Баннер GeneralHazard

Дети категории

36. Барометрическое давление повышено

36. Барометрическое давление повышено (2)

Баннер 6

 

 

36. Барометрическое давление повышено

 

Редактор глав: ТДЖР Фрэнсис

 


Содержание

таблицы

 

Работа в условиях повышенного барометрического давления

Эрик Киндволл

 

Декомпрессионные расстройства

Дис Ф. Горман

 

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Инструкции для работников сжатого воздуха
2. Декомпрессионная болезнь: пересмотренная классификация

Просмотр элементов ...
37. Барометрическое давление снижено

37. Барометрическое давление снижено (4)

Баннер 6

 

37. Барометрическое давление снижено

Редактор глав:  Вальтер Дюммер


Содержание

Рисунки и таблицы

Вентиляционная акклиматизация к большой высоте
Джон Т. Ривз и Джон В. Вейл

Физиологические эффекты пониженного барометрического давления
Кеннет И. Бергер и Уильям Н. Ром

Медико-санитарные аспекты управления работой на больших высотах
Джон Б. Уэст

Профилактика профессиональных вредностей на больших высотах
Вальтер Дюммер

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи..

 

БА1020Ф1БА1020Ф3БА1020Ф4БА1020Ф5БА1030Т1БА1030Ф1БА1030Ф2

Просмотр элементов ...
39. Катастрофы природного и техногенного характера.

39. Катастрофы природного и техногенного характера (12)

Баннер 6

 

39. Катастрофы природного и техногенного характера.

Редактор глав: Пьер Альберто Бертацци


Содержание

Таблицы и рисунки

Катастрофы и крупные аварии
Пьер Альберто Бертацци

     Конвенция МОТ о предотвращении крупных промышленных аварий 1993 года (№ 174)

Готовность к стихийным бедствиям
Питер Дж. Бакстер

Деятельность после стихийного бедствия
Бенедетто Террачини и Урсула Аккерманн-Либрих

Проблемы, связанные с погодой
Жан Френч

Лавины: опасности и защитные меры
Густав Пойнстингль

Перевозка опасных материалов: химических и радиоактивных
Дональд М. Кэмпбелл

Радиационные аварии
Пьер Верже и Дени Винтер

     Тематическое исследование: что означает доза?

Охрана труда и техника безопасности на сельскохозяйственных территориях, загрязненных радионуклидами: опыт Чернобыля
Юрий Кундиев, Леонард Добровольский и В.И. Чернюк

Пример из практики: Пожар на фабрике игрушек Kader
Кейси Кавано Грант

Последствия стихийных бедствий: уроки с медицинской точки зрения
Хосе Луис Себальос
 

 

 

 

таблицы

 

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

 

1. Определения типов бедствий
2. Среднее количество жертв в возрасте 25 лет по типу и региону — естественный триггер
3. Среднее количество жертв за 25 лет по типу и региону - неестественный триггер
4. Среднее количество жертв в возрасте 25 лет по типу естественного триггера (1969–1993)
5. Среднее количество жертв за 25 лет по типу - неестественный триггер (1969-1993)
6. Естественный триггер с 1969 по 1993 год: события за 25 лет
7. Неестественный триггер с 1969 по 1993 год: события за 25 лет
8. Естественный триггер: число по регионам и типам мира в 1994 г.
9. Неестественный триггер: число по регионам и типам мира в 1994 г.
10. Примеры промышленных взрывов
11. Примеры крупных пожаров
12. Примеры крупных токсичных выбросов
13. Роль управления опасными объектами в управлении опасностями
14. Методы работы по оценке опасности
15. Критерии директивы ЕС для установок повышенной опасности
16. Приоритетные химические вещества, используемые при выявлении объектов повышенной опасности
17. Профессиональные риски, связанные с погодой
18. Типичные радионуклиды с их радиоактивными периодами полураспада
19. Сравнение различных ядерных аварий
20. Загрязнение в Украине, Белоруссии и России после Чернобыля
21. Загрязнение стронцием-90 после Хиштымской аварии (Урал 1957 г.)
22. Радиоактивные источники, от которых пострадало население
23. Основные аварии с участием промышленных облучателей
24. Реестр радиационных аварий в Ок-Ридже (США) (по всему миру, 1944-88 гг.)
25. Характер профессионального воздействия ионизирующего излучения во всем мире
26. Детерминированные эффекты: пороги для выбранных органов
27. Больные с синдромом острого облучения (ОИС) после Чернобыля
28. Эпидемиологические исследования рака при высоких дозах внешнего облучения
29. Рак щитовидной железы у детей в Беларуси, Украине и России, 1981-94 гг.
30. Международный масштаб ядерных инцидентов
31. Общие защитные меры для населения в целом
32. Критерии зон загрязнения
33. Крупные катастрофы в Латинской Америке и Карибском бассейне, 1970–93 гг.
34. Потери из-за шести стихийных бедствий
35. Больницы и больничные койки повреждены/уничтожены в результате 3 крупных стихийных бедствий
36. Пострадавшие в двух больницах обрушились в результате землетрясения 2 года в Мексике.
37. Больничные койки потеряны в результате землетрясения в Чили в марте 1985 г.
38. Факторы риска повреждения инфраструктуры больницы землетрясением

 

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

 

 

 

 

DIS010F2DIS010F1DIS010T2DIS020F1DIS080F1DIS080F2DIS080F3DIS080F4DIS080F5DIS080F6DIS080F7DIS090T2DIS095F1DIS095F2

 


 

Нажмите, чтобы вернуться к началу страницы

 

Просмотр элементов ...
41. Огонь

41. Огонь (6)

Баннер 6

 

41. Огонь

Редактор глав:  Кейси С. Грант


 

Содержание 

Рисунки и таблицы

Основные понятия
Дугал Дрисдейл

Источники пожарной опасности
Тамаш Банки

Меры по предотвращению пожара
Питер Ф. Джонсон

Пассивные меры противопожарной защиты
Ингве Андерберг

Активные меры противопожарной защиты
Гари Тейлор

Организация противопожарной защиты
С. Дери

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Нижний и верхний пределы воспламеняемости на воздухе
2. Точки воспламенения и воспламенения жидкого и твердого топлива
3. Источники воспламенения
4. Сравнение концентраций различных газов, необходимых для инертизации

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

FIR010F1FIR010F2FIR020F1FIR040F1FIR040F2FIR040F3FIR050F4FIR050F1FIR050F2FIR050F3FIR060F3

Просмотр элементов ...
42. Жара и холод

42. Жара и холод (12)

Баннер 6

 

42. Жара и холод

Редактор глав:  Жан-Жак Фогт


 

Содержание 

Рисунки и таблицы

Физиологические реакции на тепловую среду
В. Ларри Кенни

Последствия теплового стресса и работы на жаре
Бодил Нильсен

Тепловые расстройства
Токуо Огава

Профилактика теплового стресса
Сара А. Наннели

Физические основы работы в тепле
Жак Мальшер

Оценка теплового стресса и индексов теплового стресса
Кеннет С. Парсонс

     Практический пример: тепловые индексы: формулы и определения

Теплообмен через одежду
Воутер А. Лотенс

     Формулы и определения

Холодная среда и холодная работа
Ингвар Хольмер, Пер-Ола Гранберг и Горан Дальстром

Профилактика холодового стресса в экстремальных условиях на открытом воздухе
Жак Биттель и Гюстав Савуре

Холодные индексы и стандарты
Ингвар Хольмер

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Концентрация электролитов в плазме крови и поте
2. Индекс теплового стресса и допустимое время воздействия: расчеты
3. Интерпретация значений индекса теплового стресса
4. Справочные значения для критериев термического напряжения и деформации
5. Модель с использованием частоты сердечных сокращений для оценки теплового стресса
6. Эталонные значения WBGT
7. Методы работы в жарких условиях
8. Расчет индекса SWreq и метод оценки: уравнения
9. Описание терминов, используемых в ISO 7933 (1989b)
10. Значения WBGT для четырех рабочих фаз
11. Основные данные для аналитической оценки с использованием ISO 7933
12. Аналитическая оценка с использованием ISO 7933
13. Температура воздуха различных холодных производственных сред
14. Продолжительность некомпенсированного холодового стресса и связанных с ним реакций
15. Указание на ожидаемые последствия легкого и сильного воздействия холода
16. Температура тканей тела и физическая работоспособность человека
17. Реакция человека на охлаждение: показательные реакции на гипотермию
18. Рекомендации по охране здоровья для персонала, подвергающегося холодовому стрессу
19. Программы кондиционирования для рабочих, подвергшихся воздействию холода
20. Профилактика и облегчение холодового стресса: стратегии
21. Стратегии и меры, связанные с конкретными факторами и оборудованием
22. Общие адаптационные механизмы к холоду
23. Количество дней, когда температура воды ниже 15 ºC
24. Температура воздуха различных холодных производственных сред
25. Схематическая классификация холодных работ
26. Классификация уровней скорости метаболизма
27. Примеры основных показателей изоляции одежды
28. Классификация термической стойкости к охлаждению одежды для рук
29. Классификация контактной термостойкости одежды ручной работы
30. Индекс холода ветром, температура и время замораживания открытой кожи
31. Охлаждающая сила ветра на обнаженной плоти

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

НЕА030F1НЕА050F1НЕА010F1НЕА080F1НЕА080F2НЕА080F3НЕА020F1НЕА020F2НЕА020F3НЕА020F4НЕА020F5НЕА020F6НЕА020F7НЕА090F1НЕА090F2НЕА090F3HEA090T4НЕА090F4HEA090T8НЕА090F5НЕА110F1НЕА110F2НЕА110F3НЕА110F4НЕА110F5НЕА110F6


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...
43. Часы работы

43. Часы работы (1)

Баннер 6

 

43. Часы работы

Редактор глав:  Питер Кнаут


 

Содержание 

Часы работы
Питер Кнаут

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Промежутки времени от начала сменной работы до трех заболеваний
2. Сменная работа и частота сердечно-сосудистых заболеваний

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

HOU010F1HOU010T3HOU010F2HOU10F2BHOU010F3HOU010F4HOU010F5HOU010F6HOU010F7

Просмотр элементов ...
44. Качество воздуха в помещении

44. Качество воздуха в помещении (8)

Баннер 6

 

44. Качество воздуха в помещении

Редактор глав:  Ксавьер Гуардино Сола


 

Содержание 

Рисунки и таблицы

Качество воздуха в помещении: введение
Ксавьер Гуардино Сола

Природа и источники химических загрязнителей помещений
Деррик Крамп

Радон
Мария Хосе Беренгер

Табачный дым
Дитрих Хоффманн и Эрнст Л. Виндер

Правила курения
Ксавьер Гуардино Сола

Измерение и оценка химических загрязнителей
М. Грасия Роселл Фаррас

Биологическое загрязнение
Брайан Флэнниган

Положения, рекомендации, руководства и стандарты
Мария Хосе Беренгер

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Классификация органических загрязнителей помещений
2. Эмиссия формальдегида из различных материалов
3. TTL. летучие органические соединения, настенные/напольные покрытия
4. Товары народного потребления и другие источники летучих органических соединений
5. Основные типы и концентрации в городах Соединенного Королевства
6. Полевые измерения оксидов азота и оксида углерода
7. Токсичные и канцерогенные агенты в побочном дыме сигарет
8. Токсические и канцерогенные агенты табачного дыма
9. Котинин в моче у некурящих
10. Методика отбора проб
11. Методы обнаружения газов в воздухе помещений
12. Методы, используемые для анализа химических загрязнителей
13. Нижние пределы обнаружения для некоторых газов
14. Типы грибков, которые могут вызывать ринит и/или астму
15. Микроорганизмы и внешний аллергический альвеолит
16. Микроорганизмы в воздухе и пыли непромышленных помещений
17. Стандарты качества воздуха, установленные Агентством по охране окружающей среды США.
18. Рекомендации ВОЗ по нераковым заболеваниям и раздражающим факторам, не вызывающим запаха
19. Рекомендуемые значения ВОЗ, основанные на сенсорных эффектах или раздражении
20. Референсные значения по радону трех организаций

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

АИР010Т1АИР010F1АИР030Т7АИР035F1АИР050Т1


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...
45. Контроль окружающей среды в помещении

45. Контроль окружающей среды в помещении (6)

Баннер 6

 

45. Контроль окружающей среды в помещении

Редактор глав:  Хуан Гуаш Фаррас

 


 

Содержание 

Рисунки и таблицы

Контроль внутренней среды: общие принципы
А. Эрнандес Каллеха

Воздух в помещении: методы контроля и очистки
Э. Адан Лиебана и А. Эрнандес Кальеха

Цели и принципы общей и разрежающей вентиляции
Эмилио Кастехон

Вентиляционные критерии для непромышленных зданий
А. Эрнандес Каллеха

Системы отопления и кондиционирования
Ф. Рамос Перес и Х. Гуаш Фаррас

Воздух в помещении: ионизация
Э. Адан Лиебана и Х. Гуаш Фаррас

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Наиболее распространенные загрязнители помещений и их источники
2. Основные требования-рассеивающая система вентиляции
3. Меры контроля и их последствия
4. Корректировка рабочей среды и эффектов
5. Эффективность фильтров (стандарт ASHRAE 52-76)
6. Реагенты, используемые в качестве абсорбентов загрязнений
7. Уровни качества воздуха в помещении
8. Загрязнение из-за жильцов здания
9. Степень занятости различных зданий
10. Загрязнение из-за здания
11. Уровни качества наружного воздуха
12. Предлагаемые нормы факторов окружающей среды
13. Температуры теплового комфорта (по Фангеру)
14. Характеристики ионов

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

ИЕН010F1ИЕН010F2ИЕН010F3ИЕН030F1ИЕН030F2ИЕН040F1ИЕН040F2ИЕН040F3ИЕН040F4ИЕН050F1ИЕН050F3ИЕН050F7ИЕН050F8


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...
46. Осветительные приборы

46. ​​Освещение (3)

Баннер 6

 

46. Осветительные приборы

Редактор глав:  Хуан Гуаш Фаррас


 

Содержание 

Рисунки и таблицы

Типы ламп и освещения
Ричард Форстер

Условия, необходимые для визуального
Фернандо Рамос Перес и Ана Эрнандес Каллеха

Общие условия освещения
Н. Алан Смит

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Улучшенная мощность и мощность некоторых люминесцентных ламп диаметром 1,500 мм.
2. Типичная эффективность лампы
3. Международная система кодирования ламп (ILCOS) для некоторых типов ламп
4. Общие цвета и формы ламп накаливания и коды ILCOS
5. Типы натриевых ламп высокого давления
6. Цветовые контрасты
7. Коэффициенты отражения различных цветов и материалов
8. Рекомендуемые уровни поддерживаемой освещенности для мест/задач

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

ЛИГ010F1ЛИГ010F2ЛИГ010F3ЛИГ010F4ЛИГ010F5ЛИГ010F6ЛИГ010F7ЛИГ010F8ЛИГ021Т1ЛИГ021F1ЛИГ021Т3ЛИГ021F2ЛИГ021F3ЛИГ021F4ЛИГ021F5ЛИГ021F6ЛИГ030F1ЛИГ030F2ЛИГ030F3ЛИГ030F4ЛИГ030F5ЛИГ030F6ЛИГ030F7ЛИГ030F8ЛИГ030F9ЛИГ30F10ЛИГ30F11ЛИГ30F12ЛИГ30F13


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...
47. шум

47. Шум (5)

Баннер 6

 

47. шум

Редактор глав:  Элис Х. Сутер


 

Содержание 

Рисунки и таблицы

Природа и эффекты шума
Элис Х. Сутер

Измерение шума и оценка воздействия
Эдуард Иванович Денисов и Герман А. Суворов

Инженерный контроль шума
Деннис П. Дрисколл

Программы сохранения слуха
Ларри Х. Ройстер и Джулия Досуэлл Ройстер

Стандарты и правила
Элис Х. Сутер

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Допустимые пределы воздействия шума (PEL) по странам

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

НОИ010Т1НОИ050F6НОИ050F7НОИ060F1НОИ060F2НОИ060F3НОИ060F4НОИ070F1НОИ070Т1

Просмотр элементов ...
48. Радиация: ионизирующая

48. Радиация: Ионизирующая (6)

Баннер 6

 

48. Радиация: ионизирующая

Редактор главы: Роберт Н. Черри-младший.


 

Содержание

Введение
Роберт Н. Черри-младший

Радиационная биология и биологические эффекты
Артур С. Аптон

Источники ионизирующего излучения
Роберт Н. Черри-младший

Проектирование рабочего места для обеспечения радиационной безопасности
Гордон М. Лодде

Радиационная безопасность
Роберт Н. Черри-младший

Планирование радиационных аварий и управление ими
Сидней В. Портер-младший

Просмотр элементов ...
49. Радиационное, неионизирующее

49. Радиационное, неионизирующее (9)

Баннер 6

 

49. Радиационное, неионизирующее

Редактор глав:  Бенгт Валет


 

Содержание 

Таблицы и рисунки

Электрические и магнитные поля и последствия для здоровья
Бенгт Валет

Электромагнитный спектр: основные физические характеристики
Кьелл Ханссон Мягкий

Ультрафиолетовое излучение
Дэвид Х. Слайни

Инфракрасное излучение
Р. Маттес

Свет и инфракрасное излучение
Дэвид Х. Слайни

Лазеры
Дэвид Х. Слайни

Радиочастотные поля и микроволны
Кьелл Ханссон Мягкий

Электрические и магнитные поля VLF и ELF
Майкл Х. Репачоли

Статические электрические и магнитные поля
Мартино Грандольфо

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Источники и воздействия ИК
2. Функция термической опасности сетчатки
3. Пределы воздействия для обычных лазеров
4. Применение оборудования, использующего диапазон от >0 до 30 кГц
5. Профессиональные источники воздействия магнитных полей
6. Воздействие токов, проходящих через тело человека
7. Биологические эффекты различных диапазонов плотности тока
8. Пределы воздействия на рабочем месте – электрические/магнитные поля
9. Исследования на животных, подвергшихся воздействию статических электрических полей
10. Основные технологии и большие статические магнитные поля
11. Рекомендации ICNIRP для статических магнитных полей

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

ЭЛФ010F1ЭЛФ010F2ELF020T1ЭЛФ040F1ЭЛФ040F2ЭЛФ040F3ЭЛФ060F1ЭЛФ060F2


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...
50. Вибрация

50. Вибрация (4)

Баннер 6

 

50. Вибрация

Редактор глав:  Майкл Дж. Гриффин


 

Содержание 

Таблица и рисунки

вибрация
Майкл Дж. Гриффин

Вибрация всего тела
Гельмут Зайдель и Майкл Дж. Гриффин

Вибрация, передаваемая вручную
Массимо Бовенци

Морская болезнь
Алан Дж. Бенсон

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Действия с неблагоприятными последствиями вибрации всего тела
2. Меры профилактики вибрации всего тела
3. Воздействие вибрации, передаваемой через руки
4. Стадии, шкала Стокгольмской мастерской, вибрационный синдром кистей рук
5. Феномен Рейно и синдром вибрации кистей рук
6. Пороговые предельные значения вибрации, передаваемой через руки
7. Директива Совета Европейского Союза: вибрация, передаваемая через руки (1994 г.)
8. Значения вибрации для побледнения пальцев

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

VIB020F1VIB020F2VIB020F3VIB030F1VIB030F2VIB040F1VIB040F2


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...
52. Визуальные дисплеи

52. Блоки визуального отображения (11)

Баннер 6

 

52. Визуальные дисплеи

Редактор глав:  Дайан Бертелетт


 

Содержание 

Таблицы и рисунки

Обзор
Дайан Бертелетт

Характеристики рабочих станций визуального отображения
Ахмет Чакир

Глазные и зрительные проблемы
Пол Рей и Жан-Жак Мейер

Опасности для репродуктивной системы — экспериментальные данные
Ульф Бергквист

Репродуктивные эффекты - человеческие данные
Клэр Инфанте-Ривард

     Тематическое исследование: резюме исследований репродуктивных результатов

Заболевания опорно-двигательного аппарата
Габриэле Баммер

Проблемы с кожей
Матс Берг и Стуре Лиден

Психосоциальные аспекты работы с УВО
Майкл Дж. Смит и Паскаль Карайон

Эргономические аспекты взаимодействия человека с компьютером
Жан-Марк Робер

Стандарты эргономики
Том FM Стюарт

таблицы

Щелкните ссылку ниже, чтобы просмотреть таблицу в контексте статьи.

1. Распространение компьютеров в различных регионах
2. Частота и важность элементов оборудования
3. Распространенность глазных симптомов
4. Тератологические исследования на крысах или мышах
5. Тератологические исследования на крысах или мышах
6. Использование УВО как фактор неблагоприятных исходов беременности
7. Анализы для изучения причин опорно-двигательного аппарата
8. Факторы, вызывающие проблемы с опорно-двигательным аппаратом

цифры

Наведите курсор на миниатюру, чтобы увидеть подпись к рисунку, щелкните, чтобы увидеть рисунок в контексте статьи.

ВДУ020Ф1ВДУ020Ф2ВДУ020Ф3ВДУ020Ф4ВДУ020Ф5ВДУ020Ф6ВДУ030Ф1

ВДУ040Ф1ВДУ080Ф1ВДУ080Ф2ВДУ100Ф1ВДУ100Ф2


Нажмите, чтобы вернуться к началу страницы

Просмотр элементов ...

Ограничение пожаров отсеками

Планирование строительства и участка

Инженерно-технические работы по пожарной безопасности следует начинать на ранней стадии проектирования, поскольку требования пожарной безопасности существенно влияют на планировку и конструкцию здания. Таким образом, проектировщик может гораздо лучше и экономичнее включить в здание функции пожарной безопасности. Общий подход включает рассмотрение как внутренних функций и планировки здания, так и внешнего планирования территории. Требования предписывающего кода все больше и больше заменяются функционально обоснованными требованиями, а это означает повышенный спрос на специалистов в этой области. Поэтому с самого начала строительного проекта проектировщик здания должен связаться с экспертами по пожарной безопасности, чтобы разъяснить следующие действия:

  • описать проблему пожара, специфичную для здания
  • описать различные альтернативы для получения требуемого уровня пожарной безопасности
  • проанализировать выбор системы с точки зрения технических решений и экономичности
  • создать предпосылки для выбора технически оптимизированной системы.

 

Архитектор должен использовать данное место при проектировании здания и адаптировать функциональные и инженерные соображения к конкретным условиям места, которые присутствуют. Аналогичным образом архитектор должен учитывать особенности участка при принятии решений по противопожарной защите. Конкретный набор характеристик площадки может существенно повлиять на тип активной и пассивной защиты, предложенный консультантом по пожарной безопасности. В конструктивных особенностях следует учитывать имеющиеся местные средства пожаротушения и время, необходимое для достижения здания. От пожарной службы нельзя и не следует ожидать полной защиты жильцов здания и имущества; ему должна помогать как активная, так и пассивная противопожарная защита здания, чтобы обеспечить разумную безопасность от воздействия огня. Вкратце, операции можно разделить на спасательные операции, тушение пожаров и консервацию имущества. Первоочередной задачей любой операции по тушению пожара является обеспечение того, чтобы все люди покинули здание до того, как возникнут критические условия.

Структурный проект на основе классификации или расчета

Хорошо зарекомендовавшим себя способом систематизации требований к противопожарной защите и пожарной безопасности зданий является их классификация по типам конструкции на основе материалов, используемых для конструктивных элементов, и степени огнестойкости, обеспечиваемой каждым элементом. Классификация может основываться на печных испытаниях в соответствии с ISO 834 (воздействие огня характеризуется стандартной кривой зависимости температуры от времени), на сочетании испытаний и расчетов или расчетным путем. Эти процедуры определяют стандартную огнестойкость (способность выполнять требуемые функции в течение 30, 60, 90 минут и т. д.) несущего и/или разделительного элемента конструкции. Классификация (особенно основанная на испытаниях) является упрощенным и консервативным методом и все больше заменяется функционально обоснованными расчетными методами, учитывающими влияние полностью развившихся природных пожаров. Однако всегда будут необходимы огневые испытания, но их можно спроектировать более оптимальным образом и совместить с компьютерным моделированием. В этой процедуре количество тестов может быть значительно сокращено. Обычно в методиках огневых испытаний несущие элементы конструкции нагружаются до 100 % расчетной нагрузки, но в реальных условиях коэффициент использования нагрузки чаще всего меньше. Критерии приемки специфичны для испытанной конструкции или элемента. Стандартная огнестойкость - это измеренное время, в течение которого элемент может выдерживать огонь без разрушения.

Оптимальное противопожарное проектирование, сбалансированное с ожидаемой интенсивностью пожара, является целью требований к конструкции и противопожарной защите в современных нормах, основанных на характеристиках. Они открыли путь к противопожарному проектированию расчетным путем с прогнозированием температурного и структурного воздействия из-за полного процесса пожара (рассматривается нагрев и последующее охлаждение) в помещении. Расчеты на основе природных пожаров означают, что конструктивные элементы (важные для устойчивости здания) и вся конструкция не должны разрушаться в течение всего процесса пожара, включая остывание.

Комплексные исследования проводились в течение последних 30 лет. Были разработаны различные компьютерные модели. В этих моделях используются фундаментальные исследования механических и термических свойств материалов при повышенных температурах. Некоторые компьютерные модели проверяются на большом количестве экспериментальных данных, и получается хорошее предсказание поведения конструкции при пожаре.

Отсек

Противопожарным отсеком называется пространство внутри здания, простирающееся на один или несколько этажей и огражденное разделительными элементами таким образом, чтобы предотвратить распространение огня за пределы отсека во время соответствующего пожарного воздействия. Разделение важно для предотвращения распространения огня на слишком большие пространства или на все здание. Люди и имущество за пределами противопожарного отсека могут быть защищены за счет того, что огонь гаснет или выгорает сам по себе, или за счет сдерживающего действия разделяющих элементов на распространение огня и дыма до тех пор, пока люди не будут эвакуированы в безопасное место.

Огнестойкость, необходимая для отсека, зависит от его предполагаемого назначения и ожидаемого пожара. Либо разделительные элементы, окружающие отсек, должны противостоять максимальному ожидаемому пожару, либо сдерживать огонь до тех пор, пока люди не будут эвакуированы. Несущие элементы в отсеке всегда должны выдерживать полный процесс пожара или классифицироваться по определенному сопротивлению, измеряемому периодами времени, которые равны или превышают требования, предъявляемые к разделяющим элементам.

Структурная целостность во время пожара

Требованием сохранения целостности конструкции во время пожара является предотвращение обрушения конструкции и способность разделяющих элементов предотвращать воспламенение и распространение пламени в соседние помещения. Существуют различные подходы к обеспечению огнестойкости конструкции. Это классификации, основанные на стандартных испытаниях на огнестойкость, как в ISO 834, комбинации испытаний и расчетов или исключительно расчетов и компьютерных прогнозов процедур, основанных на характеристиках, основанных на реальном воздействии огня.

Внутренняя отделка

Внутренняя отделка – это материал, который формирует открытые внутренние поверхности стен, потолков и пола. Существует множество видов материалов внутренней отделки, таких как гипс, гипс, дерево и пластик. Они выполняют несколько функций. Некоторые функции внутреннего материала - акустические и изоляционные, а также защитные от износа и истирания.

Внутренняя отделка связана с огнем четырьмя различными способами. Это может повлиять на скорость распространения огня до состояния вспышки, способствовать распространению огня за счет распространения пламени, увеличить выделение тепла за счет добавления топлива и произвести дым и токсичные газы. Материалы, которые демонстрируют высокую скорость распространения пламени, подпитывают огонь или выделяют опасные количества дыма и токсичных газов, нежелательны.

Движение дыма

При пожарах в зданиях дым часто перемещается в места, удаленные от места пожара. Лестничные клетки и лифтовые шахты могут задымиться, что затруднит эвакуацию и затруднит тушение пожара. Сегодня дым признан главным убийцей при пожаре (см. рис. 1).

Рисунок 1. Образование дыма от пожара.

FIR040F1

Движущие силы движения дыма включают в себя естественный дымовой эффект, плавучесть дымовых газов, эффект ветра, вентиляционные системы с приводом от вентилятора и эффект поршня лифта.

