являются примерами прямой связи между людьми и полями ELF или VLF. Последние четыре взаимодействия являются примерами механизмов непрямой связи, поскольку они могут происходить только тогда, когда подвергшийся воздействию организм находится поблизости от других тел. Эти тела могут включать в себя других людей или животных и объекты, такие как автомобили, заборы или имплантированные устройства.
Хотя были постулированы другие механизмы взаимодействия между биологическими тканями и полями КНЧ или ОНЧ или имеются некоторые доказательства их существования (ВОЗ, 1993; NRPB, 1993; NRC, 1996), ни один из них не привел к каким-либо неблагоприятным последствиям для здоровья.
Эффекты для здоровья
Имеющиеся данные свидетельствуют о том, что большинство установленных эффектов воздействия электрических и магнитных полей в диапазоне частот от > 0 до 30 кГц являются результатом острых реакций на поверхностный заряд и плотность наведенного тока. Люди могут воспринимать эффекты колеблющегося поверхностного заряда, наведенного на их тела электрическими полями сверхнизкой частоты (но не магнитными полями); эти эффекты становятся раздражающими, если они достаточно интенсивны. Сводная информация о влиянии токов, проходящих через тело человека (пороги восприятия, отпускания или столбняка) приведены в таблице 3.
Таблица 3. Воздействие токов, проходящих через тело человека
эффект |
Тема |
Пороговый ток в мА |
||||
50 и 60 Гц |
300 Гц |
1000 Гц |
10 кГц |
30 кГц |
||
восприятие |
Мужчин Женщин Дети |
1.1 0.7 0.55 |
1.3 0.9 0.65 |
2.2 1.5 1.1 |
15 10 9 |
50 35 30 |
Пороговый шок отпускания |
Мужчин Женщин Дети |
9 6 4.5 |
11.7 7.8 5.9 |
16.2 10.8 8.1 |
55 37 27 |
126 84 63 |
грудная тетанизация; |
Мужчин Женщин Дети |
23 15 12 |
30 20 15 |
41 27 20.5 |
94 63 47 |
320 214 160 |
Источник: Бернхардт, 1988а.
Нервные и мышечные клетки человека стимулировались токами, вызванными воздействием магнитных полей в несколько мТл и частотой от 1 до 1.5 кГц; считается, что пороговая плотность тока превышает 1 А/м.2. Мерцающие визуальные ощущения могут быть вызваны в человеческом глазу воздействием магнитных полей мощностью от 5 до 10 мТл (при 20 Гц) или электрическими токами, непосредственно воздействующими на голову. Рассмотрение этих реакций и результатов нейрофизиологических исследований позволяет предположить, что на тонкие функции центральной нервной системы, такие как мышление или память, могут влиять плотности тока выше 10 мА/м.2 (НРПБ 1993). Пороговые значения, вероятно, останутся постоянными примерно до 1 кГц, но после этого возрастают с увеличением частоты.
Несколько в пробирке исследования (ВОЗ, 1993; NRPB, 1993) сообщили о метаболических изменениях, таких как изменения ферментативной активности и метаболизма белков, а также снижение цитотоксичности лимфоцитов в различных клеточных линиях, подвергшихся воздействию электрических полей и токов КНЧ и ОНЧ, воздействующих непосредственно на клеточную культуру. О большинстве эффектов сообщалось при плотности тока от 10 до 1,000 мА/м.2, хотя эти ответы менее четко выражены (Сенкевич, Саундер и Ковальчук, 1991). Однако стоит отметить, что плотность эндогенного тока, генерируемого электрической активностью нервов и мышц, обычно достигает 1 мА/м.2 и может достигать до 10 мА/м2 в сердце. Эти плотности тока не будут отрицательно влиять на нервные, мышечные и другие ткани. Таких биологических эффектов можно избежать, ограничив плотность индуцированного тока до уровня менее 10 мА/м.2 на частотах примерно до 1 кГц.
