Четверг, Март 31 2011 17: 44

Аэрокосмическая медицина: эффекты гравитации, ускорения и микрогравитации в аэрокосмической среде

Оценить этот пункт
(0 голосов)

С момента первого устойчивого полета самолета с двигателем в Китти-Хок, Северная Каролина (США) в 1903 году, авиация стала одним из основных международных направлений. Подсчитано, что с 1960 по 1989 год ежегодное количество авиапассажиров регулярных рейсов увеличилось с 20 миллионов до более чем 900 миллионов (Poitrast and deTreville, 1994). Военные самолеты стали незаменимыми системами вооружения для вооруженных сил многих стран. Достижения в области авиационной техники, в частности в разработке систем жизнеобеспечения, способствовали быстрому развитию космических программ с участием людей. Относительно часто происходят орбитальные космические полеты, астронавты и космонавты работают в космических кораблях и на космических станциях в течение длительного периода времени.

В аэрокосмической среде физические стрессоры, которые могут в некоторой степени повлиять на здоровье экипажа, пассажиров и космонавтов, включают снижение концентрации кислорода в воздухе, снижение барометрического давления, термический стресс, ускорение, невесомость и множество других потенциальных опасностей (DeHart 1992). ). В этой статье описываются аэромедицинские последствия воздействия гравитации и ускорения во время полета в атмосфере, а также эффекты микрогравитации, испытываемые в космосе.

Гравитация и ускорение

Сочетание силы тяжести и ускорения, возникающее во время полета в атмосфере, вызывает различные физиологические эффекты, с которыми сталкиваются экипажи и пассажиры. На поверхности земли силы гравитации воздействуют практически на все формы физической активности человека. Вес человека соответствует силе, с которой на массу человеческого тела действует гравитационное поле Земли. Символ, используемый для выражения величины ускорения тела в свободном падении, когда он падает вблизи поверхности земли, называется g, что соответствует ускорению примерно 9.8 м/с2 (Глейстер, 1988а; Леверетт и Уиннери, 1985).

Ускорение происходит всякий раз, когда движущийся объект увеличивает свою скорость. Скорость описывает скорость движения (скорость) и направление движения объекта. замедление относится к ускорению, которое включает снижение установленной скорости. Ускорение (как и замедление) является векторной величиной (имеет величину и направление). Различают три вида ускорения: линейное ускорение, изменение скорости без изменения направления; радиальное ускорение, изменение направления без изменения скорости; и угловое ускорение, изменение скорости и направления. Во время полета самолеты способны маневрировать во всех трех направлениях, а экипаж и пассажиры могут испытывать линейные, радиальные и угловые ускорения. В авиации применяемые ускорения обычно выражаются как кратные ускорению свободного падения. Условно, G единица, выражающая отношение приложенного ускорения к гравитационной постоянной (Glaister, 1988a; Leverett and Whinnery, 1985).

биодинамики

Биодинамика — это наука, изучающая силу или энергию живой материи, и она представляет собой основную область интересов в области аэрокосмической медицины. Современные самолеты обладают высокой маневренностью и способны летать на очень высоких скоростях, воздействуя на пассажиров ускоренными силами. Влияние ускорения на организм человека зависит от интенсивности, скорости возникновения и направления ускорения. Направление ускорения обычно описывается с помощью трехосной системы координат (х, у, г), в котором вертикаль (z) параллельна длинной оси тела, x ось ориентирована спереди назад, а y ось ориентирована из стороны в сторону (Glaister 1988a). Эти ускорения можно разделить на два основных типа: устойчивые и кратковременные.

Устойчивое ускорение

Пассажиры летательных аппаратов (и космических аппаратов, работающих в атмосфере под действием силы тяжести при запуске и входе в атмосферу) обычно испытывают ускорения в ответ на аэродинамические силы полета. Продолжительные изменения скорости, включающие ускорения продолжительностью более 2 секунд, могут быть вызваны изменениями скорости или направления полета самолета. Физиологические эффекты длительного ускорения возникают в результате длительного искажения тканей и органов тела и изменений в кровотоке и распределении жидкостей организма (Glaister, 1988a).

Положительное или прямое ускорение вдоль z ось (+Gz) представляет серьезную физиологическую проблему. На гражданском воздушном транспорте Gz ускорения случаются нечасто, но иногда могут возникать в легкой степени при некоторых взлетах и ​​посадках, а также при полете в условиях воздушной турбулентности. Пассажиры могут испытывать кратковременное ощущение невесомости при внезапном падении (отрицательное Gz ускорений), если они не пристегнуты на своих местах. Неожиданное резкое ускорение может привести к тому, что незакрепленный экипаж или пассажиры отбросятся о внутренние поверхности салона самолета, что приведет к травмам.