Когда на улице холодно, в шахтах зданий происходит восходящее движение воздуха. Воздух в здании обладает выталкивающей силой, потому что он теплее и, следовательно, менее плотный, чем наружный воздух. Выталкивающая сила заставляет воздух подниматься в шахтах здания. Это явление известно как эффект стека. Разница давлений из шахты наружу, вызывающая движение дыма, показана ниже:

в котором

= перепад давления от вала наружу

g = ускорение свободного падения

= абсолютное атмосферное давление

R = газовая постоянная воздуха

= абсолютная температура наружного воздуха

= абсолютная температура воздуха внутри шахты

z = высота

Высокотемпературный дым от пожара обладает выталкивающей силой из-за пониженной плотности. Уравнение плавучести дымовых газов аналогично уравнению дымового эффекта.

Помимо плавучести, энергия, выделяемая при пожаре, может вызывать движение дыма за счет расширения. В противопожарный отсек будет поступать воздух, и горячий дым будет распространяться по отсеку. Пренебрегая добавленной массой топлива, соотношение объемных потоков можно просто выразить как отношение абсолютной температуры.

Ветер оказывает сильное влияние на движение дыма. Не следует пренебрегать эффектом элеваторного поршня. Когда кабина лифта движется в шахте, возникают переходные давления.

Системы отопления, вентиляции и кондиционирования воздуха (HVAC) переносят дым во время пожаров в зданиях. Когда пожар начинается в незанятой части здания, система HVAC может переносить дым в другое занятое помещение. Система HVAC должна быть спроектирована таким образом, чтобы либо вентиляторы отключались, либо система переходила в режим работы в специальном режиме контроля дыма.

Движением дыма можно управлять с помощью одного или нескольких из следующих механизмов: разделение, разбавление, поток воздуха, повышение давления или плавучесть.

Эвакуация жильцов

Дизайн выхода

Проект выхода должен основываться на оценке общей системы противопожарной защиты здания (см. рис. 2).

Рисунок 2. Принципы безопасности выхода.

FIR040F2

На людей, эвакуирующихся из горящего здания, влияет ряд впечатлений во время побега. Пассажиры должны принять несколько решений во время побега, чтобы сделать правильный выбор в каждой ситуации. Эти реакции могут сильно различаться в зависимости от физических и умственных способностей и условий проживания в здании.

Здание также будет влиять на решения, принимаемые жильцами, своими путями эвакуации, указателями и другими установленными системами безопасности. Распространение огня и дыма окажет самое сильное влияние на то, как жильцы будут принимать свои решения. Дым ограничит видимость в здании и создаст неблагоприятные условия для эвакуации людей. Излучение от огня и пламени создает большие пространства, которые нельзя использовать для эвакуации, что увеличивает риск.

При проектировании путей эвакуации в первую очередь необходимо знать реакцию людей на пожар. Необходимо понимать закономерности движения людей.

Три стадии времени эвакуации: время уведомления, время реакции и время эвакуации. Время оповещения зависит от того, есть ли в здании система пожарной сигнализации, может ли жилец понять ситуацию или то, как здание разделено на отсеки. Время реакции зависит от способности жильцов принимать решения, свойств огня (таких как количество тепла и дыма) и того, как спланирована система эвакуации из здания. Наконец, время эвакуации зависит от того, где в здании образуется скопление людей и как люди передвигаются в различных ситуациях.

Например, в конкретных зданиях с мобильными обитателями исследования показали определенные воспроизводимые характеристики потока от людей, выходящих из зданий. Эти предсказуемые характеристики потока способствовали компьютерному моделированию и моделированию, чтобы помочь процессу проектирования выхода.

Расстояние эвакуации связано с пожароопасностью содержимого. Чем выше опасность, тем короче расстояние до выхода.

Для безопасного выхода из здания требуется безопасный путь эвакуации из зоны пожара. Следовательно, должен быть ряд должным образом спроектированных средств эвакуации с достаточной пропускной способностью. Должен быть как минимум один альтернативный путь эвакуации, учитывая, что огонь, дым, характеристики людей и т. д. могут препятствовать использованию одного из путей эвакуации. Пути эвакуации должны быть защищены от огня, тепла и дыма во время эвакуации. Таким образом, необходимо иметь строительные нормы, которые учитывают пассивную защиту, эвакуацию и, конечно же, противопожарную защиту. Здание должно справляться с критическими ситуациями, указанными в правилах эвакуации. Например, в строительных нормах Швеции слой дыма не должен опускаться ниже

1.6 + 0.1H (H — общая высота отсека), максимальное излучение 10 кВт/м2 кратковременно, а температура воздуха для дыхания не должна превышать 80 °С.

Эффективная эвакуация может иметь место, если пожар обнаружен на ранней стадии, а жильцы своевременно предупреждены с помощью системы обнаружения и сигнализации. Надлежащая маркировка путей выхода, несомненно, облегчит эвакуацию. Также существует потребность в организации и отработке процедур эвакуации.

Поведение человека во время пожара

То, как человек реагирует во время пожара, связано с принятой ролью, предыдущим опытом, образованием и личностью; предполагаемая угроза возникновения пожара; физические характеристики и средства эвакуации, имеющиеся внутри сооружения; и действия других, которые делятся опытом. Подробные интервью и исследования, проводившиеся более 30 лет, установили, что случаи неадаптивного или панического поведения являются редкими событиями, происходящими в определенных условиях. Большая часть поведения при пожаре определяется анализом информации, что приводит к совместным и альтруистическим действиям.

Установлено, что человеческое поведение проходит через ряд определенных стадий с возможностью перехода от одной стадии к другой различными путями. Подводя итоги, можно сказать, что пожар состоит из трех основных стадий:

  1. Человек получает первоначальные сигналы и исследует или неверно истолковывает эти начальные сигналы.
  2. Как только пожар станет очевидным, человек попытается получить дополнительную информацию, связаться с другими или уйти.
  3. После этого человек будет иметь дело с огнем, взаимодействовать с другими или сбежать.

 

Важным фактором является предпожарная активность. Если человек занимается хорошо известным делом, например, обедает в ресторане, последствия для последующего поведения значительны.

Прием сигнала может быть функцией предпожарной активности. Существует тенденция к гендерным различиям, при этом самки чаще воспринимают шумы и запахи, хотя эффект незначителен. Существуют ролевые различия в первоначальных реакциях на реплику. При домашних пожарах, если самка получает сигнал и исследует ситуацию, самец, получив указание, скорее всего, «посмотрит» и задержит дальнейшие действия. В более крупных заведениях сигналом может быть предупреждение о тревоге. Информация может исходить от других, и было обнаружено, что она неадекватна для эффективного поведения.

Люди могли или не могли понять, что есть пожар. Понимание их поведения должно учитывать, правильно ли они определили свою ситуацию.

Когда пожар определен, наступает этап «подготовки». Конкретный тип занятости, вероятно, будет иметь большое влияние на то, как именно развивается эта стадия. Стадия «подготовка» включает в себя в хронологическом порядке «инструктаж», «исследование» и «выведение».

Стадия «действия», которая является заключительной стадией, зависит от роли, занятости, предшествующего поведения и опыта. Возможна ранняя эвакуация или эффективное тушение пожара.

Строительные транспортные системы

Транспортные системы здания должны учитываться на этапе проектирования и должны быть интегрированы со всей системой противопожарной защиты здания. Опасности, связанные с этими системами, должны быть учтены при любом предварительном планировании и проверке противопожарной защиты.

Строительные транспортные системы, такие как лифты и эскалаторы, позволяют возводить высотные здания. Шахты лифтов могут способствовать распространению дыма и огня. С другой стороны, лифт является необходимым средством при тушении пожаров в высотных зданиях.

Транспортные системы могут создавать опасные и сложные проблемы пожарной безопасности, потому что закрытая шахта лифта действует как дымоход или дымоход из-за дымового эффекта горячего дыма и газов от огня. Обычно это приводит к перемещению дыма и продуктов горения с нижних этажей здания на верхние.

Высотные здания представляют новые и различные проблемы для сил пожаротушения, включая использование лифтов во время чрезвычайных ситуаций. Лифты небезопасны при пожаре по нескольким причинам:

  1. Люди могут нажать кнопку в коридоре и ждать лифта, который может никогда не ответить, теряя драгоценное время для побега.
  2. Лифты не отдают приоритет вызовам из машин и коридоров, и один из вызовов может быть на пожарном этаже.
  3. Лифты не могут запуститься, пока двери лифта и шахты не будут закрыты, и паника может привести к переполнению лифта и блокировке дверей, что не позволит закрыться.
  4. Питание может выйти из строя во время пожара в любое время, что приведет к захвату. (См. рис. 3)

 

Рис. 3. Пример пиктографического предупреждающего сообщения об использовании лифта.

FIR040F3

Противопожарные учения и обучение пассажиров

Правильная маркировка путей эвакуации облегчает эвакуацию, но не обеспечивает безопасность жизни при пожаре. Учения по выходу необходимы для организованного побега. Они особенно необходимы в школах, интернатах и ​​учреждениях по уходу, а также на производствах с повышенной опасностью. Тренировки сотрудников требуются, например, в отелях и крупных предприятиях. Следует проводить учения по выходу, чтобы избежать путаницы и обеспечить эвакуацию всех находящихся в помещении людей.

Все сотрудники должны быть назначены для проверки доступности, подсчета людей, когда они находятся за пределами зоны пожара, для поиска отставших и контроля повторного входа. Они также должны распознавать сигнал эвакуации и знать маршрут выхода, по которому они должны следовать. Должны быть установлены основные и альтернативные маршруты, и все сотрудники должны быть обучены использованию любого маршрута. После каждого выездного учения должно проводиться совещание ответственных руководителей для оценки успеха учения и решения любых проблем, которые могли возникнуть.

 

Назад

Безопасность жизнедеятельности и защита имущества

Поскольку первостепенное значение любой меры противопожарной защиты заключается в обеспечении приемлемой степени безопасности жизни жителей здания, в большинстве стран правовые требования, применимые к противопожарной защите, основаны на соображениях безопасности жизни. Функции защиты имущества предназначены для ограничения физического ущерба. Во многих случаях эти цели дополняют друг друга. Если существует опасение по поводу утраты имущества, его функции или содержимого, владелец может принять решение о принятии мер, выходящих за рамки требуемого минимума, необходимого для решения проблем безопасности жизни.

Системы обнаружения пожара и сигнализации

Система обнаружения пожара и сигнализации обеспечивает средства для автоматического обнаружения возгорания и предупреждения людей, находящихся в здании, об угрозе возгорания. Именно звуковой или визуальный сигнал пожарной сигнализации является сигналом к ​​началу эвакуации людей из помещения. Это особенно важно в больших или многоэтажных зданиях, где жильцы не будут знать о том, что внутри здания происходит пожар, и где маловероятно или нецелесообразно, чтобы предупреждение было передано другим жителем.

Основные элементы системы пожарной сигнализации и сигнализации

Система обнаружения пожара и сигнализации может включать в себя все или некоторые из следующих элементов:

  1. блок управления системой
  2. первичный или основной источник электропитания
  3. вторичный (резервный) источник питания, обычно питаемый от батарей или аварийного генератора
  4. устройства подачи сигнала тревоги, такие как автоматические пожарные извещатели, ручные пусковые устройства и/или расходные устройства спринклерной системы, подключенные к «пусковым цепям» блока управления системой
  5. тревожно-индикаторные устройства, такие как звонки или световые сигналы, подключенные к «цепям индикации» блока управления системой
  6. вспомогательные элементы управления, такие как функции отключения вентиляции, подключенные к выходным цепям блока управления системой
  7. удаленная индикация тревоги во внешнее место реагирования, например, в пожарную часть
  8. цепи управления для включения системы противопожарной защиты или системы дымоудаления.

 

Системы дымоудаления

Для снижения угрозы попадания дыма в пути эвакуации при эвакуации из сооружения можно использовать системы дымоудаления. Как правило, механические системы вентиляции используются для подачи свежего воздуха в выходной тракт. Этот метод чаще всего используется для герметизации лестничных клеток или атриумов зданий. Эта функция предназначена для повышения безопасности жизни.

Портативные огнетушители и катушки для шлангов

Переносные огнетушители и катушки с водяными шлангами часто предоставляются жильцам зданий для тушения небольших пожаров (см. рис. 1). Не следует поощрять людей, находящихся в здании, к использованию переносных огнетушителей или катушек для шлангов, если они не обучены их использованию. Во всех случаях операторы должны быть очень осторожны, чтобы не оказаться в ситуации, когда безопасный выход заблокирован. При любом пожаре, каким бы незначительным он ни был, в первую очередь следует уведомить других лиц, находящихся в здании, об угрозе возгорания и вызвать помощь профессиональной пожарной службы.

Рисунок 1. Переносные огнетушители.

FIR050F4

Системы орошения водой

Системы водяного орошения состоят из водопровода, распределительных клапанов и трубопроводов, соединенных с автоматическими спринклерными головками (см. рис. 2). В то время как существующие спринклерные системы в первую очередь предназначены для контроля распространения огня, многие системы обеспечивают полное тушение.

Рис. 2. Типичная установка спринклера, показывающая все основные источники водоснабжения, наружные гидранты и подземные трубопроводы.

FIR050F1

Распространенным заблуждением является то, что все автоматические спринклерные головки открываются в случае пожара. На самом деле, каждая спринклерная головка предназначена для открытия только при наличии достаточного количества тепла, чтобы указать на пожар. Тогда вода течет только из спринклерных головок, которые открылись в результате пожара в непосредственной близости от них. Эта конструктивная особенность обеспечивает эффективное использование воды для пожаротушения и ограничивает ущерб от воды.

 

 

Водоснабжение

Вода для автоматической спринклерной системы должна быть всегда доступна в достаточном количестве, в достаточном объеме и под давлением, чтобы обеспечить надежную работу в случае пожара. Если городское водоснабжение не может удовлетворить это требование, необходимо предусмотреть резервуар или насосную установку для обеспечения надежного водоснабжения.

Регулирующие клапаны

Клапаны управления должны постоянно находиться в открытом положении. Часто наблюдение за регулирующими клапанами может осуществляться с помощью автоматической системы пожарной сигнализации с помощью переключателей тампера клапана, которые инициируют сигнал неисправности или контрольный сигнал на панели управления пожарной сигнализацией, указывающий на закрытый клапан. Если такой контроль не может быть обеспечен, клапаны должны быть заблокированы в открытом положении.

Трубопровод

Вода течет по сети трубопроводов, обычно подвешенных к потолку, с разбрызгивателями, подвешенными через определенные промежутки времени вдоль труб. Трубопроводы, используемые в спринклерных системах, должны быть такого типа, который может выдерживать рабочее давление не менее 1,200 кПа. Для открытых систем трубопроводов фитинги должны быть резьбовыми, фланцевыми, механическими или паяными.

Спринклерные головки

Головка спринклера состоит из отверстия, обычно закрытого термочувствительным высвобождающим элементом, и отражателя брызг. Схема сброса воды и требования к расстоянию между отдельными головками спринклеров используются разработчиками спринклеров для обеспечения полного охвата защищаемого риска.

Специальные системы пожаротушения

Специальные системы пожаротушения используются в тех случаях, когда водяные спринклеры не обеспечивают адекватной защиты или когда риск повреждения водой неприемлем. Во многих случаях, когда ущерб от воды вызывает озабоченность, могут использоваться специальные системы пожаротушения в сочетании с водяными спринклерными системами, при этом специальная система пожаротушения предназначена для реагирования на ранней стадии развития пожара.

Системы водяного и вододобавочного специального пожаротушения

Системы распыления воды

Системы распыления воды повышают эффективность воды за счет образования капель воды меньшего размера, и, таким образом, большая площадь поверхности воды подвергается воздействию огня с относительным увеличением способности поглощать тепло. Этот тип системы часто выбирают в качестве средства охлаждения больших сосудов под давлением, таких как бутановые сферы, когда существует риск открытого пожара, возникающего в соседней зоне. Система похожа на спринклерную систему; однако все головки открыты, и для открытия регулирующих клапанов используется отдельная система обнаружения или ручное действие. Это позволяет воде течь через сеть трубопроводов ко всем распылительным устройствам, которые служат выходами из системы трубопроводов.

Пенные системы

В пенной системе жидкий концентрат впрыскивается в водопровод перед регулирующим клапаном. Пенообразователь и воздух смешиваются либо за счет механического действия нагнетания, либо путем всасывания воздуха в нагнетательное устройство. Воздух, вовлеченный в раствор пены, создает расширенную пену. Поскольку вспененный пенопласт менее плотный, чем большинство углеводородов, вспененный пенопласт образует слой поверх горючей жидкости. Это поролоновое покрытие уменьшает распространение паров топлива. Вода, составляющая до 97 % пенного раствора, обеспечивает охлаждающий эффект для дальнейшего уменьшения распространения паров и охлаждения горячих предметов, которые могут служить источником повторного возгорания.

Системы газового пожаротушения

Углекислотные системы

Углекислотные системы состоят из подачи двуокиси углерода, хранящейся в виде сжиженного сжатого газа в сосудах под давлением (см. рис. 3 и 4). Углекислый газ удерживается в сосуде под давлением с помощью автоматического клапана, который открывается при возгорании с помощью отдельной системы обнаружения или вручную. После выброса углекислый газ подается к огню с помощью трубопровода и выпускного патрубка. Углекислый газ тушит огонь, вытесняя доступный огню кислород. Углекислотные системы могут быть разработаны для использования на открытых площадках, таких как печатные станки, или в закрытых помещениях, таких как машинные отделения кораблей. Углекислый газ в концентрациях, обеспечивающих пожаротушение, токсичен для людей, и должны быть приняты специальные меры для обеспечения эвакуации людей в защищенной зоне до того, как произойдет выброс. Предварительная сигнализация и другие меры безопасности должны быть тщательно включены в конструкцию системы, чтобы обеспечить адекватную безопасность людей, работающих в защищенной зоне. Углекислый газ считается чистым огнетушащим веществом, поскольку он не вызывает побочных повреждений и не проводит электрический ток.

Рисунок 3. Схема системы углекислого газа высокого давления для полного заводнения.

FIR050F2

 

Рис. 4. Система тотального затопления, установленная в помещении с фальшполом.

FIR050F3

Системы инертного газа

Системы инертного газа обычно используют смесь азота и аргона в качестве среды пожаротушения. В некоторых случаях в газовой смеси также предусмотрен небольшой процент углекислого газа. Смеси инертных газов тушат пожары за счет снижения концентрации кислорода в защищаемом объеме. Они подходят для использования только в закрытых помещениях. Уникальная особенность смесей инертных газов заключается в том, что они уменьшают концентрацию кислорода до достаточно низкой концентрации, чтобы тушить многие виды пожаров; однако уровень кислорода недостаточно снижен, чтобы представлять непосредственную угрозу для находящихся в защищенном пространстве. Инертные газы сжимаются и хранятся в сосудах под давлением. Работа системы аналогична системе с углекислым газом. Поскольку инертные газы не могут быть сжижены сжатием, количество емкостей для хранения, необходимых для защиты данного замкнутого защищаемого объема, больше, чем для углекислого газа.

Галоновые системы

Галоны 1301, 1211 и 2402 были идентифицированы как вещества, разрушающие озоновый слой. Производство этих огнетушащих веществ было прекращено в 1994 году, как того требует Монреальский протокол — международное соглашение по защите озонового слоя Земли. Галон 1301 чаще всего использовался в стационарных системах противопожарной защиты. Галон 1301 хранился в виде сжиженного сжатого газа в сосудах высокого давления по схеме, аналогичной той, которая используется для двуокиси углерода. Преимущество галона 1301 заключалось в том, что давление при хранении было ниже, а очень низкие концентрации обеспечивали эффективную огнетушащую способность. Системы с галоном 1301 успешно использовались для полностью закрытых опасностей, где достигаемая огнегасящая концентрация могла поддерживаться в течение времени, достаточного для тушения. Для большинства рисков использованные концентрации не представляли непосредственной угрозы для жильцов. Галон 1301 до сих пор используется в нескольких важных областях, где еще предстоит разработать приемлемые альтернативы. Примеры включают использование на борту коммерческих и военных самолетов, а также в некоторых особых случаях, когда требуются инертизирующие концентрации для предотвращения взрывов в местах, где могут находиться люди. Галон в существующих галоновых системах, которые больше не требуются, должен быть доступен для использования другими с критически важными приложениями. Это позволит избежать необходимости производить больше этих экологически чувствительных огнетушителей и поможет защитить озоновый слой.

Галокарбоновые системы

Галогенуглеродные агенты были разработаны в результате экологических проблем, связанных с галонами. Эти агенты сильно различаются по токсичности, воздействию на окружающую среду, требованиям к весу и объему при хранении, стоимости и доступности утвержденного системного оборудования. Все они могут храниться в виде сжиженных сжатых газов в сосудах под давлением. Конфигурация системы аналогична системе с углекислым газом.

Проектирование, монтаж и обслуживание систем активной противопожарной защиты

Только специалисты в этой области имеют право проектировать, устанавливать и обслуживать это оборудование. Многим из тех, кто отвечает за покупку, установку, осмотр, испытания, утверждение и техническое обслуживание этого оборудования, может потребоваться консультация с опытным и компетентным специалистом по пожарной безопасности для эффективного выполнения своих обязанностей.

Дальнейшая информация

Этот раздел Энциклопедия представляет очень краткий и ограниченный обзор доступных систем активной противопожарной защиты. Читатели часто могут получить дополнительную информацию, связавшись с национальной ассоциацией противопожарной защиты, их страховой компанией или отделом пожарной безопасности своей местной пожарной службы.

 

Назад

Частная аварийная организация

Прибыль – главная цель любой отрасли. Для достижения этой цели необходимы эффективное и оперативное управление, а также непрерывность производства. Любой перерыв в производстве по любой причине отрицательно скажется на прибыли. Если прерывание произошло в результате пожара или взрыва, оно может быть длительным и нанести ущерб отрасли.

Очень часто ссылаются на то, что имущество застраховано и ущерб от пожара, если таковой будет, возместит страховая компания. Следует понимать, что страхование является лишь средством распространения последствий разрушения, вызванного пожаром или взрывом, на как можно большее число людей. Это не может возместить национальную потерю. Кроме того, страхование не является гарантией непрерывности производства и устранения или минимизации косвенных убытков.

Таким образом, указывается, что руководство должно собрать полную информацию об опасности пожара и взрыва, оценить возможные потери и принять соответствующие меры для контроля опасности с целью устранения или сведения к минимуму возникновения пожара и взрыва. Это предполагает создание частной аварийной организации.

Планирование действий в чрезвычайных ситуациях

Такая организация должна, насколько это возможно, рассматриваться на самой стадии планирования и внедряться постепенно с момента выбора места до начала производства, а затем продолжаться после этого.

Успех любой аварийной организации в значительной степени зависит от общего участия всех работников и различных звеньев управления. Этот факт необходимо иметь в виду при планировании аварийной организации.

Различные аспекты аварийного планирования упомянуты ниже. Для получения более подробной информации можно обратиться в Национальную ассоциацию противопожарной защиты США (NFPA). Справочник по противопожарной защите или любая другая стандартная работа по этому вопросу (Cote 1991).

Этап 1

Инициируйте аварийный план, выполнив следующие действия:

  1. Выявить и оценить пожаро- и взрывоопасность, связанную с транспортировкой, обращением и хранением каждого сырья, промежуточной и готовой продукции и каждого производственного процесса, а также разработать подробные превентивные меры по противодействию опасностям с целью их устранения или минимизации.
  2. Разработать требования к установкам и оборудованию противопожарной защиты и определить этапы их предоставления.
  3. Подготовка спецификаций на установку и оборудование противопожарной защиты.

 

Этап 2

Определите следующее:

  1. наличие достаточного водоснабжения для противопожарной защиты в дополнение к требованиям для обработки и бытового использования
  2. подверженность участка и стихийные бедствия, такие как наводнения, землетрясения, проливные дожди и т. д.
  3. окружающая среда, т. е. характер и площадь окружающего имущества и опасность воздействия в случае пожара или взрыва
  4. наличие частной (заводских) или общественной пожарной команды (частных), расстояние, на котором находится (находятся) такие пожарные команды и пригодность имеющихся у них средств для защиты от риска, и могут ли они быть вызваны при оказании помощи в чрезвычайной ситуации
  5. реагирование вспомогательной(ых) пожарной(ых) команды(ей) с особым указанием на препятствия, такие как железнодорожные переезды, переправы, недостаточная прочность и (или) ширина мостов по отношению к пожарной технике, затрудненное движение транспорта и т.п.
  6. социально-политическая среда, т. е. уровень преступности и политическая деятельность, приводящая к проблемам правопорядка.

 

Этап 3

Подготовить планировку и план застройки, а также спецификации строительных материалов. Выполните следующие задания:

  1. Ограничьте площадь каждого магазина, рабочего места и т. д., установив противопожарные стены, противопожарные двери и т. д.
  2. Укажите применение огнеупорных материалов для строительства здания или сооружения.
  3. Убедитесь, что стальные колонны и другие элементы конструкции не открыты.
  4. Обеспечьте адекватное разделение между зданием, конструкциями и установкой.
  5. Запланируйте установку пожарных гидрантов, спринклеров и т. д., где это необходимо.
  6. Обеспечить наличие в плане размещения соответствующих подъездных дорог, чтобы пожарная техника могла добраться до всех частей помещения и всех источников воды для тушения пожара.

 

Этап 4

Во время строительства сделайте следующее:

  1. Ознакомьте подрядчика и его или ее сотрудников с политиками управления пожарными рисками и обеспечивайте их соблюдение.
  2. Тщательно проверьте все противопожарные установки и оборудование перед приемкой.

 

Этап 5

Если размер предприятия, его опасность или удаленное расположение таковы, что в помещении должна быть штатная пожарная команда, то необходимо организовать, оснастить и обучить необходимый штатный персонал. Также назначьте штатного пожарного.

Этап 6

Чтобы обеспечить полное участие всех сотрудников, сделайте следующее:

  1. Обучить весь персонал соблюдению мер предосторожности в повседневной работе и действиям, требуемым от него при возникновении пожара или взрыва. Обучение должно включать работу с противопожарным оборудованием.
  2. Обеспечить строгое соблюдение мер предосторожности при пожаре всем заинтересованным персоналом посредством периодических проверок.
  3. Обеспечить регулярный осмотр и техническое обслуживание всех систем и оборудования противопожарной защиты. Все дефекты должны быть устранены незамедлительно.

 

Управление чрезвычайными ситуациями

Чтобы избежать путаницы во время реальной чрезвычайной ситуации, важно, чтобы каждый в организации точно знал, какую роль он (она) и другие должны играть во время чрезвычайной ситуации. Для этой цели должен быть подготовлен и обнародован хорошо продуманный аварийный план, и весь заинтересованный персонал должен быть полностью с ним ознакомлен. В плане должны быть четко и недвусмысленно определены обязанности всех заинтересованных сторон, а также определена цепочка подчинения. Как минимум, аварийный план должен включать следующее:

1. название отрасли

2. адрес помещения с номером телефона и планом участка

3. цель и задача аварийного плана и дата его вступления в силу

4. покрытая площадь, включая план участка

5. аварийная организация с указанием цепочки подчинения от руководителя работ вниз

6. Системы противопожарной защиты, мобильные устройства и переносное оборудование с подробностями

7. подробная информация о доступности помощи

8. средства пожарной сигнализации и связи

9. действия, которые необходимо предпринять в чрезвычайной ситуации. Включите отдельно и недвусмысленно действия, которые должны быть предприняты:

  • человек, обнаруживший огонь
  • собственная пожарная команда на территории
  • начальник отдела по ликвидации ЧС
  • начальники других отделов, фактически не задействованных в ЧС
  • организация безопасности
  • пожарный, если есть
  • руководитель работ
  • другие исследователи

       10. Порядок действий на месте происшествия. Рассмотрите все возможные ситуации и четко укажите, кто должен взять на себя командование в каждом случае, включая обстоятельства, при которых для оказания помощи должна быть вызвана другая организация.