Несколько возможных областей биологического взаимодействия, которые имеют много последствий для здоровья и о которых наши знания ограничены, включают: возможные изменения уровня мелатонина в ночное время в шишковидной железе и изменения циркадных ритмов, вызванные у животных воздействием электрических или магнитных полей сверхнизких частот, и возможное влияние магнитных полей КНЧ на процессы развития и канцерогенеза. Кроме того, есть некоторые свидетельства биологических реакций на очень слабые электрические и магнитные поля: они включают измененную подвижность ионов кальция в тканях мозга, изменения в паттернах возбуждения нейронов и измененное поведение операндов. Сообщалось об «окнах» как амплитуды, так и частоты, которые бросают вызов общепринятому предположению о том, что величина ответа увеличивается с увеличением дозы. Эти эффекты недостаточно хорошо изучены и не дают основания для установления ограничений на воздействие на человека, хотя необходимы дальнейшие исследования (Сенкевич, Саундер и Ковальчук, 1991; ВОЗ, 1993; NRC, 1996).
В табл. 4 приведены приблизительные диапазоны плотностей индуцированного тока для различных биологических воздействий на человека.
Таблица 4. Примерные диапазоны плотности тока для различных биологических эффектов
эффект |
Плотность тока (мА/м2) |
Прямая стимуляция нервов и мышц |
1,000-10,000 |
Модуляция активности центральной нервной системы |
100-1,000 |
Изменения функции сетчатки |
|
Плотность эндогенного тока |
1-10 |
Источник: Сенкевич и др. 1991.
Стандарты профессионального воздействия
Почти все стандарты, имеющие ограничения в диапазоне > 0-30 кГц, имеют в качестве обоснования необходимость поддерживать наведенные электрические поля и токи на безопасном уровне. Обычно плотность индуцированного тока ограничена значением менее 10 мА/м.2. В Таблице 5 приведены сводные данные о некоторых действующих предельных значениях профессионального воздействия.
Таблица 5. Профессиональные пределы воздействия электрических и магнитных полей в диапазоне частот от > 0 до 30 кГц (обратите внимание, что f указано в Гц)
Страна/ссылка |
Диапазон частот |
Электрическое поле (В/м) |
Магнитное поле (А/м) |
Международный (IRPA 1990) |
50 / 60 Гц |
10,000 |
398 |
США (IEEE 1991) |
3–30 кГц |
614 |
163 |
США (ACGIH 1993) |
1–100 XNUMX Гц 100–4,000 XNUMX Гц 4–30 кГц |
25,000 2.5 х 106/f 625 |
60 /f 60 /f 60 /f |
Германия (1996) |
50 / 60 Гц |
10,000 |
1,600 |
Великобритания (НРПБ, 1993 г.) |
1–24 XNUMX Гц 24–600 XNUMX Гц 600–1,000 XNUMX Гц 1–30 кГц |
25,000 6 х 105/f 1,000 1,000 |
64,000 /f 64,000 /f 64,000 /f 64 |
Защитные меры
Профессиональное облучение, возникающее вблизи высоковольтных линий электропередач, зависит от местоположения рабочего либо на земле, либо у проводника во время работы на линии под высоким напряжением. При работе под напряжением можно использовать защитную одежду для снижения напряженности электрического поля и плотности тока в теле до значений, аналогичных тем, которые возникают при работе на земле. Защитная одежда не ослабляет влияние магнитного поля.
Должны быть четко определены обязанности по защите работников и населения от потенциально неблагоприятных последствий воздействия электрических и магнитных полей СНЧ или СНЧ. Компетентным органам рекомендуется рассмотреть следующие шаги:
- разработка и принятие пределов воздействия и реализация программы соблюдения
- разработка технических стандартов по снижению восприимчивости к электромагнитным помехам, например, для кардиостимуляторов
- разработка нормативов, определяющих зоны с ограниченным доступом вокруг источников сильных электрических и магнитных полей из-за электромагнитных помех (например, для кардиостимуляторов и других имплантированных устройств). Следует рассмотреть возможность использования соответствующих предупреждающих знаков.
- требование конкретного назначения лица, ответственного за безопасность работников и населения на каждом объекте с высоким потенциалом облучения
- разработка стандартизированных процедур измерения и методов обследования
- требования к обучению работников последствиям воздействия электрических и магнитных полей СНЧ или СНЧ и меры и правила, которые предназначены для их защиты
- составление руководств или сводов правил по безопасности работников в электрических и магнитных полях сверхнизких или сверхнизких частот. МОТ (1993a) дает отличное руководство для такого кодекса.