В отличие от гражданской транспортной авиации, при эксплуатации высокопроизводительных военных самолетов, а также каскадерских и аэрографических самолетов могут возникать значительно более высокие линейные, радиальные и угловые ускорения. Значительные положительные ускорения могут создаваться, когда высокопроизводительный самолет меняет траекторию полета во время разворота или маневра подтягивания после крутого пикирования. +Gz летно-технические характеристики современных боевых самолетов могут подвергать пассажиров положительным ускорениям от 5 до 7 G от 10 до 40 секунд (Glaister 1988a). Экипаж может испытывать увеличение веса тканей и конечностей при относительно низких уровнях ускорения всего +2. Gz. Например, пилот весом 70 кг, выполнявший маневр самолета, сгенерировал +2 Gz будет наблюдаться увеличение массы тела с 70 кг до 140 кг.

Сердечно-сосудистая система является наиболее важной системой органов для определения общей толерантности и реакции на +Gz стресс (Glaister, 1988a). Влияние положительного ускорения на зрение и умственную работоспособность связано с уменьшением кровотока и доставки кислорода к глазам и мозгу. Способность сердца перекачивать кровь к глазам и мозгу зависит от его способности превысить гидростатическое давление крови в любой точке системы кровообращения и инерционных сил, создаваемых положительными импульсами. Gz ускорение. Ситуация может быть уподоблена вытягиванию вверх воздушного шара, частично наполненного водой, и наблюдению растяжения воздушного шара вниз из-за результирующей силы инерции, действующей на массу воды. Воздействие положительных ускорений может вызвать временную потерю периферийного зрения или полную потерю сознания. Военные пилоты высокопроизводительных самолетов могут рисковать развитием G-индуцированные затемнения при быстром начале или длительных периодах положительного ускорения в +Gz ось. Доброкачественные сердечные аритмии часто возникают после воздействия высоких устойчивых уровней +Gz ускорение, но обычно имеют минимальное клиническое значение, если не присутствует ранее существовавшее заболевание; –Gz ускорение происходит редко из-за ограничений конструкции и характеристик самолета, но может происходить во время перевернутого полета, вне петель и штопоров и других подобных маневров. Физиологические эффекты, связанные с воздействием –Gz ускорение в первую очередь связано с повышением сосудистого давления в верхней части тела, голове и шее (Glaister, 1988a).

Ускорения постоянной продолжительности, действующие под прямым углом к ​​длинной оси тела, называются поперечные ускорения и относительно редко встречаются в большинстве авиационных ситуаций, за исключением взлетов с катапульты и реактивных или ракетных двигателей с авианосцев, а также во время запуска ракетных систем, таких как космический шаттл. Ускорения, возникающие в таких военных действиях, относительно малы и обычно не оказывают существенного влияния на тело, поскольку силы инерции действуют под прямым углом к ​​длинной оси тела. В целом эффекты менее выражены, чем в Gz ускорения. Боковое ускорение в ±Gy оси встречаются редко, за исключением экспериментальных самолетов.

Переходное ускорение

Физиологические реакции людей на кратковременные кратковременные ускорения являются одним из основных вопросов в науке о предотвращении авиационных происшествий и защите экипажа и пассажиров. Переходные ускорения имеют такую ​​короткую продолжительность (значительно менее 1 секунды), что тело не может достичь стационарного состояния. Наиболее распространенная причина травм в авиакатастрофах связана с резким торможением, возникающим при столкновении самолета с землей или водой (Антон, 1988).

Когда самолет ударяется о землю, огромное количество кинетической энергии оказывает разрушительное воздействие на самолет и его пассажиров. Человеческое тело реагирует на эти приложенные силы комбинацией ускорения и деформации. Травмы возникают в результате деформации тканей и органов и травм анатомических частей, вызванных столкновением с конструкционными элементами кабины и/или салона летательного аппарата.

Толерантность человека к резкому замедлению различна. Характер травм будет зависеть от характера приложенной силы (в первую очередь это проникающий или тупой удар). При ударе возникающие силы зависят от продольного и горизонтального замедления, которые обычно действуют на человека. Резкие тормозящие силы часто подразделяются на допустимые, опасные и фатальные. терпимый силы вызывают травматические повреждения, такие как ссадины и ушибы; вредный силы вызывают умеренную или тяжелую травму, которая может не привести к потере трудоспособности. Подсчитано, что импульс ускорения приблизительно 25 G поддерживается в течение 0.1 секунды, является пределом переносимости вдоль +Gz оси, а то около 15 G на 0.1 сек – предел для –Gz ось (Антон 1988).