11. Действия после пожара. Укажите ответственность за:

  • повторный ввод в эксплуатацию или пополнение всех систем противопожарной защиты, оборудования и источников воды
  • расследование причин пожара или взрыва
  • подготовка и сдача отчетов
  • инициирование восстановительных мероприятий для предотвращения повторного возникновения аналогичной чрезвычайной ситуации.

 

Когда действует план взаимопомощи, копии плана действий в чрезвычайных ситуациях должны быть предоставлены всем участвующим подразделениям в обмен на аналогичные планы их соответствующих помещений.

Протоколы эвакуации

Ситуация, требующая выполнения аварийного плана, может возникнуть в результате взрыва или пожара.

Взрыв может сопровождаться или не сопровождаться пожаром, но почти во всех случаях он производит разрушительный эффект, который может ранить или убить находящихся поблизости людей и/или причинить физический ущерб имуществу, в зависимости от обстоятельств каждого случая. Это также может вызвать шок и замешательство и может потребовать немедленной остановки производственных процессов или их части, а также внезапного перемещения большого количества людей. Если ситуацию немедленно не взять под контроль и упорядоченно не направить, это может привести к панике и дальнейшим потерям жизни и имущества.

Дым, выделяемый горящим материалом при пожаре, может затронуть другие части имущества и/или заманить людей в ловушку, что потребует интенсивной крупномасштабной спасательной операции/эвакуации. В некоторых случаях может потребоваться крупномасштабная эвакуация, когда люди могут попасть в ловушку или пострадать от пожара.

Во всех случаях, когда речь идет о крупномасштабном внезапном перемещении персонала, также возникают проблемы с дорожным движением, особенно если для этого движения необходимо использовать дороги общего пользования, улицы или территории. Если такие проблемы не предвидятся и соответствующие действия не планируются заранее, возникают узкие места на дорогах, которые затрудняют и замедляют тушение пожаров и аварийно-спасательные работы.

Эвакуация большого количества людей, особенно из высотных зданий, также может представлять проблемы. Для успешной эвакуации необходимо не только наличие адекватных и подходящих средств эвакуации, но и быстрая эвакуация. Особое внимание следует уделить эвакуации инвалидов.

Поэтому в аварийный план должны быть включены подробные процедуры эвакуации. Их необходимо часто проверять при проведении учений по пожарной безопасности и эвакуации, которые также могут быть связаны с проблемами дорожного движения. Все участвующие и заинтересованные организации и агентства также должны участвовать в этих учениях, по крайней мере, периодически. После каждого упражнения должен проводиться подведение итогов, в ходе которого указываются и объясняются все ошибки. Необходимо также принять меры для предотвращения повторения тех же ошибок в будущих учениях и реальных инцидентах путем устранения всех трудностей и пересмотра плана действий в чрезвычайных ситуациях по мере необходимости.

Должны вестись надлежащие записи обо всех учениях и тренировках по эвакуации.

Скорая медицинская помощь

Пострадавшим в результате пожара или взрыва должна быть оказана немедленная медицинская помощь или после оказания первой помощи их необходимо срочно доставить в больницу.

Крайне важно, чтобы руководство предоставило один или несколько медпунктов и, если это необходимо из-за размера и опасного характера отрасли, одно или несколько передвижных парамедицинских устройств. Все пункты первой помощи и парамедицинские устройства должны быть постоянно укомплектованы полностью обученными парамедиками.

В зависимости от размера отрасли и количества рабочих, одна или несколько машин скорой помощи также должны быть предоставлены и укомплектованы персоналом на территории для перевозки пострадавших в больницы. Кроме того, необходимо принять меры для обеспечения того, чтобы дополнительные средства скорой помощи были доступны в короткие сроки, когда это необходимо.

Там, где этого требует размер отрасли или рабочего места, медицинский работник, работающий полный рабочий день, также должен быть доступен в любое время для любой чрезвычайной ситуации.

Должны быть достигнуты предварительные договоренности с назначенной больницей или больницами, в которых приоритет отдается пострадавшим, эвакуированным после пожара или взрыва. Такие больницы должны быть указаны в плане действий в чрезвычайных ситуациях вместе с их телефонными номерами, а в плане действий в чрезвычайных ситуациях должны быть предусмотрены соответствующие положения, гарантирующие, что ответственное лицо уведомит их о приеме раненых, как только возникнет чрезвычайная ситуация.

Восстановление объекта

Важно, чтобы все противопожарные и аварийно-спасательные объекты были приведены в состояние «готовности» вскоре после окончания чрезвычайной ситуации. Для этого ответственность должна быть возложена на лицо или часть отрасли, и это должно быть включено в аварийный план. Также должна быть введена система проверок для обеспечения того, чтобы это делалось.

Отношения с общественной пожарной охраной

Ни одно руководство не может предвидеть и предусмотреть все возможные непредвиденные обстоятельства. К тому же это экономически нецелесообразно. Несмотря на применение самых современных методов управления пожарным риском, всегда бывают случаи, когда противопожарные средства, предусмотренные в помещениях, не соответствуют реальным потребностям. Для таких случаев желательно заранее спланировать программу взаимопомощи с общественной пожарной службой. Необходима хорошая связь с этим отделом, чтобы руководство знало, какую помощь это подразделение может оказать во время чрезвычайной ситуации на его территории. Кроме того, общественная пожарная служба должна быть ознакомлена с риском и тем, что она может ожидать во время чрезвычайной ситуации. Для этого необходимо частое взаимодействие с общественной пожарной службой.

Обращение с опасными материалами

Опасность материалов, используемых в промышленности, может быть неизвестна пожарным во время разлива, а случайный сброс и неправильное использование или хранение опасных материалов могут привести к опасным ситуациям, которые могут серьезно угрожать их здоровью или привести к серьезному пожару или взрыву. . Невозможно помнить об опасности всех материалов. Поэтому были разработаны средства быстрой идентификации опасностей, посредством которых различные вещества идентифицируются с помощью отдельных этикеток или маркировок.

Идентификация опасных материалов

Каждая страна следует своим собственным правилам, касающимся маркировки опасных материалов с целью хранения, обработки и транспортировки, и в этом могут участвовать различные ведомства. Хотя соблюдение местных правил имеет важное значение, желательно, чтобы международно признанная система идентификации опасных материалов была разработана для универсального применения. В Соединенных Штатах NFPA разработала систему для этой цели. В этой системе отдельные этикетки прикрепляются или прикрепляются к контейнерам с опасными материалами на видном месте. Эти этикетки указывают на характер и степень опасности для здоровья, воспламеняемость и реакционную способность материала. Кроме того, на этих этикетках также может быть указана особая возможная опасность для пожарных. Объяснение степени опасности см. в NFPA 704, Стандартная система идентификации пожарной опасности материалов (1990а). В этой системе опасности классифицируются как опасности для здоровья, опасность воспламенениякачества опасности реактивности (нестабильности).

Опасности для здоровья

К ним относятся все возможности материала, вызывающего травму в результате контакта с человеческим телом или поглощения им. Опасность для здоровья может возникнуть из-за свойств, присущих материалу, или из-за токсичных продуктов горения или разложения материала. Степень опасности назначается исходя из большей опасности, которая может возникнуть при пожаре или других чрезвычайных ситуациях. Он указывает пожарным, могут ли они безопасно работать только в специальной защитной одежде, подходящих средствах защиты органов дыхания или в обычной одежде.

Степень опасности для здоровья измеряется по шкале от 4 до 0, где 4 указывает на самую серьезную опасность, а 0 указывает на низкую опасность или отсутствие опасности.

Опасности воспламеняемости

Они указывают на склонность материала к горению. Известно, что материалы ведут себя по-разному в отношении этого свойства при различных обстоятельствах (например, материалы, которые могут гореть при одних условиях, могут не гореть при изменении условий). Форма и собственные свойства материалов влияют на степень опасности, которая присваивается на том же основании, что и опасность для здоровья.

Опасности реактивности (нестабильности)

Материалы, способные выделять энергию сами по себе (т. е. в результате самореакции или полимеризации), и вещества, которые могут подвергаться бурному извержению или взрывным реакциям при контакте с водой, другими огнетушащими веществами или некоторыми другими материалами, считаются химически опасными.

Интенсивность реакции может увеличиваться при воздействии тепла или давления, или когда вещество вступает в контакт с некоторыми другими материалами с образованием комбинации топливо-окислитель, или когда оно вступает в контакт с несовместимыми веществами, сенсибилизирующими загрязнителями или катализаторами.

Степень реактивной опасности определяется и выражается в легкости, скорости и количестве энерговыделения. Дополнительная информация, такая как радиоактивная опасность или запрет на использование воды или другого огнетушащего вещества для тушения пожара, также может быть предоставлена ​​на том же уровне.

Наклейка с предупреждением об опасном материале представляет собой квадрат, расположенный по диагонали с четырьмя меньшими квадратами (см. рис. 1).

Рисунок 1. Алмаз NFPA 704.

FIR060F3

Верхний квадрат указывает на опасность для здоровья, левый квадрат указывает на опасность воспламенения, правый квадрат указывает на опасность реактивности, а нижний квадрат указывает на другие особые опасности, такие как радиоактивность или необычное взаимодействие с водой.

В дополнение к вышеупомянутому расположению может также использоваться цветовой код. Цвет используется в качестве фона, или цифра, указывающая на опасность, может быть закодирована цветом. Коды: опасность для здоровья (синий), опасность воспламенения (красный), опасность реактивности (желтый) и особая опасность (белый фон).

 

 

 

 

Управление реагированием на опасные материалы

В зависимости от характера опасного материала в промышленности необходимо обеспечить средства защиты и специальные средства пожаротушения, в том числе средства защиты, необходимые для дозирования специальных средств пожаротушения.

Все работники должны быть обучены мерам предосторожности, которые они должны принимать, и процедурам, которые они должны применять для устранения каждого инцидента при обращении с различными типами опасных материалов. Они также должны знать значение различных опознавательных знаков.

Все пожарные и другие рабочие должны быть обучены правильному использованию любой защитной одежды, средств индивидуальной защиты органов дыхания и специальных приемов пожаротушения. Весь заинтересованный персонал должен быть настороже и готов к разрешению любой ситуации посредством частых учений и учений, о которых следует вести надлежащий учет.

Чтобы справиться с серьезными медицинскими опасностями и последствиями этих опасностей для пожарных, компетентный медицинский работник должен быть готов принять немедленные меры предосторожности, когда любой человек подвергается неизбежному опасному заражению. Все пострадавшие должны получить немедленную медицинскую помощь.

Также должны быть приняты надлежащие меры для создания центра обеззараживания в помещении, когда это необходимо, и должны быть установлены и соблюдаться правильные процедуры обеззараживания.

Контроль отходов

Значительные отходы образуются в промышленности или в результате несчастных случаев при погрузочно-разгрузочных работах, транспортировке и хранении товаров. Такие отходы могут быть легковоспламеняющимися, токсичными, едкими, пирофорными, химически активными или радиоактивными, в зависимости от отрасли, в которой они образуются, или от характера используемых товаров. В большинстве случаев, если не принять надлежащих мер по безопасному удалению таких отходов, они могут представлять опасность для жизни животных и людей, загрязнять окружающую среду или вызывать пожары и взрывы, которые могут угрожать имуществу. Таким образом, для обеспечения экономии и безопасности необходимо тщательное знание физических и химических свойств отходов, а также достоинств или недостатков различных методов их удаления.

Свойства промышленных отходов кратко изложены ниже:

  1. Большинство промышленных отходов являются опасными и могут иметь неожиданное значение во время и после удаления. Поэтому характер и поведение всех отходов должны быть тщательно изучены на предмет их краткосрочного и долгосрочного воздействия и соответствующим образом определен метод удаления.
  2. Смешивание двух, казалось бы, безвредных выброшенных веществ может создать неожиданную опасность из-за их химического или физического взаимодействия.
  3. Если речь идет о легковоспламеняющихся жидкостях, их опасность можно оценить, принимая во внимание их соответствующие температуры вспышки, температуру воспламенения, пределы воспламеняемости и энергию воспламенения, необходимую для инициирования возгорания. В случае твердых веществ размер частиц является дополнительным фактором, который необходимо учитывать.
  4. Большинство горючих паров тяжелее воздуха. Такие пары и легковоспламеняющиеся газы тяжелее воздуха, которые могут быть случайно выброшены во время сбора или удаления или во время обработки и транспортировки, могут перемещаться на значительные расстояния по ветру или в направлении более низкого уклона. При контакте с источником воспламенения они вспыхивают обратно к источнику. Крупные разливы легковоспламеняющихся жидкостей особенно опасны в этом отношении и могут потребовать эвакуации для спасения жизней.
  5. Пирофорные материалы, такие как алкилы алюминия, самовозгораются при контакте с воздухом. Поэтому необходимо соблюдать особую осторожность при обращении, транспортировке, хранении и утилизации таких материалов, предпочтительно в атмосфере азота.
  6. Некоторые материалы, такие как алкилы калия, натрия и алюминия, бурно реагируют с водой или влагой и сильно горят. Бронзовый порошок выделяет значительное количество тепла в присутствии влаги.
  7. Присутствие сильнодействующих окислителей с органическими материалами может вызвать быстрое возгорание или даже взрыв. Ветошь и другие материалы, пропитанные растительными маслами или терпенами, представляют опасность самовозгорания из-за окисления масел и последующего нагрева до температуры воспламенения.
  8. Некоторые вещества вызывают коррозию и могут вызвать серьезные повреждения или ожоги кожи или других живых тканей, а также могут разъедать строительные материалы, особенно металлы, тем самым ослабляя конструкцию, в которой такие материалы могли использоваться.
  9. Некоторые вещества токсичны и могут отравить человека или животных при попадании на кожу, вдыхании или загрязнении пищи или воды. Их способность делать это может быть кратковременной или может продолжаться в течение длительного периода времени. Такие вещества, если их утилизировать путем захоронения или сжигания, могут загрязнить источники воды или вступить в контакт с животными или рабочими.
  10. Токсичные вещества, разлитые при промышленной переработке, транспортировке (в том числе при авариях), обращении или хранении, а также ядовитые газы, выбрасываемые в атмосферу, могут воздействовать на персонал аварийно-спасательных служб и других лиц, включая население. Опасность становится еще более серьезной, если разлитое вещество (вещества) испаряется при температуре окружающей среды, поскольку пары могут переноситься на большие расстояния из-за ветрового сноса или стекания.
  11. Некоторые вещества могут издавать сильный, резкий или неприятный запах сами по себе или при сжигании на открытом воздухе. В любом случае такие вещества представляют общественный дискомфорт, даже если они могут быть нетоксичными, и их необходимо утилизировать путем надлежащего сжигания, если только их невозможно собрать и переработать. Точно так же, как пахучие вещества не обязательно токсичны, вещества без запаха и некоторые вещества с приятным запахом могут оказывать вредное физиологическое воздействие.
  12. Некоторые вещества, такие как взрывчатые вещества, фейерверки, органические пероксиды и некоторые другие химические вещества, чувствительны к теплу или удару и могут взорваться с разрушительным эффектом, если с ними не обращаться осторожно или смешать с другими веществами. Поэтому такие вещества должны быть тщательно отделены и уничтожены под надлежащим надзором.
  13. Отходы, загрязненные радиоактивностью, могут быть столь же опасны, как и сами радиоактивные материалы. Их утилизация требует специальных знаний. Надлежащие указания по удалению таких отходов можно получить в ядерно-энергетической организации страны.

 

Некоторые из методов, которые могут быть использованы для удаления промышленных и аварийных отходов: биологический распад, захоронение, сжигание, Полигон, мульчирование, открытое горение, пиролиз и утилизация через подрядчика. Они кратко описаны ниже.

биологический распад

Многие химикаты полностью разрушаются в течение 24–15 месяцев при смешивании с верхним слоем почвы XNUMX см. Это явление известно как биодеградация и связано с действием почвенных бактерий. Однако не все вещества ведут себя подобным образом.

захоронение

Отходы, особенно химические отходы, часто удаляются путем захоронения. Это опасная практика в том, что касается активных химических веществ, потому что со временем захороненное вещество может подвергнуться воздействию или вымыться дождем в водные ресурсы. Воздействующее вещество или загрязненный материал могут оказывать неблагоприятное физиологическое воздействие при контакте с водой, которую пьют люди или животные. Зарегистрированы случаи загрязнения воды через 40 лет после захоронения некоторыми вредными химическими веществами.

сжигание

Это один из самых безопасных и наиболее удовлетворительных методов удаления отходов, если отходы сжигаются в правильно спроектированной мусоросжигательной печи в контролируемых условиях. Однако следует позаботиться о том, чтобы вещества, содержащиеся в отходах, подлежали безопасному сжиганию, не создавая каких-либо эксплуатационных проблем или особой опасности. Почти все промышленные мусоросжигательные заводы требуют установки оборудования для контроля загрязнения воздуха, которое необходимо тщательно выбирать и устанавливать с учетом состава стоков, выделяемых мусоросжигательным заводом при сжигании промышленных отходов.

Необходимо соблюдать осторожность при эксплуатации мусоросжигательной печи, чтобы гарантировать, что ее рабочая температура не поднимется чрезмерно ни из-за подачи большого количества летучих веществ, ни из-за характера сжигаемых отходов. Разрушение конструкции может произойти из-за чрезмерной температуры или со временем из-за коррозии. Скруббер также необходимо периодически осматривать на наличие признаков коррозии, которая может возникнуть из-за контакта с кислотами, а систему скруббера необходимо регулярно обслуживать для обеспечения надлежащего функционирования.

Полигон

Низменная земля или впадина в земле часто используются в качестве свалки отходов до тех пор, пока она не сравняется с окружающей землей. Затем отходы выравнивают, засыпают землей и укатывают. Земля затем используется для строительства или других целей.

Для удовлетворительной работы полигона необходимо выбирать площадку с учетом близости трубопроводов, канализационных линий, линий электропередач, нефтяных и газовых скважин, шахт и других опасностей. Затем отходы необходимо смешать с землей и равномерно распределить в углублении или широкой траншее. Каждый слой должен быть механически уплотнен перед добавлением следующего слоя.

Поверх отходов обычно укладывают слой земли толщиной 50 см и уплотняют, оставляя в почве достаточно отверстий для выхода газа, образующегося в результате биологической активности отходов. Следует также обратить внимание на надлежащий дренаж территории полигона.

В зависимости от различных компонентов отходов они могут иногда воспламеняться на свалке. Поэтому каждая такая зона должна быть должным образом огорожена, а наблюдение должно осуществляться до тех пор, пока вероятность возгорания не станет маловероятной. Также должны быть приняты меры для тушения любого пожара, который может возникнуть в отходах на полигоне.

Мульчирование

Были проведены некоторые испытания повторного использования полимеров в качестве мульчи (сыпучий материал для защиты корней растений) путем измельчения отходов на мелкие кусочки или гранулы. При таком использовании он очень медленно разлагается. Следовательно, его воздействие на почву чисто физическое. Однако этот метод не получил широкого распространения.

Открытое горение

Открытое сжигание отходов вызывает загрязнение атмосферы и опасно тем, что существует вероятность выхода огня из-под контроля и распространения на близлежащие объекты или территории. Также существует вероятность взрыва контейнеров и возможно вредное физиологическое воздействие радиоактивных материалов, которые могут содержаться в отходах. Этот метод утилизации запрещен в некоторых странах. Это нежелательный метод, и его следует обескураживать.

Пиролиз

Восстановление некоторых соединений путем перегонки продуктов, образующихся при пиролизе (разложении при нагревании) полимеров и органических веществ, возможно, но еще не получило широкого распространения.

Утилизация через подрядчиков

Это, пожалуй, самый удобный способ. Важно, чтобы для работы отбирались только надежные подрядчики, обладающие знаниями и опытом в области утилизации промышленных отходов и опасных материалов. Опасные материалы должны быть тщательно разделены и утилизированы отдельно.

Отдельные классы материалов

Конкретные примеры типов опасных материалов, которые часто встречаются в современной промышленности, включают: (1) горючие и химически активные металлы, такие как магний, калий, литий, натрий, титан и цирконий; (2) горючие отходы; (3) олифы; (4) легковоспламеняющиеся жидкости и отработанные растворители; (5) окисляющие материалы (жидкие и твердые); и (6) радиоактивные материалы. Эти материалы требуют особого обращения и мер предосторожности, которые необходимо тщательно изучить. Для получения более подробной информации об идентификации опасных материалов и опасностей промышленных материалов можно ознакомиться со следующими публикациями: Справочник по противопожарной защите (Кот 1991) и Опасные свойства промышленных материалов Сакса (Льюис, 1979).

 

Назад

Люди живут всю свою жизнь в очень маленьком, строго охраняемом диапазоне внутренних температур тела. Максимальные пределы переносимости для живых клеток колеблются от примерно 0°С (образование кристаллов льда) до примерно 45°С (термическая коагуляция внутриклеточных белков); однако люди могут переносить внутреннюю температуру ниже 35ºC или выше 41ºC только в течение очень коротких периодов времени. Для поддержания внутренней температуры в этих пределах у людей выработались весьма эффективные, а в ряде случаев и специализированные физиологические реакции на острые термические нагрузки. Эти реакции, предназначенные для облегчения сохранения, производства или выделения тепла тела, включают тонко контролируемую координацию нескольких систем организма.

Тепловой баланс человека

Безусловно, самый большой источник тепла, сообщаемый телу, является результатом метаболического производства тепла. (М). Даже при максимальной механической эффективности от 75 до 80% энергии, затрачиваемой на мышечную работу, выделяется в виде тепла. В покое скорость метаболизма 300 мл O2 в минуту создает тепловую нагрузку около 100 Вт. Во время установившейся работы при потреблении кислорода 1 л/мин выделяется около 350 Вт тепла — за вычетом энергии, связанной с внешней работой. (W). Даже при такой интенсивности работы от легкой до умеренной внутренняя температура тела будет повышаться примерно на один градус по Цельсию каждые 15 минут, если бы не эффективные средства рассеивания тепла. Фактически, люди в очень хорошей физической форме могут производить тепло мощностью более 1,200 Вт в течение 1–3 часов без теплового повреждения (Gisolfi and Wenger, 1984).

Тепло также может быть получено из окружающей среды через излучение. (R) и конвекция (С) если температура земного шара (мера лучистого тепла) и температура воздуха (по сухому термометру) соответственно превышают температуру кожи. Эти пути поступления тепла обычно невелики по сравнению с M, и фактически становятся путями потери тепла, когда температурный градиент от кожи к воздуху меняется на противоположный. Последний путь потери тепла — испарение. (Е)— также обычно является наиболее важным, поскольку скрытая теплота испарения пота высока — примерно 680 Втч/л испаряемого пота. Эти отношения обсуждаются в другом месте этой главы.

В условиях от прохладных до термонейтральных теплоприток уравновешивается теплоотдачей, тепло не сохраняется, и температура тела уравновешивается; это:

М–Ж ± Р ± Ц–Э = 0

Однако при более сильном воздействии тепла:

М–Ж ± Р ± Ц >E

и сохраняется тепло. В частности, тяжелая работа (высокий расход энергии, увеличивающий М–Ж), чрезмерно высокие температуры воздуха (которые увеличивают Р+К), высокая влажность (которая ограничивает E) и ношение толстой или относительно непроницаемой одежды (которая создает барьер для эффективного испарения пота) создают такой сценарий. Наконец, если упражнения продолжительны или гидратация недостаточна, E может опережать ограниченная способность организма выделять пот (1-2 л/ч в течение коротких периодов времени).

Температура тела и ее контроль

Для описания физиологических реакций на тепло и холод тело делится на два компонента — «ядро» и «оболочку». Температура ядра (Tc) представляет собой внутреннюю или глубокую температуру тела и может быть измерена орально, ректально или, в лабораторных условиях, в пищеводе или на барабанной перепонке (барабанная перепонка). Температура скорлупы представлена ​​средней температурой кожи (Tsk). Средняя температура тела (Tb) в любое время является взвешенным балансом между этими температурами, т.е.

 

Tb = k Tc + (1– k) Tsk

где весовой коэффициент k колеблется примерно от 0.67 до 0.90.

При столкновении с проблемами теплового нейтралитета (тепловые или холодовые стрессы) организм стремится контролировать Tc посредством физиологических приспособлений и Tc обеспечивает основную обратную связь с мозгом для координации этого контроля. В то время как локальная и средняя температура кожи важны для обеспечения сенсорной информации, Tsk сильно зависит от температуры окружающей среды, составляя в среднем около 33 ºС при термонейтральности и достигая 36-37 ºС в условиях тяжелой работы на жаре. Он может значительно снижаться при общем и локальном воздействии холода; тактильная чувствительность возникает между 15 и 20 ºC, тогда как критическая температура для ловкости рук находится между 12 и 16 ºC. Верхний и нижний болевые пороги для Tsk составляют примерно 43 ºC и 10 ºC соответственно.

Точные картографические исследования локализовали место наибольшего терморегуляторного контроля в области мозга, известной как преоптический/передний гипоталамус (POAH). В этой области находятся нервные клетки, которые реагируют как на нагревание (теплочувствительные нейроны), так и на охлаждение (холодочувствительные нейроны). Эта область доминирует в контроле температуры тела, получая афферентную сенсорную информацию о температуре тела и отправляя эфферентные сигналы на кожу, мышцы и другие органы, участвующие в регуляции температуры, через вегетативную нервную систему. Другие области центральной нервной системы (задний гипоталамус, ретикулярная формация, мост, продолговатый и спинной мозг) образуют восходящие и нисходящие связи с ПОАГ и выполняют различные вспомогательные функции.

Система управления телом аналогична термостатическому контролю температуры в доме с возможностью обогрева и охлаждения. Когда температура тела поднимается выше некоторой теоретической «заданной» температуры, включаются эффекторные реакции, связанные с охлаждением (потоотделение, усиление кожного кровотока). Когда температура тела падает ниже заданного значения, инициируются реакции притока тепла (снижение кожного кровотока, озноб). Однако, в отличие от домашних систем отопления/охлаждения, система терморегуляции человека не работает как простая система включения-выключения, но также имеет характеристики пропорционального управления и контроля скорости изменения. Следует понимать, что «заданная температура» существует только теоретически и поэтому полезна для визуализации этих концепций. Еще предстоит проделать большую работу для полного понимания механизмов, связанных с терморегуляторной установкой.

Какой бы ни была ее основа, уставка относительно стабильна и не зависит от работы или температуры окружающей среды. На самом деле, единственное известное острое возмущение, способное сместить заданную точку, связано с группой эндогенных пирогенов, участвующих в лихорадочной реакции. Эффекторные реакции, используемые организмом для поддержания теплового баланса, инициируются и контролируются в ответ на «ошибку нагрузки», то есть температуру тела, которая кратковременно выше или ниже заданного значения (рис. 1). Внутренняя температура ниже заданного значения создает отрицательную ошибку нагрузки, в результате чего инициируется приток тепла (дрожь, сужение сосудов кожи). Температура тела выше заданной создает положительную ошибку нагрузки, что приводит к включению эффекторов потери тепла (расширение сосудов кожи, потоотделение). В каждом случае результирующая теплопередача уменьшает ошибку нагрузки и помогает вернуть температуру тела к устойчивому состоянию.

Рисунок 1. Модель терморегуляции в организме человека.

НЕА030F1

Регулирование температуры в жару

Как упоминалось выше, люди отдают тепло в окружающую среду в основном за счет комбинации сухих (излучение и конвекция) и испарительных путей. Для облегчения этого обмена включаются и регулируются две первичные эффекторные системы — расширение сосудов кожи и потоотделение. В то время как расширение сосудов кожи часто приводит к небольшому увеличению потери сухого (радиационного и конвективного) тепла, оно функционирует главным образом для передачи тепла от сердцевины к коже (внутренний теплообмен), в то время как испарение пота обеспечивает чрезвычайно эффективное средство охлаждения крови до к ее возврату в глубокие ткани организма (внешний теплообмен).

Расширение сосудов кожи

Количество тепла, передаваемого от ядра к оболочке, зависит от кожного кровотока (SkBF), градиента температуры между ядром и кожей и удельной теплоемкости крови (немногим менее 4 кДж/°С на литр кожного покрова). кровь). В состоянии покоя в термонейтральной среде кожа получает приблизительно от 200 до 500 мл/мин кровотока, что составляет лишь от 5 до 10% всей крови, перекачиваемой сердцем (сердечный выброс). Из-за градиента 4ºC между Tc (около 37ºC) и Tsk (около 33ºC в таких условиях) метаболическое тепло, вырабатываемое организмом для поддержания жизни, постоянно передается коже для рассеивания. Напротив, в условиях сильной гипертермии, такой как высокоинтенсивная работа в жарких условиях, температурный градиент от ядра к коже меньше, и необходимая теплопередача достигается за счет значительного увеличения SkBF. При максимальном тепловом стрессе SkBF может достигать 7–8 л/мин, что составляет примерно одну треть сердечного выброса (Rowell, 1983). Этот высокий кровоток достигается за счет плохо изученного механизма, уникального для человека, который получил название «активная сосудорасширяющая система». Активная вазодилатация включает сигналы симпатического нерва от гипоталамуса к артериолам кожи, но нейротрансмиттер не определен.

Как упоминалось выше, SkBF в первую очередь реагирует на увеличение Tc и, в меньшей степени, Tsk. Tc повышается, когда начинается мышечная работа и начинается метаболическая выработка тепла, и как только достигается некоторый порог Tc достигается, SkBF также начинает резко возрастать. На эти основные терморегуляторные отношения также действуют нетепловые факторы. Этот второй уровень контроля имеет решающее значение, поскольку он модифицирует SkBF, когда общая сердечно-сосудистая стабильность находится под угрозой. Вены в коже очень податливы, и значительная часть циркулирующего объема скапливается в этих сосудах. Это способствует теплообмену, замедляя капиллярную циркуляцию и увеличивая время прохождения; однако это скопление в сочетании с потерями жидкости из-за потоотделения может также снизить скорость возврата крови к сердцу. Среди нетепловых факторов, которые, как было показано, влияют на SkBF во время работы, - вертикальное положение, обезвоживание и дыхание с положительным давлением (использование респиратора). Они действуют через рефлексы, которые включаются при снижении давления наполнения сердца и разгрузке рецепторов растяжения, расположенных в крупных венах и правом предсердии, и поэтому наиболее очевидны при длительной аэробной работе в вертикальном положении. Эти рефлексы служат для поддержания артериального давления и, в случае работы, для поддержания адекватного притока крови к активным мышцам. Таким образом, уровень SkBF в любой момент времени представляет собой совокупность эффектов терморегуляторных и нетерморегуляторных рефлекторных реакций.

Необходимость увеличения притока крови к коже для регулирования температуры сильно влияет на способность сердечно-сосудистой системы регулировать кровяное давление. По этой причине необходима скоординированная реакция всей сердечно-сосудистой системы на тепловой стресс. Какие изменения сердечно-сосудистой системы позволяют увеличить кровоток и объем кожи? Во время работы в прохладных или термонейтральных условиях необходимое увеличение сердечного выброса хорошо поддерживается за счет увеличения частоты сердечных сокращений (ЧСС), поскольку дальнейшее увеличение ударного объема (УО) минимально за пределами интенсивности упражнений 40% от максимальной. В жару ЧСС выше при любой интенсивности работы как компенсация сниженного центрального объема крови (ЦОК) и УО. При более высоких уровнях работы достигается максимальная частота сердечных сокращений, и поэтому эта тахикардия не способна поддерживать необходимый сердечный выброс. Второй способ, с помощью которого организм обеспечивает высокий SkBF, заключается в распределении кровотока от таких областей, как печень, почки и кишечник (Rowell 1983). Это перенаправление потока может обеспечить дополнительный приток крови к коже на 800–1,000 мл и помогает компенсировать пагубные последствия периферического скопления крови.

потение

Терморегуляторный пот у человека выделяется от 2 до 4 миллионов эккринных потовых желез, неравномерно разбросанных по поверхности тела. В отличие от апокринных потовых желез, имеющих тенденцию к скоплению (на лице и кистях, в аксиальной и генитальной областях) и выделяющих пот в волосяные фолликулы, эккринные железы выделяют пот непосредственно на поверхность кожи. Этот пот не имеет запаха, бесцветен и относительно разбавлен, поскольку представляет собой ультрафильтрат плазмы. Таким образом, он имеет высокую скрытую теплоту парообразования и идеально подходит для целей охлаждения.

В качестве примера эффективности этой системы охлаждения: человек, работающий при расходе кислорода 2.3 л/мин, производит чистое метаболическое тепло (М–Ж) около 640 Вт. Без потоотделения температура тела будет повышаться со скоростью примерно 1 ° C каждые 6–7 мин. При эффективном испарении около 16 г пота в минуту (разумная скорость) скорость потери тепла может соответствовать скорости производства тепла, а внутренняя температура тела может поддерживаться на постоянном уровне; это,

М–W±R±C–E = 0

Эккринные железы имеют простое строение, состоящее из извитой секреторной части, протока и кожной поры. Объем пота, производимого каждой железой, зависит как от структуры, так и от функции железы, а общая скорость потоотделения, в свою очередь, зависит как от рекрутирования желез (активная плотность потовых желез), так и от продукции потовых желез. Тот факт, что некоторые люди потеют сильнее, чем другие, в основном объясняется разницей в размерах потовых желез (Сато и Сато, 1983). Акклиматизация к теплу является еще одним важным фактором, определяющим потоотделение. С возрастом более низкая скорость потоотделения связана не с меньшим количеством активированных эккринных желез, а со снижением выделения пота на каждую железу (Kenney and Fowler, 1988). Это снижение, вероятно, связано с комбинацией структурных и функциональных изменений, сопровождающих процесс старения.

Как и вазомоторные сигналы, нервные импульсы к потовым железам берут начало в ПОАГ и спускаются по стволу мозга. Волокна, иннервирующие железы, представляют собой симпатические холинергические волокна, редкое сочетание в организме человека. В то время как ацетилхолин является основным нейротрансмиттером, адренергические медиаторы (катехоламины) также стимулируют эккринные железы.

Во многих отношениях контроль потоотделения аналогичен контролю кожного кровотока. Оба имеют схожие начальные характеристики (порог) и линейные отношения к увеличению Tc. Спина и грудь, как правило, имеют более раннее начало потоотделения, а наклоны зависимости локальной скорости потоотделения от Tc являются самыми крутыми для этих сайтов. Как и SkBF, потоотделение модифицируется нетепловыми факторами, такими как гипогидратация и гиперосмоляльность. Также стоит отметить явление под названием «гидромеоз», которое возникает в очень влажной среде или на участках кожи, постоянно покрытых мокрой одеждой. Такие участки кожи из-за постоянного увлажнения снижают выделение пота. Это служит защитным механизмом от продолжающегося обезвоживания, поскольку пот, который остается на коже, а не испаряется, не выполняет охлаждающей функции.

Если скорость потоотделения достаточна, испарительное охлаждение в конечном счете определяется градиентом давления водяного пара между влажной кожей и окружающим ее воздухом. Таким образом, высокая влажность и тяжелая или непроницаемая одежда ограничивают охлаждение за счет испарения, в то время как сухой воздух, движение воздуха вокруг тела и минимальная пористость одежды способствуют испарению. С другой стороны, если работа тяжелая и обильное потоотделение, испарительное охлаждение также может быть ограничено способностью тела производить пот (максимум около 1-2 л/ч).

Регуляция температуры на морозе

Одно важное различие в том, как люди реагируют на холод по сравнению с теплом, заключается в том, что поведение играет гораздо большую роль в терморегуляторной реакции на холод. Например, ношение соответствующей одежды и принятие позы, которая сводит к минимуму площадь поверхности, доступной для потери тепла («сжимание»), гораздо важнее в холодных условиях окружающей среды, чем в жару. Второе отличие заключается в большей роли гормонов при холодовом стрессе, включая повышенную секрецию катехоламинов (норадреналина и адреналина) и гормонов щитовидной железы.

Сужение сосудов кожи

Эффективной стратегией против потери тепла телом посредством излучения и конвекции является увеличение эффективной изоляции, обеспечиваемой оболочкой. У людей это достигается уменьшением притока крови к коже, то есть сужением сосудов кожи. Сужение кожных сосудов более выражено на конечностях, чем на туловище. Подобно активной вазодилатации, кожная вазоконстрикция также контролируется симпатической нервной системой и находится под влиянием TcTsk и местные температуры.

Влияние охлаждения кожи на частоту сердечных сокращений и реакцию артериального давления зависит от области тела, которая охлаждается, и от того, является ли холод достаточно сильным, чтобы вызвать боль. Например, когда руки погружаются в холодную воду, увеличивается ЧСС, систолическое артериальное давление (САД) и диастолическое артериальное давление (ДАД). При охлаждении лица САД и ДАД увеличиваются за счет генерализованной симпатической реакции; однако ЧСС снижается из-за парасимпатического рефлекса (LeBlanc, 1975). Чтобы еще больше запутать сложность общей реакции на холод, существует широкий диапазон вариабельности реакций от одного человека к другому. Если холодовой стресс имеет достаточную величину, чтобы снизить внутреннюю температуру тела, ЧСС может либо увеличиваться (из-за симпатической активации), либо уменьшаться (из-за увеличения центрального объема крови).

Конкретный интересующий случай называется холодовая вазодилатация (ЦИВД). Когда руки помещают в холодную воду, SkBF сначала уменьшается для сохранения тепла. Когда температура ткани падает, SkBF парадоксальным образом увеличивается, снова уменьшается и повторяет этот циклический паттерн. Было высказано предположение, что CIVD полезен для предотвращения повреждения тканей от замерзания, но это не доказано. Механически преходящая дилатация, вероятно, происходит, когда прямое воздействие холода достаточно сильное, чтобы уменьшить нервную передачу, что временно подавляет влияние холода на симпатические рецепторы кровеносных сосудов (опосредуя констрикторный эффект).

Дрожа

По мере охлаждения тела второй линией защиты является дрожь. Дрожь — это случайное непроизвольное сокращение поверхностных мышечных волокон, которое не ограничивает потерю тепла, а скорее увеличивает его выработку. Поскольку такие сокращения не производят никакой работы, выделяется тепло. Отдыхающий человек может увеличить свою метаболическую выработку тепла примерно в три-четыре раза во время сильной дрожи, а также может увеличить Tc на 0.5ºС. Сигналы, вызывающие дрожь, исходят главным образом от кожи, и, помимо POAH, в значительной степени вовлекается также задний гипоталамус.

Хотя на озноб (и переносимость холода в целом) влияют многие индивидуальные факторы, одним из важных факторов является ожирение. Мужчина с очень небольшим количеством подкожного жира (толщиной 2-3 мм) начинает дрожать через 40 минут при 15ºC и 20 минут при 10ºC, в то время как мужчина с большим количеством изолирующего жира (11 мм) может вообще не дрожать при 15ºC и через 60 минут. при 10ºC (LeBlanc 1975).

 

Назад

При воздействии на человека теплых условий окружающей среды включаются физиологические механизмы теплоотдачи для поддержания нормальной температуры тела. Тепловые потоки между телом и окружающей средой зависят от разницы температур между:

  1. окружающий воздух и объекты, такие как стены, окна, небо и т. д.
  2. температура поверхности человека

 

Температура поверхности человека регулируется физиологическими механизмами, такими как изменения притока крови к коже и испарение пота, выделяемого потовыми железами. Также человек может менять одежду, чтобы варьировать теплообмен с окружающей средой. Чем теплее условия окружающей среды, тем меньше разница между температурой окружающей среды и температурой поверхности кожи или одежды. Это означает, что «сухой теплообмен» за счет конвекции и излучения уменьшается в теплых условиях по сравнению с холодными. При температуре окружающей среды выше температуры поверхности тепло отбирается из окружающей среды. В этом случае это лишнее тепло вместе с тем, что выделяется в результате обменных процессов, должно теряться за счет испарения пота для поддержания температуры тела. Таким образом, испарение пота становится все более и более важным с повышением температуры окружающей среды. Учитывая важность испарения пота, неудивительно, что скорость ветра и влажность воздуха (давление водяного пара) являются критическими факторами окружающей среды в жарких условиях. Если влажность высокая, пот все равно вырабатывается, но испарение уменьшается. Пот, который не может испариться, не имеет охлаждающего действия; он стекает и теряется с точки зрения терморегуляции.

Организм человека содержит около 60% воды, около 35-40 л у взрослого человека. Около трети воды в организме, внеклеточной жидкости, распределяется между клетками и в сосудистой системе (плазма крови). Остальные две трети воды организма, внутриклеточная жидкость, находится внутри клеток. Состав и объем водных отсеков тела очень точно контролируются гормональными и нервными механизмами. Пот выделяется из миллионов потовых желез на поверхности кожи, когда центр терморегуляции активируется повышением температуры тела. Пот содержит соли (NaCl, хлорид натрия), но в меньшем количестве, чем внеклеточная жидкость. Таким образом, и вода, и соль теряются и должны восполняться после потоотделения.

Эффекты потери пота

В нейтральных, комфортных условиях окружающей среды небольшое количество воды теряется при диффузии через кожу. Однако при тяжелой работе и в жарких условиях активные потовые железы могут выделять большое количество пота, до более 2 л/ч в течение нескольких часов. Даже потеря всего 1% массы тела с потом (> 600–700 мл) оказывает заметное влияние на способность выполнять работу. Это видно по увеличению частоты сердечных сокращений (ЧСС) (ЧСС увеличивается примерно на пять ударов в минуту на каждый процент потери воды в организме) и повышению температуры тела. При продолжении работы происходит постепенное повышение температуры тела, которая может подняться до значения около 40ºC; при этой температуре может возникнуть тепловая болезнь. Отчасти это связано с потерей жидкости из сосудистой системы (рис. 1). Потеря воды из плазмы крови уменьшает количество крови, заполняющей центральные вены и сердце. Таким образом, каждый удар сердца будет перекачивать меньший ударный объем. Как следствие, сердечный выброс (количество крови, выбрасываемое сердцем в минуту) имеет тенденцию к снижению, и частота сердечных сокращений должна увеличиваться, чтобы поддерживать кровообращение и кровяное давление.

Рис. 1. Расчетное распределение воды во внеклеточном компартменте (ECW) и внутриклеточном компартменте (ICW) до и после 2-часовой дегидратации при физической нагрузке при комнатной температуре 30°C.

НЕА050F1

Система физиологического контроля, называемая барорецепторной рефлекторной системой, поддерживает сердечный выброс и артериальное давление близкими к норме при любых условиях. В рефлексах участвуют рецепторы-сенсоры в сердце и в артериальной системе (аорта и сонные артерии), отслеживающие степень растяжения сердца и сосудов наполняющей их кровью. Импульсы от них проходят по нервам в центральную нервную систему, перестройки которой в случае обезвоживания вызывают сужение кровеносных сосудов и уменьшение притока крови к внутренним органам (печень, кишечник, почки) и к коже. Таким образом, имеющийся поток крови перераспределяется в пользу циркуляции в работающих мышцах и в мозге (Rowell 1986).

Сильное обезвоживание может привести к тепловому истощению и циркуляторному коллапсу; в этом случае человек не может поддерживать артериальное давление, следствием чего является обморок. Симптомами теплового истощения являются физическое истощение, часто вместе с головной болью, головокружением и тошнотой. Основной причиной теплового истощения является напряжение кровообращения, вызванное потерей воды из сосудистой системы. Снижение объема крови приводит к рефлексам, которые уменьшают кровообращение в кишечнике и коже. Снижение кожного кровотока усугубляет ситуацию, так как потери тепла с поверхности уменьшаются, поэтому температура ядра еще больше повышается. Субъект может потерять сознание из-за падения артериального давления и, как следствие, снижения притока крови к мозгу. Лежачее положение улучшает кровоснабжение сердца и мозга, а после охлаждения и питья человек практически сразу восстанавливает свое самочувствие.

Если процессы, вызывающие тепловое истощение, «зашкаливают», оно перерастает в тепловой удар. Постепенное снижение кожного кровообращения приводит к все большему и большему повышению температуры, что приводит к уменьшению, даже прекращению потоотделения и еще более быстрому повышению внутренней температуры, что вызывает циркуляторный коллапс и может привести к смерти или необратимому повреждению органов. мозг. Изменения в крови (такие как высокая осмоляльность, низкий рН, гипоксия, прилипание клеток эритроцитов, внутрисосудистое свертывание) и поражение нервной системы обнаруживаются у пациентов с тепловым ударом. Снижение кровоснабжения кишечника во время теплового стресса может спровоцировать повреждение тканей и высвобождение веществ (эндотоксинов), вызывающих лихорадку в связи с тепловым ударом (Hales and Richards, 1987). Тепловой удар — это острая, опасная для жизни экстренная ситуация, которая более подробно обсуждается в разделе «Тепловые расстройства».

Вместе с потерей воды при потоотделении происходит потеря электролитов, в основном натрия (Na+) и хлорид ( Cl), но и в меньшей степени магний (Mg++), калий (К+) и так далее (см. таблицу 1). Пот содержит меньше соли, чем отсеки жидкости организма. Это означает, что они становятся более солеными после потери пота. Повышенная соленость, по-видимому, оказывает специфическое влияние на кровообращение через воздействие на гладкие мышцы сосудов, которые контролируют степень открытия сосудов. Однако несколько исследователей показали, что он влияет на способность потоотделения таким образом, что для стимуляции потовых желез требуется более высокая температура тела — чувствительность потовых желез снижается (Nielsen, 1984). Если потери с потом замещаются только водой, это может привести к ситуации, когда в организме содержится меньше хлорида натрия, чем в нормальном состоянии (гипоосмотическое). Это вызывает судороги из-за нарушения работы нервов и мышц, состояние, известное в прежние дни как «шахтерские судороги» или «судороги кочегара». Его можно предотвратить, добавив в рацион соль (в 1920-х годах в Великобритании в качестве профилактической меры предлагалось употребление пива!).

Таблица 1. Концентрация электролитов в плазме крови и поте

Электролиты и прочее
веществ

Концентрация в плазме крови
(г на л)

Концентрация пота
(г на л)

Натрий (Na+)

3.5

0.2-1.5

Калий (K+)

0.15

0.15

Кальций (Ca++)

0.1

маленькое количество

Магний (Mg++)

0.02

маленькое количество

Хлорид (Cl)

3.5

0.2-1.5

Бикарбонат (HCO3-)

1.5

маленькое количество

Белки

70

0

Жиры, глюкоза, малые ионы

15-20

маленькое количество

Адаптировано из Веллара 1969 года.

Снижение кожного кровообращения и активность потовых желез влияют на терморегуляцию и потерю тепла таким образом, что внутренняя температура увеличивается больше, чем в состоянии полной гидратации.

Работники многих различных профессий подвергаются внешнему тепловому стрессу, например, рабочие сталелитейных заводов, стекольных заводов, бумажных фабрик, пекарен, горнодобывающей промышленности. Также внешнему теплу подвергаются трубочисты и пожарные. Люди, работающие в замкнутом пространстве на транспортных средствах, кораблях и самолетах, также могут страдать от жары. Однако следует учитывать, что лица, работающие в защитных костюмах или выполняющие тяжелую работу в непромокаемой одежде, могут страдать от теплового удара даже в умеренных и прохладных температурных условиях окружающей среды. Неблагоприятные последствия теплового стресса проявляются в условиях, когда температура тела повышена, а выделение пота велико.

Регидратация

Последствия обезвоживания из-за потери пота можно устранить, выпив достаточное количество жидкости, чтобы заменить пот. Обычно это происходит во время восстановления после работы и физических упражнений. Однако при длительной работе в жарких условиях производительность улучшается за счет питья во время активности. Таким образом, общий совет - пить, когда хочется пить.

Но в этом есть несколько очень важных проблем. Во-первых, желание пить недостаточно сильно, чтобы заменить одновременно возникающую потерю воды; во-вторых, время восполнения большого дефицита воды очень велико, более 12 часов. Наконец, существует предел скорости, с которой вода может проходить из желудка (где она хранится) в кишечник (кишечник), где происходит всасывание. Эта скорость ниже наблюдаемой скорости потоотделения во время упражнений в жарких условиях.

Было проведено большое количество исследований различных напитков для восстановления запасов воды, электролитов и углеводов в организме спортсменов во время длительных тренировок. Основные выводы заключаются в следующем:

    • Количество жидкости, которое может быть утилизировано, т. е. транспортировано через желудок в кишечник, ограничивается «скоростью опорожнения желудка», максимальная скорость которой составляет около 1,000 мл/ч.
    • Если жидкость является «гиперосмотической» (содержит ионы/молекулы в более высоких концентрациях, чем кровь), скорость снижается. С другой стороны, «изоосмотические жидкости» (содержащие воду и ионы/молекулы той же концентрации, осмоляльности, что и кровь) проходят с той же скоростью, что и чистая вода.
    • Добавление небольшого количества соли и сахара увеличивает скорость всасывания воды из кишечника (Maughan 1991).

         

        Имея это в виду, вы можете сделать свою собственную «регидратационную жидкость» или выбрать из большого количества коммерческих продуктов. Обычно водно-электролитный баланс восстанавливается при питье во время еды. Работников или спортсменов с большими потерями пота следует поощрять пить больше, чем им хочется. Пот содержит от 1 до 3 г NaCl на литр. Это означает, что потери с потом более 5 л в день могут вызвать дефицит хлорида натрия, если не будет дополнена диета.

        Рабочим и спортсменам также рекомендуется контролировать свой водный баланс, регулярно взвешиваясь, например, утром (в одно и то же время и в одно и то же время) и стараясь поддерживать постоянный вес. Однако изменение массы тела не обязательно отражает степень гипогидратации. Вода химически связана с гликогеном, запасом углеводов в мышцах, и высвобождается, когда гликоген используется во время тренировки. В зависимости от содержания гликогена в организме могут произойти изменения веса примерно до 1 кг. Масса тела «с утра на утро» также изменяется за счет «биологических вариаций» содержания воды — например, у женщин по отношению к менструальному циклу в предменструальную фазу может удерживаться до 1—2 кг воды («предменструальный напряжение").

        Контроль воды и электролитов

        Объем водных отсеков тела, то есть объемов внеклеточной и внутриклеточной жидкости, и концентрация в них электролитов поддерживается очень постоянным благодаря регулируемому балансу между потреблением и потерей жидкости и веществ.

        Вода поступает из пищи и жидкости, а часть высвобождается в результате метаболических процессов, включая сжигание жиров и углеводов из пищи. Потеря воды происходит из легких во время дыхания, когда вдыхаемый воздух поглощает воду в легких с влажных поверхностей в дыхательных путях перед выдохом. Вода также в небольших количествах диффундирует через кожу в комфортных условиях во время отдыха. Однако при потоотделении вода может теряться со скоростью более 1—2 л/ч в течение нескольких часов. Содержание воды в организме контролируется. Повышенная потеря воды при потоотделении компенсируется питьем и уменьшением образования мочи, в то время как избыток воды выводится за счет увеличения образования мочи.

        Этот контроль как за потреблением, так и за выделением воды осуществляется через вегетативную нервную систему и гормоны. Жажда увеличивает потребление воды, а потеря воды почками регулируется; как объем, так и электролитный состав мочи находятся под контролем. Датчики в механизме управления находятся в сердце, реагируя на «наполненность» сосудистой системы. Если наполнение сердца снижено, например, после потоотделения, рецепторы будут сигнализировать об этом в центры мозга, ответственные за чувство жажды, и в области, которые индуцируют высвобождение антидиуретического гормона (АДГ) из задняя доля гипофиза. Этот гормон уменьшает объем мочи.

        Точно так же физиологические механизмы контролируют электролитный состав жидкостей организма посредством процессов в почках. Пища содержит питательные вещества, минералы, витамины и электролиты. В данном контексте важным вопросом является потребление хлорида натрия. Потребление натрия с пищей зависит от пищевых привычек и составляет от 10 до 20–30 г в день. Обычно это намного больше, чем необходимо, поэтому избыток выводится почками, контролируемый действием множества гормональных механизмов (ангиотензин, альдостерон, ANF и т. д.), которые контролируются стимулами от осморецепторов в головном мозге и в почках. , реагируя на осмоляльность в первую очередь Na+ и Cl в крови и жидкости в почках соответственно.

        Межличностные и этнические различия

        Можно ожидать различий между мужчинами и женщинами, а также молодыми и пожилыми людьми в реакции на жару. Они различаются по некоторым характеристикам, которые могут влиять на теплопередачу, таким как площадь поверхности, соотношение роста и веса, толщина изолирующих слоев кожного жира, а также по физической способности производить работу и тепло (аэробная способность » максимальная скорость потребления кислорода). Имеющиеся данные свидетельствуют о том, что у пожилых людей снижается толерантность к жаре. Они начинают потеть позже, чем молодые люди, а пожилые люди реагируют усилением кровотока в коже во время теплового воздействия.

        При сравнении полов было замечено, что женщины лучше переносят влажную жару, чем мужчины. В этой среде испарение пота уменьшается, поэтому немного большая площадь поверхности/массы у женщин может быть в их пользу. Однако аэробная способность является важным фактором, который следует учитывать при сравнении людей, подвергающихся воздействию тепла. В лабораторных условиях физиологические реакции на тепло сходны, если группы испытуемых с одинаковой физической работоспособностью («максимальное потребление кислорода» — VO2 макс) тестируются — например, молодые и старые самцы или самцы против самок (Пандольф и др., 1988). В этом случае определенное рабочее задание (занятие на велоэргометре) будет иметь одинаковую нагрузку на систему кровообращения, т. е. одинаковую частоту сердечных сокращений и одинаковое повышение температуры тела, независимо от возраста и пола.

        Те же соображения справедливы и для сравнения между этническими группами. Если принять во внимание различия в размерах и аэробных возможностях, нельзя указать на какие-либо существенные различия, обусловленные расой. Но в повседневной жизни в целом пожилые люди в среднем имеют более низкий VOXNUMX.2 Макс чем у молодых людей, а у женщин более низкий VO2 Макс чем у мужчин той же возрастной группы.

        Следовательно, при выполнении конкретной задачи, состоящей из определенной абсолютной скорости работы (измеряемой, например, в ваттах), человек с более низкой аэробной способностью будет иметь более высокую частоту сердечных сокращений и температуру тела и будет менее способен справляться с дополнительной нагрузкой. внешнего тепла, чем с более высоким VO2 Макс.

        В целях охраны труда и техники безопасности был разработан ряд индексов теплового стресса. В них учитываются большие межиндивидуальные различия в реакции на тепло и работу, а также специфические жаркие условия, для которых строится индекс. Они рассматриваются в другом месте этой главы.

        Люди, неоднократно подвергавшиеся воздействию тепла, лучше переносят жару даже через несколько дней. Они акклиматизируются. Повышается потоотделение и, как следствие, повышенное охлаждение кожи приводит к снижению внутренней температуры и частоты сердечных сокращений при работе в тех же условиях.

        Таким образом, искусственная акклиматизация персонала, который, как ожидается, будет подвергаться воздействию экстремальной жары (пожарные, спасатели, военнослужащие), вероятно, будет полезна для снижения нагрузки.

        Подводя итог, можно сказать, что чем больше тепла производит человек, тем больше его необходимо рассеивать. В жаркой среде испарение пота является лимитирующим фактором потери тепла. Межиндивидуальные различия в способности к потоотделению значительны. В то время как у некоторых людей потовые железы вообще отсутствуют, в большинстве случаев при физических тренировках и многократном воздействии тепла количество пота, вырабатываемого при стандартном тесте на тепловой стресс, увеличивается. Тепловой стресс приводит к увеличению частоты сердечных сокращений и температуры тела. Максимальная частота сердечных сокращений и/или внутренняя температура около 40ºC устанавливают абсолютный физиологический предел для выполнения работы в жаркой среде (Nielsen 1994).

         

        Назад

        Среда, Март 16 2011 21: 39

        Тепловые расстройства

        Высокая температура окружающей среды, высокая влажность, напряженные физические нагрузки или нарушение отвода тепла могут вызывать различные тепловые расстройства. К ним относятся тепловой обморок, тепловой отек, тепловые судороги, тепловое истощение и тепловой удар как системные расстройства и кожные поражения как местные расстройства.