На толерантность человека к кратковременному ускорению влияет множество факторов. Эти факторы включают величину и продолжительность приложенной силы, скорость начала действия приложенной силы, ее направление и место приложения. Следует отметить, что люди могут выдерживать гораздо большие силы перпендикулярно длинной оси тела.

Защитные контрмеры

Физический осмотр членов экипажа для выявления ранее существовавших серьезных заболеваний, которые могут подвергать их повышенному риску в аэрокосмической среде, является ключевой функцией программ авиационной медицины. Кроме того, экипажам высокопроизводительных самолетов доступны контрмеры для защиты от неблагоприятных последствий экстремальных ускорений во время полета. Члены экипажа должны быть обучены распознавать, что многочисленные физиологические факторы могут снижать их переносимость. G стресс. Эти факторы риска включают усталость, обезвоживание, тепловой стресс, гипогликемию и гипоксию (Glaister, 1988b).

Три типа маневров, которые используют члены экипажа высокопроизводительного самолета, чтобы свести к минимуму неблагоприятные последствия длительного ускорения во время полета, — это напряжение мышц, форсированный выдох при закрытой или частично закрытой голосовой щели (задней части языка) и дыхание с положительным давлением (Glaister, 1988b; ДеХарт 1992). Форсированные сокращения мышц оказывают повышенное давление на кровеносные сосуды, уменьшая венозный пул и увеличивая венозный возврат и сердечный выброс, что приводит к увеличению притока крови к сердцу и верхней части тела. Хотя процедура эффективна, она требует экстремальных активных усилий и может быстро привести к утомлению. Выдох при закрытой голосовой щели, называемый Маневр Вальсальвы (или Процедура М-1) может повышать давление в верхней части тела и повышать внутригрудное давление (внутри грудной клетки); однако результат недолговечен и может быть вредным, если его продлить, поскольку он снижает венозный возврат крови и сердечный выброс. Форсированный выдох при частично закрытой голосовой щели является более эффективным средством противG натяжной маневр. Дыхание под положительным давлением представляет собой еще один метод повышения внутригрудного давления. Положительное давление передается в систему мелких артерий, что приводит к увеличению притока крови к глазам и мозгу. Дыхание под положительным давлением необходимо сочетать с использованиемG костюмы для предотвращения чрезмерного объединения в нижней части тела и конечностей.

Военные летные экипажи практикуют различные методы обучения для повышения G толерантность. Бригады часто тренируются в центрифуге, состоящей из гондолы, прикрепленной к вращающемуся рычагу, который вращается и генерирует +Gz ускорение. Экипажи знакомятся со спектром физиологических симптомов, которые могут развиться, и изучают надлежащие процедуры для их контроля. Тренировки по физической подготовке, особенно силовые тренировки всего тела, также оказались эффективными. Одно из самых распространенных механических приспособлений, используемых в качестве защитного средства для снижения воздействия +G экспозиция состоит из пневматически надутых анти-G костюмы (Glaister 1988b). Типичная одежда, похожая на брюки, состоит из пузырей на животе, бедрах и икрах, которые автоматически надуваются с помощью антифриза.G клапана в самолете. Анти-G клапан надувается в ответ на приложенное к самолету ускорение. При инфляции анти-G костюм вызывает повышение давления в тканях нижних конечностей. Это поддерживает периферическое сосудистое сопротивление, уменьшает скопление крови в брюшной полости и нижних конечностях и сводит к минимуму смещение диафрагмы вниз, чтобы предотвратить увеличение вертикального расстояния между сердцем и мозгом, которое может быть вызвано положительным ускорением (Glaister, 1988b).

Выживание временных ускорений, связанных с авиакатастрофами, зависит от эффективных удерживающих систем и поддержания целостности кабины/кабины, чтобы свести к минимуму попадание поврежденных компонентов самолета в жилое пространство (Антон, 1988). Функция поясных ремней, привязных ремней и других типов удерживающих систем заключается в том, чтобы ограничивать движение летного экипажа или пассажиров и смягчать последствия внезапного замедления во время удара. Эффективность удерживающей системы зависит от того, насколько хорошо она передает нагрузки между телом и сиденьем или конструкцией автомобиля. Энергопоглощающие сиденья и сиденья, обращенные назад, - это еще одна особенность конструкции самолета, которая ограничивает травмы. Другие технологии защиты от несчастных случаев включают конструкцию компонентов планера для поглощения энергии и улучшения конструкции сидений для уменьшения механических повреждений (DeHart 1992; DeHart and Beers 1985).

микрогравитация

С 1960-х годов астронавты и космонавты совершили множество полетов в космос, включая 6 высадок на Луну американцами. Продолжительность полета составляла от нескольких дней до нескольких месяцев, при этом несколько российских космонавтов совершали полеты примерно за год. После этих космических полетов врачами и учеными было написано большое количество литературы, описывающей физиологические отклонения во время полета и после полета. По большей части эти аберрации объясняются воздействием невесомости или микрогравитации. Хотя эти изменения носят временный характер, с полным восстановлением в течение от нескольких дней до нескольких месяцев после возвращения на Землю, никто не может с полной уверенностью сказать, будут ли астронавты так удачливы после миссий продолжительностью от 1 до 2 лет, как предполагалось для полета на Марс туда и обратно. Основные физиологические аберрации (и контрмеры) можно разделить на сердечно-сосудистые, скелетно-мышечные, нейровестибулярные, гематологические и эндокринологические (Nicogossian, Huntoon and Pool 3).

Сердечно-сосудистые опасности

До сих пор в космосе не было серьезных проблем с сердцем, таких как сердечные приступы или сердечная недостаточность, хотя у нескольких астронавтов развились аномальные сердечные ритмы временного характера, особенно во время выхода в открытый космос. В одном случае российскому космонавту пришлось вернуться на Землю раньше, чем планировалось, в качестве меры предосторожности.

С другой стороны, микрогравитация, по-видимому, вызывает лабильность кровяного давления и пульса. Хотя это не вызывает ухудшения здоровья или работоспособности экипажа во время полета, примерно половина астронавтов сразу после полета испытывает сильное головокружение и головокружение, а некоторые испытывают обморок (обморок) или почти обморок (предобморочное состояние). Считается, что причиной этой непереносимости вертикального положения является падение артериального давления при повторном входе в гравитационное поле Земли в сочетании с дисфункцией компенсаторных механизмов организма. Следовательно, низкое кровяное давление и учащение пульса, не противодействующие нормальной реакции организма на такие физиологические аберрации, приводят к этим симптомам.

Хотя эти пресинкопальные и обморочные эпизоды преходящи и не имеют последствий, они вызывают серьезную озабоченность по нескольким причинам. Во-первых, в случае, если возвращающийся космический корабль столкнется с чрезвычайной ситуацией, такой как пожар, при приземлении, астронавтам будет чрезвычайно трудно быстро спастись. Во-вторых, астронавты, приземляющиеся на Луну после периодов пребывания в космосе, в некоторой степени склонны к предобморочным состояниям и обморокам, даже несмотря на то, что гравитационное поле Луны составляет одну шестую от земного. И, наконец, эти сердечно-сосудистые симптомы могут быть намного хуже или даже смертельными после очень длительных миссий.

Именно по этим причинам ведутся активные поиски контрмер для предотвращения или, по крайней мере, ослабления воздействия микрогравитации на сердечно-сосудистую систему. Хотя в настоящее время изучается ряд многообещающих контрмер, ни одна из них пока не доказала свою эффективность. Исследования были сосредоточены на упражнениях в полете с использованием беговой дорожки, велоэргометра и гребного тренажера. Кроме того, исследования также проводятся с более низким отрицательным давлением тела (LBNP). Имеются данные о том, что снижение давления на нижнюю часть тела (с помощью компактного специального оборудования) повышает способность организма к компенсации (т. е. повышает артериальное давление и пульс, когда они падают слишком низко). Контрмера LBNP может быть даже более эффективной, если космонавт одновременно выпивает умеренное количество специально приготовленной соленой воды.

Если сердечно-сосудистая проблема должна быть решена, необходимо не только больше работать над этими контрмерами, но и найти новые.

Скелетно-мышечные опасности

Все астронавты, возвращающиеся из космоса, имеют некоторую степень истощения или атрофии мышц, независимо от продолжительности полета. Особому риску подвержены мышцы рук и ног, что приводит к уменьшению размера, а также силы, выносливости и работоспособности. Хотя механизм этих мышечных изменений до сих пор плохо определен, частичное объяснение заключается в длительном неиспользовании; работа, активность и движение в условиях микрогравитации практически не требуют усилий, поскольку ничто не имеет веса. Это может быть благом для астронавтов, работающих в космосе, но явно является проблемой при возвращении в гравитационное поле, будь то поле Луны или Земли. Мало того, что ослабленное состояние может помешать послеполетной деятельности (включая работу на поверхности Луны), оно также может поставить под угрозу быстрый аварийный побег с земли, если это потребуется после приземления. Еще одним фактором является возможное требование во время выхода в открытый космос для ремонта космического корабля, что может быть очень напряженным. Изучаемые контрмеры включают упражнения в полете, электрическую стимуляцию и анаболические препараты (тестостерон или тестостероноподобные стероиды). К сожалению, эти методы в лучшем случае только замедляют мышечную дисфункцию.