        Системные расстройства

        Тепловые судороги, тепловое истощение и тепловой удар имеют клиническое значение. Механизмами, лежащими в основе развития этих системных нарушений, являются недостаточность кровообращения, водно-электролитный дисбаланс и/или гипертермия (повышенная температура тела). Самым тяжелым из всех является тепловой удар, который может привести к смерти, если не будет своевременно и должным образом оказана помощь.

        Две разные группы населения подвержены риску развития тепловых расстройств, за исключением младенцев. Первая и более многочисленная группа населения — это пожилые люди, особенно малоимущие и лица с хроническими заболеваниями, такими как сахарный диабет, ожирение, недоедание, застойная сердечная недостаточность, хронический алкоголизм, деменция и необходимость применения лекарств, нарушающих терморегуляцию. Вторая популяция, подверженная риску тепловых нарушений, включает здоровых людей, которые предпринимают длительные физические нагрузки или подвергаются чрезмерному тепловому стрессу. К факторам, предрасполагающим к тепловым расстройствам активных молодых людей, помимо врожденной и приобретенной дисфункции потовых желез, относятся плохая физическая подготовленность, отсутствие акклиматизации, низкая работоспособность и сниженное соотношение площади кожи к массе тела.

        Тепловой обморок

        Обморок — преходящая потеря сознания в результате снижения мозгового кровотока, которой часто предшествуют бледность, нечеткость зрения, головокружение и тошнота. Это может произойти у лиц, страдающих от теплового стресса. Срок тепловой коллапс использовался как синоним тепловой обморок. Симптомы объясняются расширением сосудов кожи, постуральным скоплением крови с последующим уменьшением венозного возврата к сердцу и снижением сердечного выброса. Легкое обезвоживание, которое развивается у большинства людей, подвергающихся воздействию тепла, способствует вероятности теплового обморока. К тепловому коллапсу предрасположены лица, страдающие сердечно-сосудистыми заболеваниями или не акклиматизированные. Жертвы обычно быстро приходят в сознание после того, как их укладывают на спину.

        Тепловой отек

        Легкий зависимый отек, то есть отек рук и ног, может развиться у неакклиматизированных людей, подвергшихся воздействию жаркой среды. Обычно это происходит у женщин и проходит после акклиматизации. Она стихает через несколько часов после того, как больного укладывают в более прохладное место.

        Тепловые судороги

        Тепловые судороги могут возникать после обильного потоотделения, вызванного длительной физической работой. В мышцах конечностей и живота, подвергающихся интенсивной работе и переутомлению, возникают болезненные судороги, при этом температура тела практически не повышается. Эти судороги вызваны истощением солей, которое происходит, когда потеря воды из-за длительного сильного потоотделения восполняется простой водой, не содержащей дополнительных солей, и когда концентрация натрия в крови падает ниже критического уровня. Тепловые судороги сами по себе являются относительно безобидным состоянием. Приступы обычно наблюдаются у физически здоровых людей, способных к длительной физической нагрузке, и когда-то назывались «судорогами шахтера» или «судорогами тростника», потому что они часто возникают у таких рабочих.

        Лечение тепловых судорог заключается в прекращении деятельности, отдыхе в прохладном месте и возмещении жидкости и электролитов. Следует избегать теплового воздействия в течение как минимум 24–48 часов.

        Тепловой удар

        Тепловое истощение является наиболее частым клиническим расстройством, связанным с перегревом. Это происходит в результате сильного обезвоживания после потери огромного количества пота. Обычно это происходит у здоровых молодых людей, которые подвергаются длительным физическим нагрузкам (тепловое истощение, вызванное нагрузкой), таких как марафонцы, спортсмены на открытом воздухе, новобранцы, шахтеры и строители. Основной чертой этого расстройства является недостаточность кровообращения из-за истощения воды и/или солей. Его можно считать начальной стадией теплового удара, и, если его не лечить, он может в конечном итоге перейти в тепловой удар. Его условно делят на два типа: тепловое истощение при истощении воды и истощение при истощении солей; но многие случаи представляют собой смесь обоих типов.

        Тепловое истощение при обезвоживании развивается в результате длительного обильного потоотделения и недостаточного потребления воды. Поскольку пот содержит ионы натрия в концентрации от 30 до 100 миллиэквивалентов на литр, что ниже, чем в плазме, большая потеря пота вызывает гипогидратацию (уменьшение содержания воды в организме) и гипернатриемию (повышение концентрации натрия в плазме). Тепловое истощение характеризуется жаждой, слабостью, утомляемостью, головокружением, тревогой, олигурией (скудным мочеиспусканием), тахикардией (учащенным сердцебиением) и умеренной гипертермией (39ºC и выше). Обезвоживание также приводит к снижению потоотделения, повышению температуры кожи, увеличению содержания белков в плазме и уровня натрия в плазме, а также значения гематокрита (отношение объема клеток крови к объему крови).

        Лечение заключается в том, чтобы дать пострадавшему отдохнуть в лежачем положении с поднятыми коленями в прохладной среде, вытереть тело прохладным полотенцем или губкой и восполнить потерю жидкости питьем или, если пероральный прием невозможен, внутривенным вливанием. Необходимо тщательно контролировать количество воды и солей, температуру тела и массу тела. Прием воды не следует регулировать в соответствии с субъективным ощущением жажды у пострадавшего, особенно когда потеря жидкости восполняется простой водой, потому что разведение крови быстро вызывает исчезновение жажды и разбавление диуреза, тем самым задерживая восстановление баланса жидкости в организме. Это явление недостаточного потребления воды называется добровольным обезвоживанием. Кроме того, бессолевая подача воды может осложнить тепловые расстройства, как описано ниже. Обезвоживание более 3% массы тела всегда следует лечить восполнением воды и электролитов.

        Тепловое истощение из-за истощения солей возникает в результате длительного сильного потоотделения и возмещения воды и недостаточного количества соли. Его возникновению способствуют неполная акклиматизация, рвота и понос и т.д. Этот вид теплового истощения обычно развивается через несколько дней после развития водного истощения. Это чаще всего встречается у малоподвижных пожилых людей, подвергающихся воздействию тепла, которые выпили большое количество воды, чтобы утолить жажду. Обычными симптомами являются головная боль, головокружение, слабость, утомляемость, тошнота, рвота, диарея, анорексия, мышечные спазмы и спутанность сознания. При исследовании крови отмечают уменьшение объема плазмы, повышение гематокрита и уровня белков плазмы, а также гиперкальциемию (избыток кальция в крови).

        Раннее обнаружение и быстрое лечение имеют важное значение, последнее заключается в том, чтобы дать пациенту отдохнуть в лежачем положении в прохладной комнате и обеспечить возмещение воды и электролитов. Следует контролировать осмолярность или удельный вес мочи, а также уровни мочевины, натрия и хлоридов в плазме, а также регистрировать температуру тела, массу тела и потребление воды и соли. При адекватном лечении пострадавшие обычно чувствуют себя хорошо в течение нескольких часов и выздоравливают без последствий. В противном случае он может легко перейти к тепловому удару.

        Тепловой удар

        Тепловой удар — это серьезное неотложное состояние, которое может привести к смерти. Это сложное клиническое состояние, при котором неконтролируемая гипертермия вызывает повреждение тканей. Такое повышение температуры тела изначально вызвано сильным тепловым застоем из-за чрезмерной тепловой нагрузки, а результирующая гипертермия вызывает дисфункцию центральной нервной системы, включая нарушение нормального механизма терморегуляции, что ускоряет повышение температуры тела. Тепловой удар встречается в основном в двух формах: классический тепловой удар и тепловой удар, вызванный физической нагрузкой. Первый развивается у очень молодых, пожилых, тучных или нездоровых людей, занимающихся обычной деятельностью при длительном воздействии высоких температур окружающей среды, тогда как второй чаще возникает у молодых, активных взрослых людей при физических нагрузках. Кроме того, существует смешанная форма теплового удара с признаками, соответствующими обеим вышеперечисленным формам.

        Пожилые люди, особенно те, у кого есть сопутствующие хронические заболевания, такие как сердечно-сосудистые заболевания, сахарный диабет и алкоголизм, а также те, кто принимает определенные лекарства, особенно психотропные препараты, подвергаются высокому риску классического теплового удара. Например, во время длительных периодов сильной жары уровень смертности среди населения старше 60 лет был зарегистрирован более чем в десять раз выше, чем среди населения в возрасте 60 лет и младше. Аналогичная высокая смертность среди пожилых людей также была зарегистрирована среди мусульман во время паломничества в Мекку, где было обнаружено, что смешанная форма теплового удара преобладает. Факторы, предрасполагающие к тепловому удару у пожилых людей, помимо упомянутых выше хронических заболеваний, включают снижение теплового восприятия, вялость вазомоторных и судомоторных (рефлекс потоотделения) реакций на изменение тепловой нагрузки и снижение способности к акклиматизации к теплу.

        Люди, которые активно работают или тренируются в жарких и влажных условиях, подвергаются высокому риску теплового заболевания, вызванного физической нагрузкой, будь то тепловое истощение или тепловой удар. Спортсмены, подвергающиеся сильному физическому напряжению, могут стать жертвами гипертермии, вырабатывая метаболическое тепло с высокой скоростью, даже когда окружающая среда не очень жаркая, и в результате часто страдают от теплового стресса. Относительно неподходящие люди, не занимающиеся спортом, подвергаются меньшему риску в этом отношении, если они осознают свои способности и соответственно ограничивают свои усилия. Однако, когда они занимаются спортом для развлечения и полны энтузиазма и высокой мотивации, они часто пытаются напрягаться с интенсивностью, превышающей ту, для которой они были обучены, и могут заболеть тепловым заболеванием (обычно тепловым истощением). Плохая акклиматизация, недостаточная гидратация, неподходящая одежда, употребление алкоголя и кожные заболевания, вызывающие ангидроз (уменьшение или отсутствие потоотделения), особенно потницу (см. ниже), - все это усугубляет симптомы.

        Дети более подвержены тепловому истощению или тепловому удару, чем взрослые. Они производят больше метаболического тепла на единицу массы и менее способны рассеивать тепло из-за относительно низкой способности производить пот.

        Клинические признаки теплового удара

        Тепловой удар определяется по трем критериям:

        1. тяжелая гипертермия с центральной (глубокой) температурой тела, обычно превышающей 42ºC
        2. нарушения центральной нервной системы
        3. горячая, сухая кожа с прекращением потоотделения.

         

        Диагноз теплового удара легко установить при соблюдении этой триады критериев. Однако его можно пропустить, если один из этих критериев отсутствует, неясен или упускается из виду. Например, если температура тела не будет измерена должным образом и без промедления, тяжелая гипертермия может быть не распознана; или, на очень ранней стадии теплового удара, вызванного физической нагрузкой, потоотделение может сохраняться или даже быть обильным, а кожа может быть влажной.

        Начало теплового удара обычно острое и без предшествующих симптомов, но у некоторых больных с надвигающимся тепловым ударом могут быть симптомы и признаки нарушений со стороны центральной нервной системы. Они включают головную боль, тошноту, головокружение, слабость, сонливость, спутанность сознания, тревогу, дезориентацию, апатию, агрессивность и иррациональное поведение, тремор, подергивания и судороги. После теплового удара во всех случаях присутствуют нарушения центральной нервной системы. Уровень сознания часто угнетен, чаще всего — глубокая кома. Судороги возникают в большинстве случаев, особенно у физически здоровых людей. Признаки дисфункции мозжечка выражены и могут сохраняться. Часто можно увидеть точечные зрачки. У некоторых выживших могут сохраняться мозжечковая атаксия (нарушение мышечной координации), гемиплегия (паралич одной стороны тела), афазия и эмоциональная нестабильность.

        Часто возникают рвота и диарея. Сначала обычно присутствует тахипноэ (учащенное дыхание), а пульс может быть слабым и частым. Гипотензия, одно из наиболее частых осложнений, возникает в результате заметного обезвоживания, обширной периферической вазодилатации и возможной депрессии сердечной мышцы. Острая почечная недостаточность может наблюдаться в тяжелых случаях, особенно при тепловом ударе, вызванном физической нагрузкой.

        Кровоизлияния возникают во всех паренхиматозных органах, в коже (где они называются петехиями) и в тяжелых случаях в желудочно-кишечном тракте. Клинические геморрагические проявления включают мелену (темный цвет дегтеобразных фекалий), кровавую рвоту (рвоту кровью), гематурию (кровавую мочу), кровохарканье (кровохаркание), носовое кровотечение (кровотечение из носа), пурпуру (пурпурные пятна), экхимозы (черные и синие отметки). и конъюнктивальное кровоизлияние. Обычно происходит внутрисосудистое свертывание крови. Геморрагический диатез (склонность к кровотечениям) обычно связан с диссеминированным внутрисосудистым свертыванием крови (ДВС-синдром). ДВС-синдром возникает преимущественно при тепловом ударе, вызванном физической нагрузкой, когда повышается фибринолитическая (растворяющая сгустки) активность плазмы. С другой стороны, гипертермия всего тела провоцирует снижение количества тромбоцитов, удлинение протромбинового времени, истощение факторов свертывания крови и повышение уровня продуктов деградации фибрина (ПДФ). Пациенты с признаками ДВС-синдрома и кровотечения имеют более высокую внутреннюю температуру, более низкое артериальное давление, более низкие рН и рО артериальной крови.2, более высокая частота олигурии или анурии и шока, а также более высокая смертность.

        Шок также является частым осложнением. Это связано с недостаточностью периферического кровообращения и усугубляется ДВС-синдромом, который вызывает диссеминацию тромбов в системе микроциркуляции.

        Лечение теплового удара

        Тепловой удар — это неотложная медицинская помощь, требующая быстрой диагностики и быстрого и агрессивного лечения для спасения жизни пациента. Надлежащее измерение внутренней температуры является обязательным: ректальную или пищеводную температуру следует измерять с помощью термометра, который может показывать до 45ºC. Измерения оральной и подмышечной температуры следует избегать, поскольку они могут значительно отличаться от реальной внутренней температуры.

        Целью лечебных мероприятий является снижение температуры тела за счет уменьшения тепловой нагрузки и улучшения отвода тепла от кожи. Лечение включает перемещение пациента в безопасное, прохладное, тенистое и хорошо проветриваемое место, снятие ненужной одежды и обмахивание веером. Охлаждение лица и головы может способствовать полезному охлаждению мозга.

        Эффективность некоторых методов охлаждения подвергалась сомнению. Утверждалось, что наложение холодных компрессов на крупные кровеносные сосуды в области шеи, паха и подмышечных впадин, а также погружение тела в холодную воду или накрывание ледяными полотенцами может вызвать озноб и кожную вазоконстрикцию, что фактически снижает эффективность охлаждения. Традиционно погружение в ванну с ледяной водой в сочетании с энергичным массажем кожи для минимизации кожной вазоконстрикции рекомендовалось в качестве лечения выбора после того, как пациента доставили в медицинское учреждение. Этот метод охлаждения имеет ряд недостатков: это трудности ухода за больными, связанные с необходимостью введения кислорода и жидкости, постоянного контроля артериального давления и электрокардиограммы, а также гигиенические проблемы загрязнения ванны рвотными массами и диареей коматозных больных. пациенты. Альтернативным подходом является распыление прохладного тумана на тело пациента при веере, чтобы способствовать испарению с кожи. Этот метод охлаждения может снизить внутреннюю температуру на 0.03-0.06ºC/мин.

        Меры по предотвращению судорог, судорог и озноба также должны быть начаты немедленно. Непрерывный кардиомониторинг и определение уровня электролитов в сыворотке крови, а также анализ газов артериальной и венозной крови имеют важное значение, и следует своевременно начинать внутривенное вливание растворов электролитов при относительно низкой температуре примерно 10ºC в сочетании с контролируемой оксигенотерапией. Интубация трахеи для защиты дыхательных путей, установка сердечного катетера для оценки центрального венозного давления, установка желудочного зонда и установка мочевого катетера также могут быть включены в число дополнительных рекомендуемых мер.

        Профилактика теплового удара

        Для профилактики теплового удара следует учитывать широкий спектр человеческих факторов, таких как акклиматизация, возраст, телосложение, общее состояние здоровья, потребление воды и соли, одежда, особенности религиозной набожности и незнание или склонность к пренебрежению, правила, направленные на укрепление здоровья населения.

        Перед физическими нагрузками в жаркой среде рабочие, спортсмены или паломники должны быть проинформированы о рабочей нагрузке и уровне теплового стресса, с которым они могут столкнуться, а также о рисках теплового удара. Рекомендуется период акклиматизации, прежде чем возникнет риск активной физической активности и/или серьезного воздействия. Уровень активности должен соответствовать температуре окружающей среды, а физические нагрузки следует избегать или, по крайней мере, сводить к минимуму в самые жаркие часы дня. Во время физических нагрузок свободный доступ к воде обязателен. Поскольку электролиты теряются с потом и возможность произвольного приема воды может быть ограничена, что отсрочивает восстановление после термической дегидратации, электролиты также следует восполнять в случае обильного потоотделения. Надлежащая одежда также является важной мерой. Одежда из тканей, одновременно впитывающих воду и пропускающих воздух и водяной пар, способствует отводу тепла.

        Болезни кожи

        Потница является наиболее распространенным кожным заболеванием, связанным с тепловой нагрузкой. Это происходит, когда доставка пота на поверхность кожи предотвращается из-за закупорки потовых протоков. Синдром задержки потоотделения возникает, когда ангидроз (неспособность выделять пот) широко распространен на поверхности тела и предрасполагает пациента к тепловому удару.

        Милиария обычно вызывается физическими нагрузками в жаркой и влажной среде; при лихорадочных заболеваниях; путем наложения влажных компрессов, повязок, гипсовых повязок или лейкопластырей; и ношением плохо проницаемой одежды. Милиарии можно разделить на три типа в зависимости от глубины задержки пота: кристаллическая потница, красная потница и глубокая потница.

        Кристаллическая потница вызывается задержкой пота внутри или непосредственно под роговым слоем кожи, где можно увидеть крошечные прозрачные невоспалительные волдыри. Обычно они появляются в «посеве» после сильных солнечных ожогов или во время лихорадочного заболевания. В остальном этот тип потницы протекает бессимптомно, вызывает наименьшее беспокойство и спонтанно заживает через несколько дней, когда пузыри прорываются, оставляя чешуйки.

        Красная потница возникает, когда интенсивная тепловая нагрузка вызывает продолжительное и обильное потоотделение. Это самый распространенный вид потницы, при котором пот скапливается в эпидермисе. Образуются красные папулы, везикулы или пустулы, сопровождающиеся жжением и зудом (потница). Потовые протоки закупориваются в концевой части. Образование пробки связано с действием резидентных аэробных бактерий, особенно кокков, популяция которых значительно увеличивается в роговом слое, когда он увлажняется потом. Они выделяют токсин, который повреждает роговые эпителиальные клетки потовых протоков и провоцирует воспалительную реакцию, приводящую к формированию цилиндра в просвете потовых протоков. Инфильтрация лейкоцитами создает закупорку, полностью препятствующую отхождению пота на несколько недель.

        При miliaria profunda пот задерживается в дерме и образует плоские воспалительные папулы, узелки и абсцессы с меньшим зудом, чем при miliaria rubra. Возникновение этого типа miliaria обычно приурочено к тропикам. Он может развиться в прогрессирующей последовательности от miliaria rubra после повторяющихся приступов обильного потоотделения, поскольку воспалительная реакция распространяется вниз от верхних слоев кожи.

        Тропическая ангидротическая астения. Этот термин получил распространение во время Второй мировой войны, когда войска, дислоцированные на тропических театрах военных действий, страдали от тепловой сыпи и непереносимости жары. Это модальность синдрома задержки пота, встречающаяся в жарких и влажных тропических условиях. Характеризуется ангидрозом и милиарноподобными высыпаниями, сопровождающимися симптомами теплового застоя, такими как сердцебиение, учащенное пульсирование, гипертермия, головная боль, слабость и постепенно до быстро прогрессирующей непереносимости физической нагрузки в жару. Обычно ему предшествует широко распространенный miliaria rubra.

        Лечение. Первоначальное и основное лечение потницы и синдрома задержки пота заключается в переводе пострадавшего в прохладное помещение. Прохладный душ и мягкое высушивание кожи, а также нанесение лосьона с каламином могут уменьшить дистресс пациента. Применение химических бактериостатов эффективно предотвращает размножение микрофлоры и предпочтительнее применения антибиотиков, которые могут привести к тому, что эти микроорганизмы приобретут резистентность.

        Закупорки потовых протоков рассасываются примерно через 3 недели в результате обновления эпидермиса.

         

        Назад

        Хотя люди обладают значительной способностью компенсировать естественный тепловой стресс, многие производственные условия и/или физическая активность подвергают рабочих тепловым нагрузкам, которые настолько чрезмерны, что угрожают их здоровью и производительности. В этой статье описаны различные методы, которые можно использовать для сведения к минимуму частоты тепловых нарушений и снижения тяжести случаев, когда они все же возникают. Вмешательства делятся на пять категорий: максимальное повышение устойчивости к жаре среди подвергшихся воздействию людей, обеспечение своевременного восполнения потерянной жидкости и электролитов, изменение методов работы для снижения тепловой нагрузки при физической нагрузке, инженерный контроль климатических условий и использование защитной одежды.

        Факторы за пределами рабочего места, которые могут повлиять на термостойкость, не должны игнорироваться при оценке степени воздействия и, следовательно, при разработке превентивных стратегий. Например, общее физиологическое бремя и потенциальная восприимчивость к тепловым расстройствам будут намного выше, если тепловой стресс будет продолжаться в нерабочее время из-за работы на второй работе, напряженной деятельности в свободное время или проживания в постоянно жарких помещениях. Кроме того, состояние питания и гидратация могут отражать модели питания и питья, которые также могут меняться в зависимости от времени года или религиозных обрядов.

        Максимальное повышение индивидуальной теплоустойчивости

        Кандидаты на горячую работу должны быть в целом здоровы и иметь подходящие физические данные для выполнения работы. Ожирение и сердечно-сосудистые заболевания являются состояниями, которые увеличивают риски, и лицам с историей ранее необъяснимых или повторяющихся тепловых заболеваний не следует назначать задачи, связанные с тяжелым тепловым стрессом. Различные физические и физиологические характеристики, которые могут влиять на переносимость жары, обсуждаются ниже и делятся на две основные категории: врожденные характеристики, не зависящие от человека, такие как размер тела, пол, этническая принадлежность и возраст; и приобретенные характеристики, которые, по крайней мере частично, подлежат контролю и включают физическую форму, акклиматизацию к жаре, ожирение, заболевания и стресс, вызванный самим собой.

        Работники должны быть проинформированы о характере теплового стресса и его неблагоприятных последствиях, а также о мерах защиты, предусмотренных на рабочем месте. Их следует учить тому, что переносимость жары в значительной степени зависит от питья достаточного количества воды и сбалансированного питания. Кроме того, рабочих следует информировать о признаках и симптомах тепловых расстройств, к которым относятся головокружение, обмороки, одышка, учащенное сердцебиение и сильная жажда. Они также должны изучить основы оказания первой помощи и узнать, куда звать на помощь, когда они распознают эти признаки у себя или других.

        Руководству следует внедрить систему отчетности о происшествиях, связанных с жарой на работе. Возникновение тепловых нарушений более чем у одного человека или неоднократно у одного человека часто является предупреждением о серьезных надвигающихся неприятностях и указывает на необходимость немедленной оценки рабочей среды и пересмотра адекватности профилактических мер.

        Черты человека, влияющие на адаптацию

        Размеры кузова. Дети и очень маленькие взрослые сталкиваются с двумя потенциальными неудобствами при работе в жарких условиях. Во-первых, внешняя работа представляет большую относительную нагрузку для тела с небольшой мышечной массой, вызывая большее повышение температуры тела и более быстрое наступление утомления. Кроме того, более высокое отношение поверхности к массе у маленьких людей может быть недостатком в очень жарких условиях. Вместе эти факторы могут объяснить, почему мужчины с массой тела менее 50 кг оказались подвержены повышенному риску теплового удара при добыче полезных ископаемых.

        Пол. Ранние лабораторные исследования на женщинах, по-видимому, показали, что они относительно нетерпимы к работе в жару по сравнению с мужчинами. Однако теперь мы понимаем, что почти все различия можно объяснить размерами тела, приобретенными уровнями физической подготовки и акклиматизацией к теплу. Тем не менее, существуют незначительные половые различия в механизмах рассеивания тепла: более высокая максимальная скорость потоотделения у мужчин может повысить устойчивость к чрезвычайно жаркой и сухой среде, в то время как женщины лучше способны подавлять избыточное потоотделение и, следовательно, сохранять воду тела и, следовательно, тепло в жарких и влажных средах. . Хотя менструальный цикл связан со сдвигом базальной температуры тела и слегка изменяет терморегуляторные реакции у женщин, эти физиологические изменения слишком малозаметны, чтобы влиять на толерантность к жаре и эффективность терморегуляции в реальных рабочих ситуациях.

        Если сделать поправку на индивидуальное телосложение и физическую форму, мужчины и женщины по существу схожи в своей реакции на тепловой стресс и в своей способности акклиматизироваться для работы в жарких условиях. По этой причине отбор рабочих для горячей работы должен основываться на индивидуальном здоровье и физических возможностях, а не на половой принадлежности. Очень маленькие или малоподвижные особи любого пола плохо переносят работу в жару.

        Влияние беременности на переносимость жары у женщин неясно, но измененные уровни гормонов и повышенные потребности плода в кровообращении у матери могут повышать ее предрасположенность к обморокам. Тяжелая материнская гипертермия (перегрев) из-за болезни, по-видимому, увеличивает частоту пороков развития плода, но нет никаких доказательств подобного эффекта от профессионального теплового стресса.

        Этнос. Хотя различные этнические группы возникли в разных климатических условиях, существует мало свидетельств врожденных или генетических различий в реакции на тепловой стресс. Все люди функционируют как тропические животные; их способность жить и работать в различных температурных условиях отражает адаптацию через сложное поведение и развитие технологий. Кажущиеся этнические различия в реакции на тепловой стресс, вероятно, связаны с размерами тела, индивидуальной историей жизни и статусом питания, а не с врожденными чертами.

        Возраст. У промышленного населения после 50 лет обычно наблюдается постепенное снижение толерантности к жаре. Имеются некоторые данные об обязательном возрастном снижении кожной вазодилатации (расширении полости кровеносных сосудов кожи) и максимальной скорости потоотделения, но в большинстве случаев изменение может быть связано с изменениями в образе жизни, которые снижают физическую активность и увеличивают накопление жира в организме. Возраст не влияет на толерантность к жаре или способность к акклиматизации, если человек поддерживает высокий уровень аэробной подготовки. Однако стареющее население подвержено увеличению частоты сердечно-сосудистых заболеваний или других патологий, которые могут ухудшить индивидуальную переносимость жары.

        Физическая подготовка. Максимальная аэробная мощность (VO2 Макс), вероятно, является самым сильным фактором, определяющим способность человека выполнять длительную физическую работу в жарких условиях. Как отмечалось выше, ранние данные о групповых различиях в переносимости жары, которые объяснялись полом, расой или возрастом, в настоящее время рассматриваются как проявления аэробной способности и акклиматизации к жаре.

        Индукция и поддержание высокой работоспособности требуют повторяющихся воздействий на кислородную транспортную систему организма посредством энергичных упражнений в течение не менее 30–40 минут 3–4 дня в неделю. В некоторых случаях деятельность на рабочем месте может обеспечить необходимую физическую подготовку, но большинство промышленных работ менее напряженны и требуют дополнительных занятий в виде регулярных программ упражнений для оптимальной физической формы.

        Потеря аэробной способности (детренированность) происходит относительно медленно, поэтому выходные или отпуск продолжительностью 1-2 недели вызывают лишь минимальные изменения. Серьезное снижение аэробной способности чаще всего происходит в течение нескольких недель или месяцев, когда травма, хроническое заболевание или другой стресс заставляют человека изменить образ жизни.

        Акклиматизация к теплу. Акклиматизация к работе в условиях жары может значительно повысить устойчивость человека к такому стрессу, так что задача, изначально не под силу неакклиматизированному человеку, может стать более легкой работой после периода постепенной адаптации. Лица с высоким уровнем физической подготовки, как правило, демонстрируют частичную акклиматизацию к теплу и способны завершить этот процесс быстрее и с меньшим напряжением, чем лица, ведущие малоподвижный образ жизни. Сезон также может повлиять на время, необходимое для акклиматизации; рабочие, нанятые летом, могут уже частично акклиматизироваться к жаре, в то время как нанятые зимой потребуют более длительного периода адаптации.

        В большинстве случаев акклиматизация может быть вызвана постепенным введением рабочего в горячую работу. Например, новобранец может быть назначен на огневые работы только в утренние часы или на постепенно увеличивающиеся промежутки времени в течение первых нескольких дней. Такая акклиматизация на рабочем месте должна проходить под пристальным наблюдением опытного персонала; новый работник должен иметь постоянное разрешение уйти в более прохладные условия в любое время при появлении симптомов нетерпимости. Экстремальные условия могут потребовать формального протокола постепенного воздействия тепла, такого как тот, который используется для рабочих на золотых приисках в Южной Африке.

        Поддержание полной акклиматизации к жаре требует работы на жаре три-четыре раза в неделю; более низкая частота или пассивное воздействие тепла имеют гораздо более слабый эффект и могут привести к постепенному снижению устойчивости к теплу. Однако выходные без работы не оказывают заметного влияния на акклиматизацию. Прекращение воздействия на 2-3 недели приведет к потере большей части акклиматизации, хотя некоторые из них будут сохраняться у людей, подвергающихся воздействию жаркой погоды и/или регулярных аэробных упражнений.

        Ожирение. Высокое содержание жира в организме оказывает незначительное прямое влияние на терморегуляцию, так как тепловыделение на коже происходит через капилляры и потовые железы, которые расположены ближе к поверхности кожи, чем подкожный жировой слой кожи. Однако тучным людям мешает их избыточная масса тела, потому что каждое движение требует больших мышечных усилий и, следовательно, выделяет больше тепла, чем у худощавого человека. Кроме того, ожирение часто отражает малоподвижный образ жизни, что приводит к снижению аэробной способности и отсутствию акклиматизации к теплу.

        Медицинские условия и другие стрессы. Переносимость жары рабочим в данный день может быть нарушена различными условиями. Примеры включают лихорадочное заболевание (температура тела выше нормальной), недавняя иммунизация или гастроэнтерит с сопутствующим нарушением водно-электролитного баланса. Кожные заболевания, такие как солнечные ожоги и сыпь, могут ограничивать способность выделять пот. Кроме того, восприимчивость к тепловому заболеванию может повышаться при приеме рецептурных препаратов, включая симпатомиметики, антихолинергические средства, диуретики, фенотиазины, циклические антидепрессанты и ингибиторы моноаминоксидазы.

        Алкоголь – распространенная и серьезная проблема среди тех, кто работает в жару. Алкоголь не только ухудшает прием пищи и воды, но также действует как мочегонное средство (увеличивает мочеиспускание), а также вызывает беспокойство. Побочные эффекты алкоголя распространяются на много часов после приема. У алкоголиков, перенесших тепловой удар, уровень смертности намного выше, чем у неалкоголиков.

        Пероральная замена воды и электролитов

        Гидратация. Испарение пота является основным путем рассеивания тепла тела и становится единственно возможным механизмом охлаждения, когда температура воздуха превышает температуру тела. Потребность в воде не может быть снижена за счет обучения, а только за счет снижения тепловой нагрузки на рабочего. Потеря воды и регидратация человека широко изучались в последние годы, и в настоящее время доступно больше информации.

        Человек массой 70 кг может потеть со скоростью от 1.5 до 2.0 л/ч неограниченно долго, а рабочий может терять несколько литров или до 10 % массы тела в течение дня в очень жаркой среде. Такая потеря приведет к потере трудоспособности, если хотя бы часть воды не будет заменена в течение рабочей смены. Однако, поскольку пик поглощения воды из кишечника во время работы составляет около 1.5 л/ч, более высокая скорость потоотделения приведет к кумулятивному обезвоживанию в течение дня.

        Питье для утоления жажды недостаточно для поддержания водного баланса человека. Большинство людей не осознают жажду, пока не потеряют от 1 до 2 л воды в организме, а люди, сильно мотивированные к тяжелой работе, могут потерять от 3 до 4 л, прежде чем сильная жажда заставит их остановиться и выпить. Как это ни парадоксально, обезвоживание снижает способность поглощать воду из кишечника. Таким образом, работники горячих цехов должны быть осведомлены о важности питья достаточного количества воды во время работы и продолжения обильной регидратации в нерабочее время. Их также следует учить важности «прегидратации» — употребления большого количества воды непосредственно перед началом сильного теплового стресса, — поскольку тепло и физические упражнения не позволяют организму выводить избыток воды с мочой.

        Менеджмент должен обеспечить свободный доступ к воде или другим подходящим напиткам, способствующим регидратации. Любое физическое или процедурное препятствие для питья будет способствовать «произвольному» обезвоживанию, которое предрасполагает к тепловому заболеванию. Следующие детали являются жизненно важной частью любой программы по поддержанию гидратации:

        • Безопасная вкусная вода должна находиться в нескольких шагах от каждого рабочего или подаваться к рабочему каждый час — чаще в самых стрессовых условиях.
        • Должны быть предусмотрены гигиенические стаканы для питья, так как практически невозможно восполнить недостаток воды из фонтана.
        • Емкости с водой должны быть затенены или охлаждены до 15–20ºC (напитки со льдом не подходят, поскольку они, как правило, препятствуют потреблению).

         

        Для улучшения восприятия воды можно использовать ароматизаторы. Однако напитки, которые популярны, потому что они «утоляют» жажду, не рекомендуются, так как они подавляют потребление до завершения регидратации. По этой причине лучше предлагать воду или разбавленные ароматизированные напитки и избегать газированных напитков, кофеина и напитков с высокой концентрацией сахара или соли.

        Питание. Хотя пот является гипотоническим (более низкое содержание солей) по сравнению с сывороткой крови, высокая скорость потоотделения связана с постоянной потерей хлорида натрия и небольшого количества калия, которые необходимо восполнять ежедневно. Кроме того, работа в тепле ускоряет оборот микроэлементов, в том числе магния и цинка. Все эти необходимые элементы, как правило, должны быть получены из продуктов питания, поэтому работникам предприятий горячего питания следует рекомендовать хорошо сбалансированное питание и избегать замены шоколадных батончиков или закусок, в которых отсутствуют важные питательные компоненты. Некоторые диеты в промышленно развитых странах включают высокие уровни хлорида натрия, и у рабочих, соблюдающих такую ​​диету, маловероятно развитие дефицита соли; но другие, более традиционные диеты могут не содержать достаточного количества соли. В некоторых случаях работодателю может быть необходимо предоставлять соленые закуски или другие дополнительные продукты в течение рабочей смены.

        В промышленно развитых странах растет доступность «спортивных напитков» или «утоляющих жажду», которые содержат хлорид натрия, калий и углеводы. Жизненно важным компонентом любого напитка является вода, но электролитные напитки могут быть полезны людям, у которых уже развилась значительная дегидратация (потеря воды) в сочетании с истощением электролитов (потеря соли). Эти напитки, как правило, с высоким содержанием соли, и их следует смешивать с равным или большим объемом воды перед употреблением. Гораздо более экономичную смесь для пероральной регидратации можно приготовить по следующему рецепту: на один литр воды, пригодной для питья, добавить 40 г сахара (сахарозы) и 6 г соли (хлорида натрия). Рабочим не следует давать соляные таблетки, так как ими легко злоупотреблять, а передозировка приводит к желудочно-кишечным проблемам, повышенному диурезу и повышенной восприимчивости к тепловым заболеваниям.

        Модифицированные методы работы

        Общей целью изменения методов работы является снижение усредненного по времени воздействия теплового стресса и доведение его до допустимых пределов. Это может быть достигнуто за счет снижения физической нагрузки на отдельного работника или путем планирования соответствующих перерывов для термического восстановления. На практике максимальная усредненная по времени метаболическая теплопродукция фактически ограничивается примерно 350 Вт (5 ккал/мин), поскольку более тяжелая работа вызывает физическую усталость и потребность в соразмерных перерывах на отдых.

        Уровни индивидуальных усилий можно снизить, сократив внешнюю работу, такую ​​как поднятие тяжестей, и ограничив необходимое передвижение и статическое напряжение мышц, например, связанное с неудобной позой. Эти цели могут быть достигнуты за счет оптимизации планирования задач в соответствии с принципами эргономики, предоставления механических вспомогательных средств или распределения физических усилий между большим количеством работников.

        Простейшая форма изменения расписания — позволить индивидуальному самостоятельному темпу. Промышленные рабочие, выполняющие знакомую работу в мягком климате, будут двигаться со скоростью, при которой ректальная температура составляет около 38°C; наложение теплового стресса заставляет их добровольно снижать темп работы или делать перерывы. Эта способность произвольно регулировать скорость работы, вероятно, зависит от осознания сердечно-сосудистого стресса и усталости. Люди не могут сознательно обнаруживать повышение внутренней температуры тела; скорее, они полагаются на температуру кожи и влажность кожи для оценки теплового дискомфорта.

        Альтернативным подходом к изменению расписания является принятие предписанных циклов работы и отдыха, когда руководство определяет продолжительность каждого рабочего цикла, продолжительность перерывов для отдыха и ожидаемое количество повторений. Термическое восстановление занимает намного больше времени, чем период, необходимый для снижения частоты дыхания и частоты сердечных сокращений, вызванных работой: для снижения внутренней температуры до уровней покоя требуется от 30 до 40 минут в прохладной, сухой среде, и это занимает больше времени, если человек должен отдыхать в жарких условиях или при ношении защитной одежды. Если требуется постоянный уровень производства, то чередующиеся бригады рабочих должны последовательно назначаться на огневые работы с последующим восстановлением, причем последнее предполагает либо отдых, либо сидячие работы, выполняемые в прохладном месте.

        Климат-Контроль

        Если бы стоимость не имела значения, все проблемы с тепловым стрессом можно было бы решить путем применения инженерных технологий, позволяющих преобразовать враждебную рабочую среду в благоприятную. В зависимости от конкретных условий рабочего места и доступных ресурсов может использоваться широкий спектр методов. Традиционно жаркие производства можно разделить на две категории: в горячих и сухих процессах, таких как выплавка металлов и производство стекла, рабочие подвергаются воздействию очень горячего воздуха в сочетании с сильной лучистой тепловой нагрузкой, но такие процессы добавляют мало влаги в воздух. Напротив, тепло-влажные производства, такие как текстильные фабрики, производство бумаги и горнодобывающая промышленность, требуют менее экстремального нагрева, но создают очень высокую влажность из-за влажных процессов и выделяющегося пара.

        Наиболее экономичные методы контроля окружающей среды обычно включают снижение теплопередачи от источника к окружающей среде. Горячий воздух может выбрасываться за пределы рабочей зоны и заменяться свежим воздухом. Горячие поверхности можно покрыть изоляцией или нанести отражающее покрытие для уменьшения тепловыделения, одновременно сохраняя тепло, необходимое для производственного процесса. Второй линией защиты является широкомасштабная вентиляция рабочей зоны для обеспечения сильного притока наружного воздуха. Самый дорогой вариант — кондиционер для охлаждения и осушения атмосферы на рабочем месте. Хотя снижение температуры воздуха не влияет на передачу лучистого тепла, оно помогает снизить температуру стен и других поверхностей, которые могут быть вторичными источниками конвективного и лучистого нагрева.

        Когда общий контроль окружающей среды оказывается нецелесообразным или неэкономичным, можно улучшить температурные условия в местных рабочих зонах. Кондиционируемые помещения могут быть предусмотрены в пределах большего рабочего пространства, или отдельное рабочее место может быть обеспечено потоком прохладного воздуха («точечное охлаждение» или «воздушный душ»). Между рабочим и источником лучистого тепла может быть установлен местный или даже переносной отражающий экран. В качестве альтернативы, современные инженерные методы могут позволить построить удаленные системы для управления горячими процессами, чтобы рабочие не подвергались постоянному воздействию очень стрессовых тепловых сред.

        Там, где рабочее место проветривается наружным воздухом или имеется ограниченная мощность кондиционера, температурные условия будут отражать климатические изменения, а внезапное повышение температуры и влажности наружного воздуха может привести к повышению теплового стресса до уровней, превышающих переносимость жары работниками. Например, весенняя жара может спровоцировать эпидемию теплового заболевания среди рабочих, которые еще не акклиматизировались к жаре, как летом. Поэтому руководству следует внедрить систему прогнозирования изменений теплового стресса, связанных с погодой, чтобы можно было принять своевременные меры предосторожности.

        Защитная одежда

        Работа в экстремальных тепловых условиях может потребовать индивидуальной теплозащиты в виде специальной одежды. Пассивная защита обеспечивается изолирующей и светоотражающей одеждой; только изоляция может защитить кожу от тепловых переходных процессов. Светоотражающие фартуки могут использоваться для защиты персонала, работающего лицом к ограниченному источнику излучения. Пожарные, которые должны иметь дело с очень горячим горящим топливом, носят костюмы, называемые «бункеры», которые сочетают в себе тяжелую изоляцию от горячего воздуха с алюминированной поверхностью для отражения лучистого тепла.

        Другой формой пассивной защиты является ледяной жилет, который загружается слякотью или замороженными пакетами со льдом (или сухим льдом) и надевается поверх майки, чтобы предотвратить неприятное охлаждение кожи. Фазовый переход тающего льда поглощает часть метаболической и тепловой нагрузки окружающей среды с площади покрытия, но лед необходимо заменять через равные промежутки времени; чем больше тепловая нагрузка, тем чаще необходимо менять лед. Ледяные жилеты оказались наиболее полезными в глубоких шахтах, машинных отделениях кораблей и других очень жарких и влажных средах, где можно организовать доступ к морозильным камерам.

        Активная теплозащита обеспечивается за счет одежды с воздушным или жидкостным охлаждением, закрывающей все тело или его часть, обычно туловище, а иногда и голову.

        Воздушное охлаждение. Простейшие системы вентилируются окружающим, атмосферным воздухом или сжатым воздухом, охлаждаемым расширением или прохождением через вихревое устройство. Требуются большие объемы воздуха; минимальная скорость вентиляции для герметичного костюма составляет около 450 л/мин. Охлаждение воздуха теоретически может происходить за счет конвекции (изменение температуры) или испарения пота (изменение фазы). Однако эффективность конвекции ограничивается низкой удельной теплоемкостью воздуха и трудностью доставки его при низких температурах в жаркую среду. Таким образом, большинство предметов одежды с воздушным охлаждением работают за счет испарительного охлаждения. Рабочий испытывает умеренный тепловой стресс и сопутствующее обезвоживание, но способен регулировать температуру за счет естественного контроля скорости потоотделения. Воздушное охлаждение также повышает комфорт благодаря своей способности сушить нижнее белье. Недостатки включают (1) необходимость подключения субъекта к источнику воздуха, (2) объем одежды для распределения воздуха и (3) сложность доставки воздуха к конечностям.

        Жидкостное охлаждение. Эти системы обеспечивают циркуляцию смеси воды и антифриза через сеть каналов или небольших трубок, а затем возвращают нагретую жидкость к радиатору, который отводит тепло, добавляемое при прохождении над телом. Скорость циркуляции жидкости обычно составляет порядка 1 л/мин. Радиатор может рассеивать тепловую энергию в окружающую среду за счет испарения, плавления, охлаждения или термоэлектрических процессов. Одежда с жидкостным охлаждением предлагает гораздо больший охлаждающий потенциал, чем воздушные системы. Костюм с полным покрытием, соединенный с соответствующим радиатором, может отводить все метаболическое тепло и поддерживать тепловой комфорт без необходимости потеть; такая система используется космонавтами, работающими вне своего космического корабля. Однако такой мощный механизм охлаждения требует какой-либо системы управления комфортом, которая обычно включает ручную настройку клапана, который отводит часть циркулирующей жидкости мимо радиатора. Системы с жидкостным охлаждением могут быть сконфигурированы как рюкзак для обеспечения непрерывного охлаждения во время работы.

        Любое охлаждающее устройство, добавляющее вес и объем человеческому телу, конечно, может мешать выполнению ручной работы. Например, вес ледяного жилета значительно увеличивает метаболические затраты на передвижение и, следовательно, наиболее полезен для легкой физической работы, такой как несение вахты в жарких отсеках. Системы, которые привязывают рабочего к радиатору, непрактичны для многих видов работ. Прерывистое охлаждение может быть полезно, когда рабочие должны носить тяжелую защитную одежду (например, костюмы химзащиты) и не могут нести радиатор или быть привязанными во время работы. Снятие костюма перед каждым перерывом на отдых требует много времени и может быть связано с токсичным воздействием; в этих условиях проще заставить рабочих носить охлаждающую одежду, которая прикрепляется к радиатору только во время отдыха, что позволяет восстанавливать тепло в неприемлемых условиях.

         

        Назад

        Теплообменники

        Человеческое тело обменивается теплом с окружающей средой различными путями: теплопроводностью через соприкасающиеся с ним поверхности, конвекцией и испарением с окружающим воздухом и излучением с соседними поверхностями.

        кондукция

        Теплопроводность — это передача тепла между двумя соприкасающимися твердыми телами. Такие обмены наблюдаются между кожей и одеждой, обувью, точками давления (сиденье, ручки), инструментами и так далее. На практике при математическом расчете теплового баланса этот тепловой поток за счет теплопроводности косвенно аппроксимируется величиной, равной тепловому потоку за счет конвекции и излучения, который имел бы место, если бы эти поверхности не соприкасались с другими материалами.

        Конвекция

        Конвекция – это передача тепла между кожей и окружающим ее воздухом. Если температура кожи, tsk, в градусах Цельсия (°C), выше, чем температура воздуха (ta), воздух, соприкасающийся с кожей, нагревается и, следовательно, поднимается вверх. Таким образом, циркуляция воздуха, известная как естественная конвекция, устанавливается на поверхности тела. Этот обмен становится больше, если окружающий воздух проходит над кожей с определенной скоростью: конвекция становится вынужденной. Тепловой поток, обмениваемый конвекцией, C, в единицах ватт на квадратный метр (Вт/м2), можно оценить по:

        C = hc FклС (tsk - ta)

        в котором hc - коэффициент конвекции (Вт/°C м2), которая является функцией разницы между tsk и ta в случае естественной конвекции и скорости воздуха Va (в м/с) при принудительной конвекции; FклС является фактором, благодаря которому одежда снижает конвекционный теплообмен.

        излучение

        Каждое тело излучает электромагнитное излучение, интенсивность которого зависит от четвертой степени его абсолютной температуры. T (в градусах Кельвина—К). Кожа, температура которой может быть между 30 и 35°С (303 и 308К), испускает такое излучение, которое находится в инфракрасной зоне. Более того, он принимает излучение, испускаемое соседними поверхностями. Тепловой поток, обмениваемый излучением, R (в Вт/м2), между телом и его окружением можно описать следующим выражением:

        где:

        s — универсальная постоянная излучения (5.67 × 10-8 Вт/м2 K4)

        е - коэффициент излучения кожи, который для инфракрасного излучения равен 0.97 и не зависит от длины волны, а для солнечного излучения составляет около 0.5 для кожи Белого человека и 0.85 для кожи Чернокожего человека.

        AR/AD это доля поверхности тела, участвующая в обмене, которая составляет порядка 0.66, 0.70 или 0.77, в зависимости от того, приседает ли субъект, сидит или стоит

        FклР является фактором, благодаря которому одежда снижает радиационный теплообмен

        Tsk (в K) - средняя температура кожи

        Tr (в К) — средняя лучистая температура окружающей среды, т. е. равномерная температура черной матовой сферы большого диаметра, которая окружала бы предмет и обменивалась с ним таким же количеством тепла, как и реальная среда.

        Это выражение можно заменить упрощенным уравнением того же типа, что и для обмена конвекцией:

        Р = чr (AR/AD) ФклР (tsk - Tr)

        в котором hr – коэффициент обмена излучением (Вт/°С·м2).

        выпаривание

        Каждая влажная поверхность имеет на себе слой воздуха, насыщенный водяным паром. Если сама атмосфера не насыщена, пар диффундирует из этого слоя в атмосферу. Затем слой имеет тенденцию регенерироваться за счет теплоты испарения (0.674 Вт-ч на грамм воды) на влажной поверхности, которая охлаждается. Если кожа полностью покрыта потом, испарение максимально (EМакс) и зависит только от условий окружающей среды согласно следующему выражению:

        EМакс = чe FПКЛ (Pск, с - Пa)

        где:

        he - коэффициент обмена испарением (Вт/м2кПа)

        Pск, с - давление насыщения водяного пара при температуре кожи (выраженное в кПа)

        Pa парциальное давление водяного пара в окружающей среде (выраженное в кПа)

        FПКЛ – коэффициент снижения обменов испарением за счет одежды.

        Теплоизоляция одежды

        При расчете теплового потока за счет конвекции, излучения и испарения действует поправочный коэффициент, учитывающий одежду. В случае с хлопчатобумажной одеждой два понижающих коэффициента FклС и FклР может определяться:

        Fcl = 1/(1+(чc+hr)Icl)

        где:

        hc - коэффициент обмена конвекцией

        hr - коэффициент обмена излучением

        Icl - эффективная тепловая изоляция (м2/W) одежды.

        Что касается снижения теплопередачи за счет испарения, то поправочный коэффициент FПКЛ задается следующим выражением:

        FПКЛ = 1 / (1+2.22hc Icl)

        Утепление одежды Icl выражается в м2/W или в кло. Изоляция 1 кло соответствует 0.155 м2/W и обеспечивается, например, обычной городской одеждой (рубашкой, галстуком, брюками, пиджаком и т. д.).

        Стандарт ISO 9920 (1994) определяет теплоизоляцию, обеспечиваемую различными комбинациями одежды. В случае специальной защитной одежды, отражающей тепло или ограничивающей паропроницаемость в условиях теплового воздействия, или поглощающей и изолирующей в условиях холодового стресса, необходимо применять индивидуальные поправочные коэффициенты. Однако на сегодняшний день проблема остается малоизученной, а математические предсказания остаются весьма приблизительными.

        Оценка основных параметров рабочей ситуации

        Как видно выше, теплообмен посредством конвекции, излучения и испарения является функцией четырех климатических параметров — температуры воздуха ta в °C, влажность воздуха, выраженная его парциальным давлением пара Pa в кПа, средняя лучистая температура tr в °C, а скорость воздуха Va в м/с. Приборы и методы измерения этих физических параметров окружающей среды являются предметом стандарта ISO 7726 (1985), в котором описываются различные типы используемых датчиков, указывается их диапазон измерения и их точность, а также рекомендуются определенные процедуры измерения. В этом разделе обобщается часть данных этого стандарта с особой ссылкой на условия использования наиболее распространенных приборов и аппаратов.

        Температура воздуха

        Температура воздуха (ta) должны измеряться независимо от теплового излучения; точность измерения должна составлять ±0.2°С в диапазоне от 10 до 30°С и ±0.5°С вне этого диапазона.

        На рынке представлено множество типов термометров. Наиболее распространены ртутные термометры. Их преимуществом является точность при условии, что они были правильно откалиброваны изначально. Их основными недостатками являются длительное время отклика и отсутствие возможности автоматической записи. С другой стороны, электронные термометры обычно имеют очень короткое время отклика (от 5 с до 1 мин), но могут иметь проблемы с калибровкой.

        Независимо от типа термометра датчик должен быть защищен от излучения. Обычно это обеспечивается полым цилиндром из блестящего алюминия, окружающим датчик. Такую защиту обеспечивает психрометр, о котором будет сказано в следующем разделе.

        Парциальное давление водяного пара

        Влажность воздуха можно охарактеризовать четырьмя различными способами:

        1. температура точки росы: температура, до которой необходимо охладить воздух, чтобы он стал насыщенным влагой (td, °С)

        2. парциальное давление водяного пара: доля атмосферного давления за счет водяного пара (Pa, кПа)

        3. относительная влажность (RH),, что определяется выражением:

        RH = 100·Пa/PС, та

        где ПС, та давление насыщенного пара, связанное с температурой воздуха

        4. температура влажной лампы (tw), что является самой низкой температурой, достигаемой мокрым рукавом, защищенным от радиации и вентилируемым окружающим воздухом со скоростью более 2 м/с.

        Все эти величины связаны математически.

        Давление насыщенного водяного пара PС,т при любой температуре t дан кем-то:

        а парциальное давление водяного пара связано с температурой соотношением:

        Pa = PС, тв - (тa - Tw)/15

        в котором PС, тв - давление насыщенного пара при температуре смоченного термометра.

        Психрометрическая диаграмма (рис. 1) позволяет совместить все эти значения. Он включает в себя:

        Рисунок 1. Психрометрическая диаграмма.

        НЕА010F1

        • в y ось, шкала парциального давления водяного пара Pa, выраженное в кПа
        • в x ось, шкала температуры воздуха
        • кривые постоянной относительной влажности
        • наклонные прямые линии постоянной температуры смоченного термометра.
        • Наиболее часто используемые на практике параметры влажности:
        • относительная влажность, измеренная с помощью гигрометров или более специализированных электронных приборов
        • температура смоченного термометра, измеренная с помощью психрометра; отсюда выводится парциальное давление водяного пара, которое является параметром, наиболее часто используемым при анализе теплового баланса.

         

        Рекомендуемый диапазон измерений и точность составляют от 0.5 до 6 кПа и ±0.15 кПа. Для измерения температуры смоченного термометра диапазон простирается от 0 до 36ºC с точностью, идентичной точности измерения температуры воздуха. Что касается гигрометров для измерения относительной влажности, то диапазон простирается от 0 до 100% с точностью ±5%.

        Средняя лучистая температура

        Средняя лучистая температура (tr) был определен ранее; его можно определить тремя различными способами:

        1. по температуре, измеренной термометром с черной сферой

        2. от плоскостных радиационных температур, измеренных по трем перпендикулярным осям

        3. расчетным путем, интегрируя эффекты различных источников излучения.

        Здесь будет рассмотрена только первая техника.

        Термометр с черной сферой состоит из термозонда, чувствительный элемент которого расположен в центре полностью закрытой сферы, изготовленной из металла, хорошо проводящего тепло (медь), и окрашенного в черный матовый цвет, чтобы иметь коэффициент поглощения в инфракрасной зоне близко к 1.0. Сфера располагается на рабочем месте и подвергается обмену конвекцией и излучением. Температура земного шара (tg) затем зависит от средней лучистой температуры, температуры воздуха и скорости воздуха.

        Для стандартного черного шара диаметром 15 см среднюю температуру излучения можно рассчитать по температуре шара на основании следующего выражения:

        На практике необходимо подчеркнуть необходимость поддерживать коэффициент излучения земного шара близким к 1.0, тщательно перекрашивая его в матовый черный цвет.

        Основным ограничением этого типа глобуса является его большое время отклика (порядка 20-30 минут, в зависимости от типа используемого глобуса и условий окружающей среды). Измерение действительно только в том случае, если условия излучения постоянны в течение этого периода времени, что не всегда имеет место в промышленных условиях; тогда измерение будет неточным. Это время отклика применимо к шарам диаметром 15 см при использовании обычных ртутных термометров. Они короче, если используются датчики с меньшей теплоемкостью или если диаметр шара уменьшен. Следовательно, приведенное выше уравнение необходимо изменить, чтобы учесть эту разницу в диаметре.

        Индекс WBGT напрямую использует температуру черного земного шара. Тогда необходимо использовать глобус диаметром 15 см. С другой стороны, другие индексы используют среднюю лучистую температуру. Затем можно выбрать шар меньшего размера, чтобы сократить время отклика, при условии, что приведенное выше уравнение будет изменено с учетом этого. Стандарт ISO 7726 (1985 г.) допускает точность ±2ºC при измерении tr от 10 до 40ºC и ±5ºC за пределами этого диапазона.