Помимо истощения мышц, в космосе также наблюдается медленная, но неумолимая потеря костной ткани (около 300 мг в день, или 0.5% от общего количества кальция в костях в месяц), с которой сталкиваются все космонавты. Это было подтверждено рентгеновскими снимками костей после полета, особенно тех, которые несут вес (т. е. осевого скелета). Это связано с медленной, но неуклонной потерей кальция с мочой и фекалиями. Серьезную озабоченность вызывает продолжающаяся потеря кальция, независимо от продолжительности полета. Следовательно, эта потеря кальция и эрозия кости могут быть ограничивающим фактором полета, если не будет найдена эффективная контрмера. Хотя точный механизм этой очень значительной физиологической аберрации до конца не ясен, он, несомненно, частично связан с отсутствием сил гравитации на костях, а также с неиспользованием, подобным истощению мышц. Если бы потеря костной ткани продолжалась бесконечно, особенно во время длительных миссий, кости стали бы настолько хрупкими, что в конечном итоге возник бы риск переломов даже при низком уровне стресса. Кроме того, при постоянном поступлении кальция с мочой через почки существует вероятность образования почечных камней, что сопровождается сильной болью, кровотечением и инфекцией. Ясно, что любые из этих осложнений были бы очень серьезными, если бы они произошли в космосе.

К сожалению, нет никаких известных контрмер, которые эффективно предотвращали бы потерю кальция во время космического полета. Испытывается ряд методов, в том числе упражнения (беговая дорожка, велоэргометр и гребной тренажер). Теория состоит в том, что такие добровольные физические нагрузки нормализуют метаболизм костей, тем самым предотвращая или, по крайней мере, уменьшая потерю костной массы. Другими изучаемыми контрмерами являются добавки кальция, витамины и различные лекарства (такие как дифосфонаты — класс лекарств, которые, как было показано, предотвращают потерю костной массы у пациентов с остеопорозом). Если ни одна из этих более простых контрмер не окажется эффективной, возможно, решение кроется в искусственной гравитации, которую можно создать путем непрерывного или прерывистого вращения космического корабля. Хотя такое движение может генерировать гравитационные силы, подобные земным, оно представляет собой инженерный «кошмар» в дополнение к крупным дополнительным затратам.

Нейровестибулярные опасности

Более половины космонавтов и космонавтов страдают космической болезнью движения (КМК). Хотя симптомы несколько различаются от человека к человеку, большинство из них страдают от ощущения боли в желудке, тошноты, рвоты, головной боли и сонливости. Часто наблюдается обострение симптомов с быстрыми движениями головы. Если у космонавта развивается СМС, это обычно происходит в течение от нескольких минут до нескольких часов после запуска с полной ремиссией в течение 72 часов. Интересно, что симптомы иногда повторяются после возвращения на землю.

СМС, особенно рвота, могут не только сбить с толку членов экипажа, но и привести к ухудшению работоспособности больного космонавта. Кроме того, нельзя игнорировать риск рвоты во время выхода в открытый космос в скафандре, поскольку рвотные массы могут вызвать сбой в работе системы жизнеобеспечения. Именно по этим причинам никакие действия в открытом космосе никогда не планируются в течение первых 3 дней космической миссии. Если выход в открытый космос потребуется, например, для аварийного ремонта космического корабля, экипажу придется взять на себя этот риск.

Многие нейровестибулярные исследования были направлены на поиск способов профилактики и лечения СМС. Различные методы, в том числе таблетки и пластыри от укачивания, а также использование тренажеров для предполетной адаптации, таких как вращающиеся стулья для привыкания космонавтов, предпринимались с очень ограниченным успехом. Однако в последние годы было обнаружено, что антигистаминный препарат фенерган, вводимый в виде инъекций, является чрезвычайно эффективным средством лечения. Следовательно, он находится на борту всех рейсов и выдается по мере необходимости. Его эффективность в качестве профилактического средства еще предстоит доказать.

Другие нейровестибулярные симптомы, о которых сообщали астронавты, включают головокружение, головокружение, нарушение равновесия и иллюзии собственного движения и движения окружающей среды, иногда затрудняющие ходьбу на короткое время после полета. Механизмы этих явлений очень сложны и до конца не изучены. Они могут быть проблематичными, особенно после посадки на Луну после нескольких дней или недель пребывания в космосе. На данный момент не существует известных эффективных контрмер.

Нейровестибулярные явления, скорее всего, обусловлены дисфункцией внутреннего уха (полукружных каналов и маточного мешочка) из-за невесомости. Либо в центральную нервную систему посылаются ошибочные сигналы, либо сигналы неправильно интерпретируются. В любом случае результатом являются вышеупомянутые симптомы. Как только механизм будет лучше понят, можно будет определить эффективные контрмеры.

Гематологические опасности

Микрогравитация оказывает влияние на красные и белые кровяные тельца организма. Первые служат транспортером кислорода к тканям, а вторые — иммунологической системой защиты организма от вторжения микроорганизмов. Следовательно, любая дисфункция может вызвать пагубные последствия. По непонятным причинам астронавты теряют примерно от 7 до 17% массы эритроцитов в начале полета. Эта потеря, по-видимому, стабилизируется в течение нескольких месяцев, возвращаясь к норме через 4–8 недель после полета.

До сих пор это явление не было клинически значимым, а скорее представляло собой любопытную лабораторную находку. Тем не менее, существует явная вероятность того, что эта потеря массы эритроцитов может быть очень серьезной аберрацией. Беспокойство вызывает возможность того, что в ходе очень длительных миссий, предусмотренных для двадцать первого века, эритроциты могут теряться ускоренными темпами и в гораздо больших количествах. Если бы это произошло, анемия могла бы развиться до такой степени, что космонавт мог бы серьезно заболеть. Есть надежда, что этого не произойдет, и потеря эритроцитов останется очень небольшой, независимо от продолжительности миссии.

Кроме того, микрогравитация влияет на некоторые компоненты системы лейкоцитов. Например, наблюдается общее увеличение лейкоцитов, в основном нейтрофилов, но уменьшение лимфоцитов. Имеются также данные о том, что некоторые лейкоциты не функционируют нормально.

На данный момент, несмотря на эти изменения, никакое заболевание не было связано с этими изменениями лейкоцитов. Неизвестно, приведет ли длительная миссия к дальнейшему уменьшению численности, а также к дальнейшей дисфункции. Если это произойдет, иммунная система организма будет подорвана, что сделает астронавтов очень восприимчивыми к инфекционным заболеваниям и, возможно, выведет из строя даже незначительное заболевание, которое в противном случае было бы легко парировано нормально функционирующей иммунной системой.

Как и в случае с изменениями эритроцитов, изменения лейкоцитов, по крайней мере, в миссиях продолжительностью около одного года, не имеют клинического значения. Из-за потенциального риска серьезного заболевания в полете или после полета крайне важно продолжать исследования воздействия микрогравитации на гематологическую систему.

Эндокринологические опасности

Было отмечено, что во время космического полета в организме происходит ряд изменений жидкости и минералов, отчасти из-за изменений в эндокринной системе. В целом происходит потеря общего количества жидкости в организме, а также кальция, калия и кальция. Точный механизм этих явлений ускользает от определения, хотя частичное объяснение дают изменения различных уровней гормонов. Еще больше запутывает дело то, что лабораторные данные у астронавтов, которых изучали, часто расходятся, что делает невозможным выделение единой гипотезы относительно причины этих физиологических аберраций. Несмотря на эту путаницу, эти изменения не вызвали известного ухудшения здоровья космонавтов и снижения работоспособности в полете. Какое значение имеют эти эндокринные изменения для очень длительного полета, а также возможность того, что они могут быть предвестниками очень серьезных последствий, неизвестно.

Благодарности: Авторы хотели бы отметить работу Аэрокосмической медицинской ассоциации в этой области.

 

Назад

Читать 9962 раз Последнее изменение: суббота, 30 июля 2022 г., 22:50

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Транспортная отрасль и складское хозяйство

Американский национальный институт стандартов (ANSI). 1967. Освещение. АНСИ А11.1-1967. Нью-Йорк: ANSI.

Антон, диджей. 1988. Динамика аварии и удерживающие системы. В авиационной медицине, 2-е издание, под редакцией Дж. Эрнстинга и П.Ф. Кинга. Лондон: Баттерворт.

Бейлер, Х. и У. Трэнкле. 1993. Fahrerarbeit als Lebensarbeitsperpektive. В Europäische Forschungsansätze zur Gestaltung der Fahrtätigkeit im ÖPNV (S. 94-98) Bundesanstat für Arbeitsschutz. Бремерхафен: Wirtschaftsverlag NW.

Бюро статистики труда (BLS). 1996. Статистика безопасности и здоровья. Вашингтон, округ Колумбия: BLS.

Канадская ассоциация городского транспорта. 1992. Эргономическое исследование рабочего места водителя в городских автобусах. Торонто: Канадская ассоциация городского транспорта.

Декер, Дж.А. 1994. Оценка опасности для здоровья: Southwest Airlines, аэропорт Хьюстон-Хобби, Хьюстон, Техас. НЕТА-93-0816-2371. Цинциннати, Огайо: NIOSH.

ДеХарт Р.Л. 1992. Аэрокосмическая медицина. В «Общественном здравоохранении и профилактической медицине», 13-е издание, под редакцией М.Л. Ласта и Р.Б. Уоллеса. Норуолк, Коннектикут: Эпплтон и Ланге.

ДеХарт, Р.Л. и К.Н. Бирс. 1985. Авиакатастрофы, выживание и спасение. В «Основах аэрокосмической медицины» под редакцией Р.Л. ДеХарта. Филадельфия, Пенсильвания: Леа и Фебигер.

Эйзенхардт, Д. и Э. Олмстед. 1996. Исследование проникновения реактивных выхлопных газов в здание, расположенное на рулежной дорожке аэропорта Джона Ф. Кеннеди (JFK). Нью-Йорк: Министерство здравоохранения и социальных служб США, Служба общественного здравоохранения, Отдел федеральной гигиены труда, Полевой офис в Нью-Йорке.

Ферт, Р. 1995. Шаги к успешной установке системы управления складом. Промышленная инженерия 27 (2): 34–36.

Фридберг В., Л. Снайдер, Д. Н. Фолкнер, Э. Б. Дарден-младший и К. О'Брайен. 1992. Радиационное облучение членов экипажа авианосца II. ДОТ/ФАА/АМ-92-2.19. Оклахома-Сити, Оклахома: Гражданский авиационно-медицинский институт; Вашингтон, округ Колумбия: Федеральное управление гражданской авиации.

Джентри, Дж. Дж., Дж. Семейн и Д. Б. Велленга. 1995 г. Будущее автомобильных перевозок в новом Европейском Союзе — 1995 г. и далее. Обзор логистики и транспорта 31 (2): 149.

Гиссер-Вейт, М. и Г. Шмидт. 1989. Verbesserung des Arbeitssituation von Fahrern im öffentlichen Personennahverkehr. Бремерхафен: Wirtschaftsverlag NW.

Глейстер, Д.Х. 1988а. Последствия длительного ускорения. В авиационной медицине, 2-е издание, под редакцией Дж. Эрнстинга и П.Ф. Кинга. Лондон: Баттерворт.

—. 1988б. Защита от длительного ускорения. В авиационной медицине, 2-е издание, под редакцией Дж. Эрнстинга и П.Ф. Кинга. Лондон: Баттерворт.

Хаас, Дж., Х. Петри и В. Шюляйн. 1989. Untersuchung zurVerringerung berufsbedingter Gesundheitsrisien im Fahrdienst des öffentlichen Personennahverkehr. Бремерхафен; Wirtschaftsverlag NW.

Международная палата судоходства. 1978. Международное руководство по безопасности для нефтяных танкеров и терминалов. Лондон: Уизерби.

Международная организация труда (МОТ). 1992. Последние разработки во внутреннем транспорте. Отчет I, Программа секторальной деятельности, двенадцатая сессия. Женева: МОТ.

—. 1996. Предотвращение несчастных случаев на борту судна в море и в порту. Кодекс практики МОТ. 2-е издание. Женева: МОТ.

Джойнер, К. Х. и М. Дж. Бангай. 1986. Опрос гражданских работников радаров в аэропортах Австралии. Журнал мощности микроволнового излучения и электромагнитной энергии 21 (4): 209–219.

Ландсбергис, П.А., Д. Штейн, Д. Якопелли и Дж. Фрусчелла. 1994. Обследование рабочей среды авиадиспетчеров и разработка программы обучения по охране труда. Представлено Американской ассоциации общественного здравоохранения 1 ноября, Вашингтон, округ Колумбия.

Леверетт, С. Д. и Дж. Э. Уиннери. 1985. Биодинамика: устойчивое ускорение. В «Основах аэрокосмической медицины» под редакцией Р.Л. ДеХарта. Филадельфия, Пенсильвания: Леа и Фебигер.

Magnier, M. 1996. Эксперты: Япония имеет структуру, но не желание для интермодальных перевозок. Журнал торговли и торговли 407:15.

Мартин, РЛ. 1987. AS/RS: Со склада в заводской цех. Технологии производства 99: 49–56.

Мейфорт, Дж., Х. Райнерс и Дж. Шу. 1983. Arbeitshedingungen von Linienbus- und Strassenbahnfahrern des Dortmunder Staatwerke Aktiengesellschaft. Бремен-гавань: Wirtschaftsverlag.

Миямото, Ю. 1986. Раздражители глаз и дыхательных путей в выхлопных газах реактивных двигателей. Авиационная, космическая и экологическая медицина 57 (11): 1104–1108.

Национальная ассоциация противопожарной защиты (NFPA). 1976. Справочник по противопожарной защите, 14-е издание. Куинси, Массачусетс: NFPA.

Национальный институт охраны труда и здоровья (NIOSH). 1976. Задокументированные случаи воздействия на персонал систем досмотра багажа в аэропортах. Публикация DHHS (NIOSH) 77-105. Цинциннати, Огайо: NIOSH.

—. 1993а. Оценка опасности для здоровья: продуктовый склад Big Bear. НЕТА 91-405-2340. Цинциннати, Огайо: NIOSH.

—. 1993б. Предупреждение: предотвращение убийств на рабочем месте. Публикация DHHS (NIOSH) 93-108. Цинцинатти, Огайо: NIOSH.

—. 1995. Оценка опасности для здоровья: продуктовый склад Kroger. НЕТА 93-0920-2548. Цинциннати, Огайо: NIOSH.

Национальный совет безопасности. 1988. Справочник по безопасности наземных операций в авиации, 4-е издание. Чикаго, Иллинойс: Национальный совет безопасности.

Никогосян, А.Е., С.Л. Хантун и С.Л. Пул (ред.). 1994. Космическая физиология и медицина, 3-е издание. Филадельфия, Пенсильвания: Леа и Фебигер.

Петерс, Густавссон, Морен, Нильссон и Веналл. 1992. Forarplats I Buss, Etapp 3; Кравспецификация. Линчёпинг, Швеция: Väg och Trafikinstitutet.

Пойтраст, Б.Дж. и де Тревиль. 1994. Профессиональные медицинские соображения в авиационной промышленности. В профессиональной медицине, 3-е издание, под редакцией C Zenz, OB Dickerson и EP Hovarth. Сент-Луис, Миссури: Мосби.

Register, O. 1994. Заставьте Auto-ID работать в вашем мире. Транспорт и распространение 35 (10): 102–112.

Райманн, Дж. 1981. Beanspruchung von Linienbusfahrern. Untersuchungen zur Beanspruchung von Linienbusfahrern im innerstädtischen Verkehr. Бремерхафен: Wirtschafts-verlag NW.

Роджерс, Дж. В. 1980. Результаты программы FAA по мониторингу содержания озона в салонах коммерческих самолетов в 1978 и 1979 годах. FAA-EE-80-10. Вашингтон, округ Колумбия: Федеральное авиационное управление, Управление окружающей среды и энергетики.

Роуз, Р. М., К. Д. Дженкинс и М. В. Херст. 1978. Исследование изменения здоровья авиадиспетчеров. Бостон, Массачусетс: Медицинская школа Бостонского университета.

Сэмпсон, Р. Дж., М. Т. Фаррис и Д. Л. Шрок. 1990. Внутренний транспорт: практика, теория и политика, 6-е издание. Бостон, Массачусетс: Компания Houghton Mifflin.

Streekvervoer Nederland. 1991. Chaufferscabine [Кабина водителя]. Амстердам, Нидерланды: Streekvervoer Nederland.

Сенат США. 1970. Авиадиспетчеры (Corson Report). Отчет Сената 91-1012. 91-й Конгресс, 2-я сессия, 9 июля. Вашингтон, округ Колумбия: GPO.

Министерство транспорта США (DOT). 1995. Отчет Сената 103–310, июнь 1995. Вашингтон, округ Колумбия: GPO.

Verband Deutscher Verkehrsunternehmen. 1996. Fahrerarbeitsplatz im Linienbus [Рабочее место водителя в автобусах]. ВДВ Шрифт 234 (Entwurf). Кельн, Германия: Verband Deutscher Verkehrsunternehmen.

Виолланд, М. 1996. Куда идут железные дороги? Наблюдатель ОЭСР № 198, 33.

Валлентовиц Х., Маркс М., Лучак Ф., Шерфф Дж. 1996. Форшунгспроект. Fahrerarbeitsplatz im Linienbus — Abschlußbericht [Исследовательский проект. Рабочее место водителя в автобусах — Итоговый отчет. Ахен, Германия: RWTH.

Ву, YX, XL Лю, BG Ван и XY Ван. 1989. Временный сдвиг порога, вызванный авиационным шумом. Авиационная космонавтика и медицина 60 (3): 268–270.