        Скорость воздуха

        Скорость воздуха следует измерять независимо от направления потока воздуха. В противном случае измерение необходимо проводить по трем перпендикулярным осям (x, y и z) и глобальная скорость, рассчитанная векторным суммированием:

        Диапазон измерений, рекомендуемый стандартом ISO 7726, простирается от 0.05 до 2 м/с. Требуемая точность составляет 5 %. Его следует измерять как среднее значение за 1 или 3 минуты.

        Есть две категории приборов для измерения скорости воздуха: анемометры с лопастями и термоанемометры.

        Крыльчатые анемометры

        Измерение осуществляется путем подсчета количества оборотов, сделанных лопастями за определенный промежуток времени. Таким образом, средняя скорость за этот период времени получается прерывистым образом. Эти анемометры имеют два основных недостатка:

        1. Они очень направленные и должны быть ориентированы строго по направлению воздушного потока. Когда это расплывчато или неизвестно, измерения необходимо проводить в трех направлениях под прямым углом.
        2. Диапазон измерения простирается примерно от 0.3 м/с до 10 м/с. Это ограничение низкими скоростями важно, когда, например, речь идет об анализе ситуации теплового комфорта, когда обычно рекомендуется, чтобы скорость не превышала 0.25 м/с. Хотя диапазон измерения может выходить за пределы 10 м/с, он вряд ли опускается ниже 0.3 и даже 0.5 м/с, что сильно ограничивает возможности использования в средах, близких к комфортным, где максимально допустимые скорости составляют 0.5 и даже 0.25 м/с. с.

        Термоанемометры

        Эти приборы фактически дополняют крыльчатые анемометры в том смысле, что их динамический диапазон простирается в основном от 0 до 1 м/с. Это приборы, дающие мгновенную оценку скорости в одной точке пространства: поэтому необходимо использовать средние значения во времени и пространстве. Эти приборы также часто имеют очень направленное действие, и приведенные выше замечания также применимы. Наконец, измерение является правильным только с того момента, когда температура прибора достигает температуры окружающей среды, подлежащей оценке.

         

        Назад

        Тепловой стресс возникает, когда окружающая среда человека (температура воздуха, температура излучения, влажность и скорость движения воздуха), одежда и деятельность взаимодействуют, вызывая тенденцию к повышению температуры тела. Затем система терморегуляции тела реагирует, чтобы увеличить потерю тепла. Эта реакция может быть мощной и эффективной, но она также может вызывать напряжение в теле, что приводит к дискомфорту и, в конечном итоге, к тепловому заболеванию и даже к смерти. Поэтому важно оценить жаркую среду, чтобы обеспечить здоровье и безопасность работников.

        Индексы теплового стресса предоставляют инструменты для оценки жаркой среды и прогнозирования вероятной тепловой нагрузки на организм. Предельные значения, основанные на индексах теплового стресса, укажут, когда эта деформация может стать неприемлемой.

        Механизмы теплового стресса в целом понятны, и методы работы в жарких условиях хорошо известны. К ним относятся знание предупредительных признаков теплового стресса, программы акклиматизации и замена воды. Однако жертв по-прежнему много, и эти уроки, похоже, придется выучить заново.

        В 1964 году Лейтхед и Линд описали обширное исследование и пришли к выводу, что тепловые расстройства возникают по одной или нескольким из следующих трех причин:

        1. наличие таких факторов, как обезвоживание или отсутствие акклиматизации
        2. отсутствие надлежащего понимания опасностей жары как со стороны надзорного органа, так и со стороны лиц, подвергающихся риску
        3. случайные или непредвиденные обстоятельства, приводящие к воздействию очень высокого теплового стресса.

         

        Они пришли к выводу, что многие смерти могут быть связаны с пренебрежением и невнимательностью, и что даже когда расстройства действительно возникают, многое можно сделать, если имеются все требования для правильного и быстрого восстановительного лечения.

        Индексы теплового стресса

        Индекс теплового стресса представляет собой единое число, которое объединяет влияние шести основных параметров в любой тепловой среде человека, так что его значение будет варьироваться в зависимости от тепловой нагрузки, которую испытывает человек, подвергающийся воздействию горячей среды. Значение индекса (измеренное или рассчитанное) может быть использовано при проектировании или в рабочей практике для установления безопасных пределов. Было проведено множество исследований по определению окончательного индекса теплового стресса, и ведутся дискуссии о том, какой из них лучше. Например, Goldman (1988) представляет 32 индекса теплового стресса, и, вероятно, во всем мире используется как минимум вдвое больше этого числа. Многие индексы не учитывают все шесть основных параметров, хотя все они должны учитываться при применении. Использование индексов будет зависеть от индивидуальных контекстов, отсюда и создание такого большого количества индексов. Некоторые индексы теоретически неадекватны, но могут быть оправданы для конкретных приложений на основе опыта в конкретной отрасли.

        Керслейк (1972) отмечает: «Возможно, самоочевидно, что способ, которым должны сочетаться факторы окружающей среды, должен зависеть от свойств субъекта, подвергающегося их воздействию, но ни один из используемых в настоящее время индексов теплового стресса формально не допускает этого. ». Недавний всплеск стандартизации (например, ISO 7933 (1989b) и ISO 7243 (1989a)) привел к необходимости принятия аналогичных индексов во всем мире. Однако необходимо будет приобрести опыт использования любого нового индекса.

        Большинство индексов теплового стресса прямо или косвенно учитывают, что основная нагрузка на организм связана с потоотделением. Например, чем больше потоотделения требуется для поддержания теплового баланса и внутренней температуры тела, тем больше нагрузка на организм. Чтобы индекс теплового стресса отражал тепловую среду человека и прогнозировал тепловую нагрузку, необходим механизм для оценки способности потеющего человека терять тепло в жаркой среде.

        Индекс, связанный с испарением пота в окружающую среду, полезен, когда люди поддерживают внутреннюю температуру тела в основном за счет потоотделения. Обычно говорят, что эти условия находятся в предписывающая зона (ВОЗ, 1969 г.). Следовательно, глубокая температура тела остается относительно постоянной, в то время как частота сердечных сокращений и скорость потоотделения увеличиваются при тепловом стрессе. На верхней границе прескриптивной зоны (УЛПЗ) терморегуляция недостаточна для поддержания теплового баланса, и температура тела повышается. Это называется экологически чистая зона (ВОЗ, 1969 г.). В этой зоне накопление тепла связано с повышением внутренней температуры тела и может использоваться в качестве показателя для определения допустимого времени воздействия (например, на основе прогнозируемого предела безопасности для «внутренней» температуры 38 °C; см. рис. 1).

        Рис. 1. Расчетное распределение воды во внеклеточном компартменте (ECW) и внутриклеточном компартменте (ICW) до и после 2-часовой дегидратации при физической нагрузке при комнатной температуре 30°C.

        НЕА080F1

        Индексы теплового стресса удобно классифицировать как рациональный, эмпирический or направлять. Рациональные индексы основаны на расчетах с использованием уравнения теплового баланса; эмпирические индексы основаны на установлении уравнений физиологических реакций людей (например, потери пота); а прямые индексы основаны на измерении (обычно температуры) приборами, используемыми для имитации реакции человеческого тела. Наиболее важные и широко используемые индексы теплового стресса описаны ниже.

        Рациональные индексы

        Индекс теплового стресса (HSI)

        Индекс теплового стресса – это отношение испарения, необходимого для поддержания теплового баланса (EREQ) к максимальному испарению, которого можно было бы достичь в окружающей среде (EМакс), выраженное в процентах (Белдинг и Хэтч, 1955). Уравнения представлены в таблице 1.

         


        Таблица 1. Уравнения, используемые для расчета индекса теплового стресса (HSI) и допустимого времени воздействия (AET)

         

         

         

         

        облеченная

        раздетый

        (1) Потери излучения (R)

         

        для

        4.4

        7.3

        (2) Конвекционные потери (C)

         

        для

        4.6

        7.6

         

        (3) Максимальные потери на испарение ()

         

        (верхний предел 390 )

         

        для

        7.0

        11.7

         

        (4) Требуемые потери на испарение ()

         

         

         

         

        (5) Индекс теплового стресса (HSI)

         

         

         

         

        (6) Допустимое время воздействия (AET)

         

         

         

        где: M = метаболическая мощность; = температура воздуха; = температура излучения; = парциальное давление пара;  v = скорость воздуха 


                                 

         

        Ассоциация HSI в качестве индекса, таким образом, связан с напряжением, главным образом с точки зрения потоотделения тела, для значений от 0 до 100. HSI = 100, требуемое испарение является максимальным, которого можно достичь, и, таким образом, представляет собой верхний предел нормативной зоны. За HSI>100, имеет место запасание тепла телом, и допустимое время воздействия рассчитывается исходя из повышения внутренней температуры на 1.8 ºC (накопление тепла 264 кДж). За HSI0 наблюдается легкое переохлаждение — например, когда рабочие восстанавливаются после теплового перенапряжения (см. табл. 2).

        Таблица 2. Интерпретация значений индекса теплового стресса (HSI)

        HSI

        Эффект восьмичасовой выдержки

        -20

        Легкая холодовая деформация (например, восстановление после теплового воздействия).

        0

        Отсутствие термической деформации

        10-30

        Легкая и умеренная тепловая нагрузка. Незначительное влияние на физическую работу, но возможное влияние на квалифицированную работу

        40-60

        Сильное тепловое перенапряжение, представляющее угрозу для здоровья, за исключением случаев, когда человек находится в хорошей физической форме. Требуется акклиматизация

        70-90

        Очень сильная тепловая нагрузка. Персонал должен быть отобран путем медицинского осмотра. Обеспечить достаточное потребление воды и соли

        100

        Максимальная нагрузка, которую ежедневно переносят акклиматизированные молодые мужчины

        Более 100

        Время воздействия ограничено повышением глубокой температуры тела

        Верхний предел 390 Вт/м2 назначен на EМакс (скорость потоотделения 1 л/ч, принятая за максимальную скорость потоотделения, поддерживаемая в течение 8 ч). Делаются простые предположения о влиянии одежды (рубашки с длинными рукавами и брюк), и предполагается, что температура кожи постоянна и составляет 35ºC.

        Индекс термического напряжения (ITS)

        Дживони (Givoni, 1963, 1976) представил индекс теплового стресса, который представлял собой улучшенную версию индекса теплового стресса. Важным улучшением является признание того, что не весь пот испаряется. (См. «I. Индекс теплового напряжения» в Практический пример: тепловые индексы.)

        Требуемая скорость потоотделения

        Дальнейшим теоретическим и практическим развитием HSI и ITS стала необходимая скорость потоотделения (SWREQ) индекс (Фогт и др., 1981). Этот индекс рассчитывал потоотделение, необходимое для теплового баланса, из улучшенного уравнения теплового баланса, но, что наиболее важно, также обеспечивал практический метод интерпретации расчетов путем сравнения того, что требуется, с тем, что физиологически возможно и приемлемо для человека.

        Обширные обсуждения, лабораторные и промышленные оценки (CEC 1988) этого индекса привели к тому, что он был принят в качестве международного стандарта ISO 7933 (1989b). Различия между наблюдаемой и прогнозируемой реакцией рабочих привели к включению предостерегающих примечаний относительно методов оценки обезвоживания и теплопередачи при испарении через одежду в ее принятие в качестве предлагаемого европейского стандарта (prEN-12515). (См. «II. Требуемая скорость потоотделения» в Практический пример: тепловые индексы.)

        Интерпретация ПОREQ

        Эталонные значения — с точки зрения того, что приемлемо или чего люди могут достичь, — используются для практической интерпретации расчетных значений (см. таблицу 3).

        Таблица 3. Справочные значения для критериев термического напряжения и деформации (ISO 7933, 1989b)

        Критерии

        Неакклиматизированные предметы

        Акклиматизированные субъекты

         

        Предупреждение

        Опасность

        Предупреждение

        Опасность

        Максимальное увлажнение кожи

        wМакс

        0.85

        0.85

        1.0

        1.0

        Максимальная скорость потоотделения

        Отдых (M 65 Wm-2 )

        SWМакс Wm-2 gh-1

        100

        150

        200

        300

         

        260

        390

        520

        780

        Работа (M≥65 Wm-2 )

        SWМакс Wm-2 gh-1

        200

        250

        300

        400

         

        520

        650

        780

        1,040

        Максимальное накопление тепла

        QМакс

        Ух-2

        50

        60

        50

        60

        Максимальная потеря воды

        DМакс

        Ух-2 g

        1,000

        1,250

        1,500

        2,000

         

        2,600

        3,250

        3,900

        5,200

         

        Во-первых, прогноз влажности кожи (Wp), скорость испарения (Ep) и потоотделение (SWp) сделаны. По существу, если то, что рассчитано в соответствии с требованиями, может быть достигнуто, то это прогнозируемые значения (например, SWp = ЮЗREQ). Если они не могут быть достигнуты, можно взять максимальные значения (например, SWp=ЮЗМакс). Более подробная информация представлена ​​в блок-схеме принятия решений (см. рис. 2).

        Рисунок 2. Блок-схема принятия решений для  (требуемая скорость потоотделения).

        НЕА080F2

        Если требуемая скорость потоотделения может быть достигнута человеком и это не вызовет неприемлемой потери воды, то нет предела из-за воздействия тепла в течение 8-часовой смены. Если нет, воздействия, ограниченные по продолжительности (ДЛЕ) рассчитываются из следующего:

        После появления Ep = EREQ и SWp = DМакс/8, тогда ДЛЕ = 480 минут и SWREQ может использоваться как показатель теплового стресса. Если вышеперечисленное не устраивает, то:

        ДЛЭ1 = 60QМакс/( EREQEp)

        ДЛЭ2 = 60DМакс/SWp

        ДЛЭ меньше из ДЛЭ1 и ДЛЭ2. Более подробные сведения приведены в ISO 7933 (1989b).

        Другие рациональные показатели

        Ассоциация SWREQ индекс и ISO 7933 (1989 г.) представляют собой наиболее совершенный рациональный метод, основанный на уравнении теплового баланса, и они являются крупными достижениями. С этим подходом можно сделать больше разработок; однако альтернативным подходом является использование тепловой модели. По сути, Новая эффективная температура (ET*) и Стандартная эффективная температура (SET) представляют собой показатели, основанные на двухузловой модели терморегуляции человека (Nishi and Gagge, 1977). Дживони и Голдман (1972, 1973) также предложили модели эмпирического прогнозирования для оценки теплового стресса.

        Эмпирические показатели

        Эффективная температура и скорректированная эффективная температура

        Индекс эффективной температуры (Хоутон и Яглоу, 1923 г.) был первоначально создан для определения относительного влияния температуры и влажности воздуха на комфорт. Трое испытуемых определяли, какая из двух климатических камер теплее, проходя между ними. По различным сочетаниям температуры и влажности воздуха (а позже и других параметров) были определены линии равной комфортности. Были сделаны немедленные оттиски, поэтому временная реакция была записана. Это привело к переоценке влияния влажности при низких температурах и недооценке его при высоких температурах (по сравнению со стационарными откликами). Хотя изначально это был индекс комфорта, использование температуры черного шара вместо температуры сухого термометра в номограммах ET позволило получить скорректированную эффективную температуру (CET) (Бедфорд, 1940). Исследование, проведенное Макферсоном (1960), показало, что СЕТ предсказывает физиологические эффекты повышения средней радиационной температуры. ET и CET в настоящее время редко используются в качестве индексов комфорта, но использовались в качестве индексов теплового стресса. Бедфорд (1940) предложил CET в качестве показателя тепла с верхним пределом 34ºC для «разумной эффективности» и 38.6ºC для переносимости. Однако дальнейшее исследование показало, что ET имеет серьезные недостатки для использования в качестве индекса теплового стресса, что привело к индексу прогнозируемой четырехчасовой скорости потоотделения (P4SR).

        Прогнозируемый уровень потоотделения за четыре часа

        Индекс прогнозируемой четырехчасовой нормы потоотделения (P4SR) был установлен в Лондоне McArdle et al. (1947) и оценены в Сингапуре за 7 лет работы, обобщенной Макферсоном (1960). Это количество пота, выделяемого здоровыми, акклиматизированными молодыми людьми, подвергавшимися воздействию окружающей среды в течение 4 часов при заряжании орудий боеприпасами во время морского боя. Единственное число (значение индекса), которое обобщает влияние шести основных параметров, представляет собой количество пота в конкретной популяции, но его следует использовать как значение индекса, а не как показатель количества пота в отдельной группе людей. интерес.

        Было признано, что за пределами предписывающей зоны (например, P4SR>5 л) уровень потоотделения не был хорошим показателем напряжения. Номограммы P4SR (рис. 3) были скорректированы, чтобы учесть это. P4SR оказался полезным в тех условиях, для которых он был получен; однако влияние одежды чрезмерно упрощено, и это наиболее полезно в качестве индекса накопления тепла. Макардл и др. (1947) предложили P4SR 4.5 л в качестве предела, при котором не происходит инвалидизации здоровых, акклиматизированных молодых людей.

        Рисунок 3. Номограмма для прогноза «прогнозируемой 4-часовой скорости потоотделения» (P4SR).

        НЕА080F3

        Прогноз сердечного ритма как индекс

        Fuller и Brouha (1966) предложили простой индекс, основанный на предсказании частоты сердечных сокращений (ЧСС) в ударах в минуту. Зависимость, изначально сформулированная со скоростью метаболизма в БТЕ/ч и парциальным давлением паров в мм рт.ст., обеспечивала простой прогноз частоты сердечных сокращений по (T + p), следовательно T + p индекса.

        Дживони и Голдман (1973) также приводят уравнения для изменения частоты сердечных сокращений во времени, а также поправки на степень акклиматизации испытуемых, которые приведены в Тематическое исследование "Индексы тепла" под «IV. Частота сердцебиения".

        Способ работы и восстановления ЧСС описан NIOSH (1986) (из Brouha 1960 и Fuller and Smith 1980, 1981). Температура тела и частота пульса измеряются во время восстановления после рабочего цикла или в определенное время в течение рабочего дня. В конце рабочего цикла рабочий садится на табурет, измеряется оральная температура и регистрируются следующие три частоты пульса:

        P1— частота пульса подсчитывается от 30 секунд до 1 минуты

        P2— частота пульса подсчитывается от 1.5 до 2 мин.

        P3— частота пульса подсчитывается от 2.5 до 3 мин.

        Окончательным критерием с точки зрения теплового напряжения является температура полости рта 37.5 ºC.

        If P3≤90 ударов в минуту и P3P1 = 10 ударов в минуту, это указывает на высокий уровень работы, но небольшое повышение температуры тела. Если P3>90 ударов в минуту и P3P110 ударов в минуту, стресс (тепло + работа) слишком высок, и необходимы действия по изменению дизайна работы.

        Фогт и др. (1981) и ISO 9886 (1992) предлагают модель (таблица 4), использующую частоту сердечных сокращений для оценки температурных условий:

        Таблица 4. Модель, использующая частоту сердечных сокращений для оценки теплового стресса

        Общая частота сердечных сокращений

        Уровень активности

        HR0

        Отдых (термическая нейтральность)

        HR0 + ЧАСM

        Работа

        HR0 + ЧАСS

        Статическая нагрузка

        HR0 + ЧАСt

        Термическая деформация

        HR0 + ЧАСN

        Эмоция (психологическая)

        HR0 + ЧАСe

        остаточный

        На основании Vogt et al. (1981) и ИСО 9886 (1992).

        Компонент термической деформации (возможный индекс теплового напряжения) можно рассчитать по формуле:

        HRt = HRrHR0

        в котором HRr частота сердечных сокращений после выздоровления и HR0 это частота сердечных сокращений в состоянии покоя в термически нейтральной среде.

        Индексы прямого теплового стресса

        Индекс температуры влажного шарика земного шара

        Индекс температуры по влажному термометру (WBGT) на сегодняшний день является наиболее широко используемым во всем мире. Он был разработан ВМС США при расследовании тепловых потерь во время тренировок (Яглоу и Минард, 1957) как приближение к более громоздкому методу скорректированной эффективной температуры (CET), модифицированному для учета способности поглощения солнечного света зеленой военной одеждой.

        Предельные значения WBGT использовались для указания того, когда новобранцы могут тренироваться. Было обнаружено, что потери тепла и время, потерянное из-за прекращения тренировок в жару, были уменьшены за счет использования индекса WBGT вместо одной только температуры воздуха. Индекс WBGT был принят NIOSH (1972 г.), ACGIH (1990 г.) и ISO 7243 (1989a) и предлагается до сих пор. ISO 7243 (1989a), основанный на показателе WBGT, предлагает метод, который легко использовать в жарких условиях для обеспечения «быстрой» диагностики. Спецификация измерительных приборов приведена в стандарте, как и предельные значения WBGT для акклиматизированных или неакклиматизированных лиц (см. таблицу 5). Например, для отдыхающего акклиматизированного человека в 0.6 clo предельное значение составляет 33ºC WBGT. Пределы, указанные в ISO 7243 (1989a) и NIOSH 1972, почти идентичны. Расчет индекса WBGT приведен в разделе V сопроводительного документа. Тематическое исследование: тепловые индексы.

        Таблица 5. Эталонные значения WBGT из ISO 7243 (1989a)

        Скорость метаболизма M (Wm-2 )

        Эталонное значение WBGT

         

        Человек акклиматизировался
        тепло (°С)

        Человек не акклиматизировался
        тепло (°С)

        0. В покое M≤65

        33

         

        32

         

        1. 65M≤130

        30

         

        29

         

        2. 130M≤200

        28

         

        26

         
         

        Нет ощутимого движения воздуха

        Разумное движение воздуха

        Нет ощутимого движения воздуха

        Разумное движение воздуха

        3. 200М260

        25

        26

        22

        23

        4. М>260

        23

        25

        18

        20

        Примечание: Приведенные значения были установлены с учетом максимальной ректальной температуры 38°C для соответствующих лиц.

        Простота индекса и его использование влиятельными органами привели к его широкому распространению. Как и все прямые индексы, он имеет ограничения при использовании для имитации реакции человека, и его следует использовать с осторожностью в практических приложениях. Можно купить портативные приборы, определяющие индекс WBGT (например, Olesen 1985).

        Предел физиологического теплового воздействия (PHEL)

        Dasler (1974, 1977) приводит предельные значения WBGT, основанные на предсказании превышения любых двух физиологических пределов (на основании экспериментальных данных) недопустимого напряжения. Пределы устанавливаются:

        ФЕЛ=(17.25 × 108-12.97M× 106+18.61M2 × 103) ×ВБГТ-5.36

        Таким образом, в этом индексе используется прямой индекс WBGT в экологически ориентированной зоне (см. рис. 4), где может происходить аккумулирование тепла.

        Индекс температуры влажного земного шара (WGT)

        Температуру влажного черного шара подходящего размера можно использовать как показатель теплового стресса. Принцип заключается в том, что на него влияет как сухой, так и испарительный теплообмен, как и потеющий человек, и затем температуру можно использовать с опытом в качестве индекса теплового стресса. Олесен (1985) описывает WGT как температуру черного шара диаметром 2.5 дюйма (63.5 мм), покрытого влажной черной тканью. Температуру считывают, когда равновесие достигается примерно через 10-15 минут воздействия. NIOSH (1986) описывает Botsball (Botsford 1971) как самый простой и легко читаемый инструмент. Это 3-дюймовая (76.2 мм) медная сфера, покрытая черной тканью, сохраняющая 100% влажность из резервуара с самоподпитывающейся водой. Чувствительный элемент термометра расположен в центре сферы, а температура считывается на циферблате (с цветовой кодировкой).

        Простое уравнение, связывающее WGT с WBGT:

         

        ВБГТ = WGT + 2 ºС

        для условий умеренного лучистого тепла и влажности (NIOSH 1986), но, конечно, это соотношение не может сохраняться в широком диапазоне условий.

        Оксфордский индекс

        Линд (1957) предложил простой, прямой индекс, используемый для теплового воздействия, ограниченного хранением, и основанный на взвешенном суммировании температуры влажного термометра при аспирации (Twb) и температура сухого термометра (Tdb):

        WD = 0.85 Twb + 0.15 Tdb

        Допустимое время воздействия для горноспасательных бригад было основано на этом показателе. Он широко применим, но не подходит там, где имеется значительное тепловое излучение.

        Методы работы в жаркой среде

        NIOSH (1986) дает исчерпывающее описание методов работы в жарких условиях, включая профилактическую медицинскую практику. Предложение по медицинскому наблюдению за лицами, подвергающимися воздействию горячей или холодной окружающей среды, содержится в ISO CD 12894 (1993). Всегда следует помнить, что это основное право человека, которое было подтверждено в 1985 г. Хельсинкская декларация, что, когда это возможно, люди могут выйти из любой экстремальной среды без необходимости объяснения. Там, где воздействие действительно имеет место, определенные методы работы значительно повысят безопасность.

        Разумный принцип экологической эргономики и промышленной гигиены состоит в том, что, по возможности, экологический стресс должен быть уменьшен в источнике. NIOSH (1986) делит методы контроля на пять типов. Они представлены в таблице 6.

        Таблица 6. Методы работы в жарких условиях

        А. Технические средства контроля

        Пример

        1. Уменьшите источник тепла

        Отойдите от рабочих или снизьте температуру. Не всегда осуществимо.

        2. Конвективный контроль тепла

        Измените температуру воздуха и движение воздуха. Могут быть полезны точечные охладители.

        3. Контроль лучистого тепла

        Снизьте температуру поверхности или установите отражающий экран между источником излучения и рабочими. Изменение коэффициента излучения поверхности. Используйте двери, которые открываются только тогда, когда требуется доступ.

        4. Испарительный контроль тепла

        Увеличьте движение воздуха, уменьшите давление водяного пара. Используйте вентиляторы или кондиционер. Намочите одежду и обдуйте человека воздухом.

        B. Работа и гигиена
        и административный контроль

        Пример

        1. Ограничение времени воздействия и/или
        температура

        Выполняйте работу в более прохладное время дня и года. Обеспечьте прохладные места для отдыха и восстановления. Дополнительный персонал, свобода работника прерывать работу, увеличивать потребление воды.

        2. Уменьшить метаболическую тепловую нагрузку

        Механизация. Работа по редизайну. Сократите время работы. Увеличение рабочей силы.

        3. Увеличьте время толерантности

        Программа адаптации к теплу. Поддерживайте физическую форму работников. Убедитесь, что потеря воды восполнена, и при необходимости поддерживайте электролитный баланс.

        4. Обучение по охране труда и технике безопасности

        Инспекторы обучены распознавать признаки теплового заболевания и оказывать первую помощь. Базовый инструктаж для всего персонала по личным мерам предосторожности, использованию защитного оборудования и воздействию непрофессиональных факторов (например, алкоголя). Использование системы «напарников». Должны быть разработаны планы лечения на случай непредвиденных обстоятельств.

        5. Скрининг на непереносимость жары

        История предыдущей тепловой болезни. Физически непригоден.

        C. Программа оповещения о наступлении сильной жары

        Пример

        1. Весной объявить жару
        комитет (промышленный врач
        или медсестра, промышленный гигиенист,
        инженер по технике безопасности, эксплуатация
        инженер, топ-менеджер)

        Организуйте курс обучения. Памятки надзорным органам для проверки питьевых фонтанчиков и т. д. Проверка помещений, практики, готовности и т. д.

        2. Объявить жару в прогнозируемом
        заклинание на жаркую погоду

        Отложите несрочные дела. Увеличьте количество рабочих, увеличьте количество отдыхающих. Напомните рабочим пить. Улучшить методы работы.

        D. Вспомогательное охлаждение тела и защитная одежда

        Используйте, если невозможно изменить работника, работу или окружающую среду, а тепловая нагрузка все еще выходит за рамки допустимого. Люди должны быть полностью акклиматизированы к теплу и хорошо обучены использованию и практике ношения защитной одежды. Примерами являются одежда с водяным охлаждением, одежда с воздушным охлаждением, жилеты со льдом и влажная верхняя одежда.

        E. Снижение производительности

        Следует помнить, что ношение защитной одежды, обеспечивающей защиту от отравляющих веществ, увеличивает тепловой стресс. Вся одежда будет мешать деятельности и может снижать производительность (например, снижая способность воспринимать сенсорную информацию, что, например, приведет к ухудшению слуха и зрения).

        Источник: НИОТШ, 1986 г.

        Было проведено большое количество военных исследований так называемой одежды для защиты от ядерного, биологического и химического оружия. В жарких условиях невозможно снять одежду, и здесь очень важны методы работы. Аналогичная проблема возникает у работников атомных электростанций. Методы быстрого охлаждения рабочих, чтобы они могли снова работать, включают протирание внешней поверхности одежды водой и обдувание ее сухим воздухом. Другие методы включают активные охлаждающие устройства и методы охлаждения локальных участков тела. Перенос технологии военной одежды в промышленные условия является новым нововведением, но многое известно, и соответствующие методы работы могут значительно снизить риск.

         

        Таблица 7. Уравнения, использованные при расчете индекса и методе оценки по ISO 7933 (1989b)

        для естественной конвекции

        or  , для приближения или когда значения выходят за пределы, для которых было получено уравнение.

        ____________________________________________________________________________________

        Таблица 8. Описание терминов, используемых в ISO 7933 (1989b)

        Символ

        Срок

        Единицы

        часть поверхности кожи, участвующая в теплообмене излучением

        ND

        C

        теплообмен на коже за счет конвекции  

        Wm-2

        Потеря тепла при дыхании за счет конвекции

        Wm-2

        E

        тепловой поток за счет испарения на поверхности кожи

        Wm-2

        максимальная скорость испарения, которая может быть достигнута при полностью влажной коже

        Wm-2

        необходимое испарение для теплового равновесия

        Wm-2

        потеря тепла при дыхании за счет испарения

        Wm-2

        коэффициент излучения кожи (0.97)

        ND

        Понижающий коэффициент для физического теплообмена из-за одежды

        ND

        понижающий коэффициент для скрытого теплообмена

        ND

        отношение площади тела человека в одежде к площади поверхности тела без одежды

        ND

        коэффициент конвективной теплоотдачи

        коэффициент теплопередачи испарения

        коэффициент лучистой теплопередачи

        базовая сухая теплоизоляция одежды

        K

        теплообмен на коже за счет проводимости

        Wm-2

        M

        метаболическая мощность

        Wm-2

        парциальное давление пара

        кПа

        давление насыщенного пара при температуре кожи

        кПа

        R

        теплообмен на коже излучением

        Wm-2

        суммарное сопротивление испарению пограничного слоя воздуха и одежды

        эффективность испарения при требуемой скорости потоотделения

        ND

        необходимая скорость потоотделения для теплового равновесия

        Wm-2

        постоянная Стефана-Больцмана, 

        температура воздуха

        средняя лучистая температура

        средняя температура кожи

        скорость воздуха для неподвижного объекта

        относительная скорость воздуха

        W

        механическая сила

        Wm-2

        влажность кожи

        ND

        требуется увлажнение кожи

        ND

        ND = безразмерный.

        Методы работы в жаркой среде

        NIOSH (1986) дает исчерпывающее описание методов работы в жарких условиях, включая профилактическую медицинскую практику. Предложение по медицинскому наблюдению за лицами, подвергающимися воздействию горячей или холодной окружающей среды, содержится в ISO CD 12894 (1993). Всегда следует помнить, что это основное право человека, которое было подтверждено в 1985 г.Хельсинкская декларация, что, когда это возможно, люди могут выйти из любой экстремальной среды без необходимости объяснения. Там, где воздействие действительно имеет место, определенные методы работы значительно повысят безопасность.

        Разумный принцип экологической эргономики и промышленной гигиены состоит в том, что, по возможности, экологический стресс должен быть уменьшен в источнике. NIOSH (1986) делит методы контроля на пять типов. Они представлены в таблице 7. Было проведено большое количество военных исследований так называемой защитной одежды NBC (ядерного, биологического, химического оружия). В жарких условиях невозможно снять одежду, и здесь очень важны методы работы. Аналогичная проблема возникает у работников атомных электростанций. Методы быстрого охлаждения рабочих, чтобы они могли снова работать, включают протирание внешней поверхности одежды водой и обдувание ее сухим воздухом. Другие методы включают активные охлаждающие устройства и методы охлаждения локальных участков тела. Перенос технологии военной одежды в промышленные условия является новым нововведением, но многое известно, и соответствующие методы работы могут значительно снизить риск.

        Оценка горячей среды с использованием стандартов ISO

        Следующий гипотетический пример демонстрирует, как можно использовать стандарты ISO при оценке жарких сред (Parsons 1993):

        Рабочие на сталелитейном заводе выполняют работу в четыре этапа. Они надевают одежду и выполняют легкую работу в течение 1 часа в жарком лучистом помещении. Они отдыхают в течение 1 часа, затем выполняют ту же легкую работу в течение часа, защищаясь от лучистого тепла. Затем они выполняют работу, связанную с умеренным уровнем физической активности, в жаркой лучистой среде в течение 30 минут.

        ISO 7243 предоставляет простой метод мониторинга окружающей среды с использованием индекса WBGT. Если рассчитанные уровни WBGT меньше контрольных значений WBGT, указанных в стандарте, то никаких дальнейших действий не требуется. Если уровни превышают контрольные значения (таблица 6), то необходимо снизить нагрузку на рабочих. Это может быть достигнуто с помощью технических средств контроля и методов работы. Дополнительным или альтернативным действием является проведение аналитической оценки в соответствии с ISO 7933.

        Значения WBGT для работы представлены в таблице 9 и были измерены в соответствии со спецификациями, приведенными в ISO 7243 и ISO 7726. Окружающие и личные факторы, относящиеся к четырем этапам работы, представлены в таблице 10.

        Таблица 9. Значения WBGT (°C) для четырех рабочих фаз

        Рабочая фаза (минуты)

        ВБГТ = ВБГТАНК + 2 ВБГТабд + ВБГТhd

        ссылка WBGT

        0-60

        25

        30

        60-90

        23

        33

        90-150

        23

        30

        150-180

        30

        28

         

        Таблица 10. Основные данные для аналитической оценки с использованием ISO 7933

        Рабочая фаза (минуты)

        ta (° C)

        tr (° C)

        Pa (КП)

        v

        (РС-1 )

        CLO

        (кло)

        Действие (Act):

        (Вт·м-2 )

        0-60

        30

        50

        3

        0.15

        0.6

        100

        60-90

        30

        30

        3

        0.05

        0.6

        58

        90-150

        30

        30

        3

        0.20

        0.6

        100

        150-180

        30

        60

        3

        0.30

        1.0

        150

         

        Видно, что для части работы значения WBGT превышают эталонные значения. Делается вывод о необходимости более детального анализа.

        Метод аналитической оценки, представленный в ISO 7933, был выполнен с использованием данных, представленных в таблице 10, и компьютерной программы, указанной в приложении к стандарту. Результаты для акклиматизированных рабочих по уровню тревоги представлены в таблице 11.

        Таблица 11. Аналитическая оценка с использованием ISO 7933

        Рабочий этап
        (минуты)

        Прогнозируемые значения

        Длительность
        ограниченный
        экспозиция
        (минуты)

        Причина для
        предел

         

        tsk (° C)

        Вт (Северная Дакота)

        SW (гх-1 )

         

        0-60

        35.5

        0.93

        553

        423

        Потеря воды

        60-90

        34.6

        0.30

        83

        480

        Нет предела

        90-150

        34.6

        0.57

        213

        480

        Нет предела

        150-180

        35.7

        1.00

        566

        45

        Температура тела

        В общем

        -

        0.82

        382

        480

        Нет предела

         

        Таким образом, общая оценка предсказывает, что неакклиматизированные рабочие, пригодные для работы, могут выполнять 8-часовую смену, не подвергаясь неприемлемому (тепловому) физиологическому напряжению. Если требуется большая точность или необходимо оценить отдельных рабочих, то ISO 8996 и ISO 9920 предоставят подробную информацию о метаболическом производстве тепла и изоляции одежды. ISO 9886 описывает методы измерения физиологической нагрузки на рабочих и может использоваться для проектирования и оценки условий труда для конкретных рабочих. В этом примере интерес представляют средняя температура кожи, внутренняя температура тела, частота сердечных сокращений и потеря массы тела. ISO CD 12894 содержит руководство по медицинскому наблюдению за расследованием.

         

        Назад

        Четверг, Март 17 2011 00: 35

        Теплообмен через одежду

        Чтобы выжить и работать в более холодных или более жарких условиях, необходимо обеспечить теплый климат на поверхности кожи с помощью одежды, а также искусственного обогрева или охлаждения. Понимание механизмов теплообмена через одежду необходимо для создания наиболее эффективных комплектов одежды для работы при экстремальных температурах.

        Механизмы теплопередачи в одежде

        Характер утепления одежды

        Теплопередача через одежду или, наоборот, теплоизоляция одежды во многом зависит от воздуха, который задерживается в одежде и на ней. Одежда состоит, в первом приближении, из любого материала, обеспечивающего сцепление с воздухом. Это утверждение является приблизительным, поскольку некоторые свойства материалов все еще актуальны. Они относятся к механической конструкции тканей (например, сопротивление ветру и способность волокон поддерживать толстые ткани), а также к внутренним свойствам волокон (например, поглощение и отражение теплового излучения, поглощение водяного пара, впитывание пота). ). Для не слишком экстремальных условий окружающей среды достоинства различных типов волокон часто переоцениваются.

        Воздушные слои и движение воздуха

        Представление о том, что именно воздух, и в частности неподвижный воздух, обеспечивает изоляцию, предполагает, что толстые воздушные слои полезны для изоляции. Это верно, но толщина слоев воздуха физически ограничена. Воздушные слои образуются за счет прилипания молекул газа к какой-либо поверхности, прилипания второго слоя молекул к первому и т. д. Однако силы связи между последующими слоями становятся все меньше и меньше, в результате чего внешние молекулы перемещаются даже при незначительном внешнем движении воздуха. В спокойном воздухе воздушные слои могут иметь толщину до 12 мм, но при интенсивном движении воздуха, как в грозу, толщина уменьшается до менее 1 мм. Как правило, между толщиной и движением воздуха существует корень квадратного корня (см. «Формулы и определения»). Точная функция зависит от размера и формы поверхности.

        Теплопроводность неподвижного и движущегося воздуха

        Неподвижный воздух действует как изолирующий слой с постоянной проводимостью, независимо от формы материала. Нарушение воздушных слоев приводит к потере эффективной толщины; сюда относятся возмущения не только от ветра, но и от движений носителя одежды — перемещения тела (составляющей ветра) и движений частей тела. Естественная конвекция усиливает этот эффект. График, показывающий влияние скорости воздуха на изоляционную способность слоя воздуха, см. на рис. 1.

        Рис. 1. Влияние скорости воздуха на изоляционную способность воздушной прослойки.

        НЕА020F1

        Теплопередача излучением

        Излучение является еще одним важным механизмом передачи тепла. Каждая поверхность излучает тепло и поглощает тепло, излучаемое другими поверхностями. Лучистый тепловой поток приблизительно пропорционален разности температур между двумя обменивающимися поверхностями. Слой одежды между поверхностями будет мешать радиационному теплообмену, перехватывая поток энергии; одежда достигнет температуры, которая примерно равна средней температуре двух поверхностей, сократив разницу температур между ними в два раза, и, следовательно, лучистый поток уменьшится в два раза. По мере увеличения количества перехватывающих слоев скорость теплообмена снижается.

        Таким образом, несколько слоев эффективно уменьшают лучистую теплопередачу. В ватинах и волокнистых нетканых материалах излучение поглощается распределенными волокнами, а не слоем ткани. Плотность волокнистого материала (точнее, общая поверхность волокнистого материала на объем ткани) является критическим параметром для переноса излучения внутри таких волокнистых нетканых материалов. Тонкие волокна обеспечивают большую поверхность для данного веса, чем грубые волокна.

        Тканевая изоляция

        В результате проводимости закрытого воздуха и переноса излучения проводимость ткани фактически является постоянной величиной для тканей различной толщины и переплетов. Таким образом, теплоизоляция пропорциональна толщине.

        Паростойкость воздуха и тканей

        Воздушные слои также создают сопротивление диффузии испаряющегося пота с влажной кожи в окружающую среду. Это сопротивление примерно пропорционально толщине комплекта одежды. Для тканей паропроницаемость зависит от окружающего воздуха и плотности конструкции. В настоящих тканях высокая плотность и большая толщина никогда не сочетаются. Благодаря этому ограничению можно оценить воздушный эквивалент тканей, не содержащих пленок или покрытий (см. рис. 8). Ткани с покрытием или ткани, ламинированные пленкой, могут иметь непредсказуемую паропроницаемость, которую следует определять путем измерения.

        Рисунок 2. Зависимость между толщиной и паропроницаемостью (deq) для тканей без покрытий.

        НЕА020F2

        От ткани и воздушных слоев к одежде

        Несколько слоев ткани

        Некоторые важные выводы из механизмов теплопередачи заключаются в том, что хорошо изолирующая одежда обязательно толстая, что высокая теплоизоляция может быть достигнута за счет комплектов одежды с несколькими тонкими слоями, что свободная посадка обеспечивает большую теплоизоляцию, чем плотная посадка, и что теплоизоляция имеет нижний предел. , задается воздушной прослойкой, которая прилипает к коже.

        В одежде для холодной погоды часто трудно получить толщину, используя только тонкие ткани. Решение состоит в том, чтобы создать толстые ткани, прикрепив две тонкие ткани оболочки к ватину. Цель ватина состоит в том, чтобы создать воздушную прослойку и удерживать воздух внутри как можно более неподвижным. У толстых тканей есть и недостаток: чем больше слоев соединено, тем жестче становится одежда, тем самым ограничивая движения.

        Разнообразие одежды

        Утепление ансамбля одежды во многом зависит от конструкции одежды. Конструктивные параметры, влияющие на изоляцию, включают количество слоев, отверстия, посадку, распределение изоляции по телу и открытой коже. Некоторые свойства материалов, такие как воздухопроницаемость, отражательная способность и покрытия, также важны. Кроме того, ветер и активность меняют изоляцию. Можно ли дать адекватное описание одежды с целью предсказания комфорта и терпимости ее владельца? Были предприняты различные попытки, основанные на различных методах. Большинство оценок полной изоляции ансамбля было сделано для статических условий (без движения, без ветра) в ансамблях внутри помещений, поскольку доступные данные были получены с тепловых манекенов (McCullough, Jones and Huck, 1985). Измерения на людях трудоемки, и результаты сильно различаются. С середины 1980-х годов были разработаны и используются надежные движущиеся манекены (Olesen et al., 1982; Nielsen, Olesen and Fanger, 1985). Кроме того, улучшенные методы измерения позволили проводить более точные эксперименты на людях. Проблема, которая до сих пор не решена полностью, заключается в правильном включении испарения пота в оценку. Потеющие манекены встречаются редко, и ни у одного из них нет реалистичного распределения скорости потоотделения по телу. Люди потеют реально, но непостоянно.

        Определение изоляции одежды

        Изоляция одежды (Icl в единицах м2K/Вт) для стационарных условий, без источников излучения или конденсата в одежде, определяется в «Формулы и определения». Часто I выражается в единицах кло (не является стандартной международной единицей). Один кло равен 0.155 м2К/Вт. Использование единицы clo неявно означает, что она относится ко всему телу и, таким образом, включает теплопередачу через открытые части тела.

        I изменяется движением и ветром, как объяснялось ранее, и после корректировки результат называется результирующая изоляция. Это часто используемый, но не общепринятый термин.

        Распределение одежды по телу

        Общая теплопередача от тела включает тепло, передаваемое через открытые участки кожи (обычно голову и руки), и тепло, проходящее через одежду. Внутренняя изоляция (См. «Формулы и определения») рассчитывается по всей площади кожи, а не только по покрытой части. Открытая кожа передает больше тепла, чем закрытая кожа, и, таким образом, оказывает сильное влияние на внутреннюю изоляцию. Этот эффект усиливается при увеличении скорости ветра. На рис. 3 показано, как внутренняя изоляция постепенно уменьшается из-за кривизны формы тела (внешние слои менее эффективны, чем внутренние), открытых частей тела (дополнительный путь для передачи тепла) и увеличения скорости ветра (меньше изоляции, в частности, для открытой кожи) (Lotens 1989). Для толстых ансамблей снижение изоляции является существенным.

        Рисунок 3. Внутренняя изоляция, на которую влияют кривизна тела, обнаженная кожа и скорость ветра.

        НЕА020F3

        Типичная толщина ансамбля и охват

        По-видимому, и толщина изоляции, и покрытие обшивки являются важными факторами, определяющими потери тепла. В реальной жизни эти два понятия соотносятся в том смысле, что зимняя одежда не только толще, но и покрывает большую часть тела, чем летняя. Рисунок 4 демонстрирует, как эти эффекты вместе приводят к почти линейной зависимости между толщиной одежды (выраженной как объем изоляционного материала на единицу площади одежды) и изоляцией (Lotens 1989). Нижний предел определяется изоляцией окружающего воздуха, а верхний предел - удобством использования одежды. Равномерное распределение может обеспечить наилучшую изоляцию на холоде, но нецелесообразно иметь большой вес и массу на конечностях. Поэтому акцент часто делается на туловище, и чувствительность местной кожи к холоду приспособлена к этой практике. Конечности играют важную роль в регуляции теплового баланса человека, и высокая изоляция конечностей ограничивает эффективность этой регуляции.

        Рисунок 4. Общая изоляция в зависимости от толщины одежды и распределения по телу.

        НЕА020F4

        Вентиляция одежды

        Захваченные воздушные слои в ансамбле одежды подвержены движению и ветру, но в иной степени, чем соседний воздушный слой. Ветер создает вентиляцию в одежде, проникая в ткань и проходя через отверстия, а движение усиливает внутреннюю циркуляцию. Хавенит, Хеус и Лотенс (1990) обнаружили, что внутри одежды движение является более сильным фактором, чем в прилегающем воздушном слое. Однако этот вывод зависит от воздухопроницаемости ткани. Для тканей с высокой воздухопроницаемостью вентиляция ветром значительна. Лотенс (1993) показал, что вентиляция может быть выражена как функция эффективной скорости ветра и воздухопроницаемости.

        Оценки теплоизоляции и паронепроницаемости одежды

        Физические оценки изоляции одежды

        Толщина комплекта одежды дает первую оценку изоляции. Типичная проводимость ансамбля составляет 0.08 Вт/мК. При средней толщине 20 мм это приводит к Icl 0.25 м2К/Вт, или 1.6 кл. Однако свободные части, такие как брюки или рукава, имеют гораздо более высокую проводимость, порядка 0.15, тогда как плотно прилегающие слои одежды имеют проводимость 0.04, знаменитые 4 кло на дюйм, о которых сообщают Бертон и Эдхольм (1955). ).

        Оценки из таблиц

        Другие методы используют табличные значения для предметов одежды. Эти предметы были предварительно измерены на манекене. Исследуемый ансамбль необходимо разделить на составные части, которые необходимо найти в таблице. Неправильный выбор наиболее похожего из таблицы предмета одежды может привести к ошибкам. Чтобы получить внутреннюю изоляцию ансамбля, отдельные значения изоляции должны быть помещены в уравнение суммирования (McCullough, Jones and Huck 1985).

        Фактор площади поверхности одежды

        Чтобы рассчитать полную изоляцию, fcl надо оценить(см. "Формулы и определения"). Практическая экспериментальная оценка заключается в измерении площади поверхности одежды, внесении поправок на перекрывающиеся части и делении на общую площадь кожи (Дюбуа и Дюбуа, 1916). Другие оценки из различных исследований показывают, что fcl увеличивается линейно с внутренней изоляцией.

        Оценка паростойкости

        Для ансамбля одежды паронепроницаемость представляет собой сумму сопротивления слоев воздуха и слоев одежды. Обычно количество слоев варьируется в зависимости от тела, и наилучшей оценкой является средневзвешенное значение площади, включая открытые участки кожи.

        Относительная паростойкость

        Сопротивление испарению используется реже, чем I, потому что мало измерений Ccl (или Pcl) доступны. Вудкок (1962) избежал этой проблемы, определив индекс паропроницаемости. im как отношение I и R, связанное с тем же соотношением для одного слоя воздуха (это последнее соотношение почти постоянно и известно как психрометрическая константа S, 0.0165 К / Па, 2.34 км3/г или 2.2 К/торр); im= I/(Р·С). Типичные значения для im для одежды без покрытия, определяемой на манекенах, составляет от 0.3 до 0.4 (McCullough, Jones and Tamura, 1989). Значения для im для тканевых композитов и окружающего их воздуха можно относительно просто измерить на приборе с влажным нагревателем, но на самом деле значение зависит от потока воздуха над устройством и отражательной способности шкафа, в котором он установлен. Экстраполяция отношения R и I для одетых людей иногда предпринимаются попытки измерения от размеров тканей до комплектов одежды (DIN 7943-2 1992). Это технически сложное дело. Одна из причин в том, что R пропорциональна только конвективной части I, так что должны быть сделаны осторожные поправки на радиационную теплопередачу. Другая причина заключается в том, что захваченный воздух между тканевыми композитами и комплектами одежды может быть разным. На самом деле диффузию пара и теплопередачу лучше рассматривать отдельно.

        Оценки по сочлененным моделям

        Для расчета изоляции и сопротивления водяному пару доступны более сложные модели, чем описанные выше методы. Эти модели рассчитывают локальную изоляцию на основе физических законов для ряда частей тела и объединяют их с внутренней изоляцией для всего человеческого тела. Для этого форма человека аппроксимируется цилиндрами (рисунок ). Модель Маккалоу, Джонса и Тамуры (1989) требует данных об одежде для всех слоев ансамбля, указанных для каждого сегмента тела. Модель CLOMAN Лотенса и Хавенита (1991) требует меньше входных значений. Эти модели имеют одинаковую точность, которая лучше, чем любой из других упомянутых методов, за исключением экспериментального определения. К сожалению и неизбежно, модели более сложны, чем хотелось бы в широко принятом стандарте.

        Рисунок 5. Сочленение фигуры человека в цилиндрах.

        НЕА020F5

        Влияние активности и ветра

        Лотенс и Хавенит (1991) также представили модификации, основанные на литературных данных, в отношении изоляции и паронепроницаемости в зависимости от активности и ветра. Изоляция ниже, когда вы сидите, чем когда стоите, и этот эффект больше для одежды с высокой теплоизоляцией. Однако движение снижает изоляцию сильнее, чем поза, в зависимости от интенсивности движений. При ходьбе двигаются обе руки и ноги, причем сокращение больше, чем при езде на велосипеде, когда двигаются только ноги. Также в этом случае уменьшение больше для ансамблей из толстой одежды. Ветер больше всего снижает теплоизоляцию для легкой одежды и меньше для тяжелой одежды. Этот эффект может быть связан с воздухопроницаемостью ткани оболочки, которая обычно меньше у одежды для холодной погоды.

        На рис. 8 показаны некоторые типичные эффекты ветра и движения на паронепроницаемость непромокаемой одежды. В литературе нет определенного согласия относительно величины движения или ветрового воздействия. Важность этого вопроса подчеркивается тем фактом, что некоторые стандарты, такие как ISO 7730 (1994), требуют результирующей изоляции в качестве исходной информации, когда они применяются для активных людей или людей, подвергающихся значительному движению воздуха. Это требование часто упускается из виду.

        Рис. 6. Снижение паронепроницаемости при ветре и ходьбе для различной непромокаемой одежды.

        НЕА020F6

        Управление влажностью

        Эффекты поглощения влаги

        Когда ткани могут поглощать водяной пар, как большинство натуральных волокон, одежда работает как буфер для пара. Это изменяет теплопередачу во время переходных процессов из одной среды в другую. Когда человек в непоглощающей одежде переходит из сухой среды во влажную, испарение пота резко уменьшается. В гигроскопичной одежде ткань поглощает пар, и испарение меняется постепенно. В то же время процесс поглощения высвобождает тепло в ткани, повышая ее температуру. Это уменьшает передачу сухого тепла от кожи. В первом приближении оба эффекта компенсируют друг друга, оставляя общий теплообмен неизменным. Разница с негигроскопичной одеждой заключается в более постепенном изменении испарения с кожи с меньшим риском накопления пота.

        Поглощающая способность пара

        Впитывающая способность ткани зависит от типа волокна и массы ткани. Поглощенная масса примерно пропорциональна относительной влажности, но выше 90%. Поглотительная способность (называется вернуть себе) выражается количеством водяного пара, поглощаемого 100 г сухого волокна при относительной влажности 65 %. Ткани можно классифицировать следующим образом:

          • низкое поглощение— акрил, полиэстер (от 1 до 2 г на 100 г)
          • промежуточное поглощение— нейлон, хлопок, ацетат (от 6 до 9 г на 100 г)
          • высокий уровень поглощения— шелк, лен, конопля, вискоза, джут, шерсть (11—15 г на 100 г).

               

              Водопоглощение

              Удержание воды в тканях, которое часто путают с поглощением пара, подчиняется другим правилам. Свободная вода слабо связана с тканью и хорошо растекается в стороны по капиллярам. Это известно как затекание. Перенос жидкости из одного слоя в другой происходит только для влажных тканей и под давлением. Одежда может смачиваться неиспарившимся (лишним) потом, впитавшимся с кожи. Содержание жидкости в ткани может быть высоким, и ее испарение в более поздний момент представляет угрозу тепловому балансу. Обычно это происходит во время отдыха после тяжелой работы и называется озноб. Способность тканей удерживать жидкость больше связана с конструкцией ткани, чем с поглощающей способностью волокон, и для практических целей ее обычно достаточно, чтобы поглотить весь излишек пота.

              Конденсация

              Одежда может намокнуть из-за конденсации испарившегося пота на определенном слое. Конденсация происходит, если влажность выше, чем позволяет местная температура. В холодную погоду это часто бывает на внутренней стороне внешней ткани, а в сильный мороз даже в более глубоких слоях. Там, где происходит конденсация, влага скапливается, но температура повышается, как и при абсорбции. Однако разница между конденсацией и абсорбцией заключается в том, что абсорбция — это временный процесс, тогда как конденсация может продолжаться длительное время. Скрытая теплопередача во время конденсации может в значительной степени способствовать потерям тепла, что может быть или не быть желательным. Накопление влаги в основном является недостатком из-за дискомфорта и риска переохлаждения. При обильной конденсации жидкость может попасть обратно на кожу для повторного испарения. Этот цикл работает как тепловая трубка и может сильно снизить изоляцию нижнего белья.

              Динамическое моделирование

              С начала 1900-х годов было разработано множество стандартов и индексов для классификации одежды и климата. Почти без исключения они имели дело с устойчивыми состояниями — условиями, в которых климат и работа поддерживались достаточно долго, чтобы у человека развилась постоянная температура тела. Этот вид работы стал редкостью в связи с улучшением гигиены труда и условий труда. Акцент сместился на кратковременное пребывание в суровых условиях, часто связанное с управлением стихийными бедствиями в защитной одежде.

              Таким образом, существует потребность в динамическом моделировании, включающем передачу тепла одеждой и тепловую нагрузку пользователя (Gagge, Fobelets and Berglund 1986). Такое моделирование может быть выполнено с помощью динамических компьютерных моделей, которые выполняются по заданному сценарию. Среди самых сложных на сегодняшний день моделей одежды — THDYN (Lotens, 1993), которая позволяет использовать широкий спектр спецификаций одежды и была обновлена ​​с учетом индивидуальных характеристик симулируемого человека (рис. 9). Можно ожидать больше моделей. Однако существует потребность в расширенной экспериментальной оценке, и запуск таких моделей — это работа экспертов, а не умных неспециалистов. Динамические модели, основанные на физике тепломассообмена, включают в себя все механизмы теплообмена и их взаимодействия — паропоглощение, тепло от лучистых источников, конденсацию, вентиляцию, накопление влаги и т. д. — для широкого круга ансамблей одежды, в том числе гражданской, рабочая и защитная одежда.

              Рис. 7. Общее описание динамической тепловой модели.

              НЕА020F7

               

              Назад

              ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

              Содержание: