Уторак, фебруар КСНУМКС КСНУМКС КСНУМКС: КСНУМКС

Декомпресијски поремећаји

Оцените овај артикал
(КСНУМКС гласова)

Велики број радника подлеже декомпресији (смањењу притиска околине) као део њихове радне рутине. Ту спадају рониоци који су и сами извучени из широког спектра занимања, радници у кесонима, тунелари, радници у хипербаричној комори (обично медицинске сестре), авијатори и астронаути. Декомпресија код ових особа може изазвати и изазива низ декомпресијских поремећаја. Док се већина поремећаја добро разуме, други нису и у неким случајевима, и упркос лечењу, повређени радници могу постати инвалиди. Декомпресијски поремећаји су предмет активног истраживања.

Механизам декомпресијске повреде

Принципи упијања и ослобађања гаса

Декомпресија може да повреди хипербаричног радника преко једног од два примарна механизма. Први је последица узимања инертног гаса током хипербаричне експозиције и формирања мехурића у ткивима током и после накнадне декомпресије. Генерално се претпоставља да метаболички гасови, кисеоник и угљен-диоксид, не доприносе стварању мехурића. Ово је скоро сигурно погрешна претпоставка, али последична грешка је мала и таква претпоставка ће бити направљена овде.

Током компресије (повећање амбијенталног притиска) радника и током њиховог времена под притиском, напон удахнутог и артеријског инертног гаса ће се повећати у односу на оне који се доживљавају при нормалном атмосферском притиску - инертни гас(и) ће се тада унети у ткива. док се не успостави равнотежа напетости инспирисаног, артеријског и ткивног инертног гаса. Времена равнотеже ће варирати од мање од 30 минута до више од једног дана у зависности од врсте ткива и гаса који су укључени, а посебно ће варирати у зависности од:

  • снабдевање ткива крвљу
  • растворљивост инертног гаса у крви и ткиву
  • дифузија инертног гаса кроз крв и у ткиво
  • температура ткива
  • локална оптерећења ткива
  • локална напетост угљен-диоксида ткива.

 

Накнадна декомпресија хипербаричног радника до нормалног атмосферског притиска јасно ће преокренути овај процес, гас ће се ослободити из ткива и на крају ће истећи. Брзина овог ослобађања је одређена горе наведеним факторима, осим што се, из још увек слабо схваћених разлога, чини да је спорија од усвајања. Елиминација гаса ће бити спорија ако се формирају мехурићи. Фактори који утичу на формирање мехурића су добро утврђени квалитативно, али не и квантитативно. Да би мехур формирао, енергија мора бити довољна да савлада притисак околине, притисак површинског напона и притисак еластичног ткива. Диспаритет између теоријских предвиђања (површинске напетости и критичних запремина мехурића за раст мехурића) и стварног посматрања формирања мехурића се различито објашњава тврдњом да се мехурићи формирају у површинским дефектима ткива (крвних судова) и/или на основу малих краткотрајних мехурићи (језгра) који се непрекидно формирају у телу (нпр. између равни ткива или у областима кавитације). Услови који морају постојати пре него што гас изађе из раствора такође су лоше дефинисани—иако је вероватно да се мехурићи формирају кад год тензије гаса у ткиву пређу притисак околине. Једном формирани, мехурићи изазивају повреду (види доле) и постају све стабилнији као последица спајања и регрутовања сурфактаната на површину мехурића. Можда је могуће да се мехурићи формирају без декомпресије променом инертног гаса који хипербарични радник удише. Овај ефекат је вероватно мали и они радници који су имали изненадни почетак декомпресијске болести након промене удахнутог инертног гаса готово сигурно су већ имали „стабилне” мехуриће у својим ткивима.

Из тога следи да за увођење безбедне радне праксе треба применити програм (распоред) декомпресије како би се избегло стварање мехурића. Ово ће захтевати моделирање следећег:

  • упијање инертних гасова током компресије и хипербарично излагање
  • елиминација инертног(их) гаса(а) током и након декомпресије
  • услови за формирање мехурића.

 

Разумно је констатовати да до данас није направљен потпуно задовољавајући модел кинетике и динамике декомпресије и да се хипербарични радници сада ослањају на програме који су у суштини успостављени покушајима и грешкама.

Утицај Бојловог закона на баротрауму

Други примарни механизам којим декомпресија може изазвати повреду је процес баротрауме. Баротраума може настати услед компресије или декомпресије. Код компресионе баротрауме, ваздушни простори у телу који су окружени меким ткивом, па су стога подложни повећаном амбијенталном притиску (Паскалов принцип), биће смањен у запремини (као што је разумно предвиђено Бојлсовим законом: удвостручење притиска околине ће изазвати запремине гаса преполовити). Компримовани гас се замењује флуидом у предвидљивом редоследу:

  • Померају се еластична ткива (бубна опна, округли и овални прозори, материјал маске, одећа, грудни кош, дијафрагма).
  • Крв се скупља у крвним судовима (у суштини венама).
  • Када се достигну границе савијања крвних судова, долази до екстравазације течности (едем), а затим крви (хеморагије) у околна мека ткива.
  • Када се достигну границе усаглашености околних меких ткива, долази до померања течности, а затим крви у сам ваздушни простор.

 

Ова секвенца може бити прекинута у било ком тренутку уласком додатног гаса у простор (нпр. у средње уво приликом извођења Валсалва маневра) и престаће када запремина гаса и притисак ткива буду у равнотежи.

Процес је обрнут током декомпресије и запремине гаса ће се повећати, а ако се не испуштају у атмосферу, то ће изазвати локалну трауму. У плућима ова траума може настати или због превелике дистензије или због смицања између суседних области плућа које имају значајно различиту усклађеност и стога се шире различитим брзинама.

Патогенеза декомпресијских поремећаја

Декомпресијске болести се могу поделити на категорије баротраума, мехура ткива и интраваскуларних мехурића.

Баротраумата

Током компресије, сваки гасни простор може постати укључен у баротрауму, а то је посебно често у ушима. Док оштећење спољашњег ува захтева оклузију спољашњег ушног канала (чеповима, капуљачом или импактираним воском), бубна опна и средње уво су често оштећени. Ова повреда је вероватнија ако радник има патологију горњих дисајних путева која узрокује дисфункцију Еустахијеве тубе. Могуће последице су зачепљење средњег ува (као што је горе описано) и/или руптура бубне опне. Могући су бол у уху и кондуктивна глувоћа. Вртоглавица може настати услед продора хладне воде у средње уво кроз руптурирану бубну мембрану. Таква вртоглавица је пролазна. Чешће, вртоглавица (а можда и сензорнеурална глувоћа) ће бити резултат баротрауме унутрашњег уха. Током компресије, оштећење унутрашњег уха често је резултат снажног маневра Валсалве (који ће узроковати да се талас течности пренесе у унутрашње ухо преко канала пужнице). Оштећење унутрашњег уха је обично унутар унутрашњег уха - руптура округлог и овалног прозора је ређа.

Параназални синуси су често на сличан начин захваћени и обично због блокираног ушћа. Поред локалног и упућеног бола, честа је епистакса и кранијални нерви могу бити „компримовани“. Важно је напоменути да фацијални нерв такође може бити погођен баротраумом средњег уха код особа са перфорираним слушним нервним каналом. Остала подручја која могу бити погођена компресивном баротраумом, али ређе, су плућа, зуби, црева, маска за роњење, сува одела и друга опрема као што су уређаји за компензацију узгона.

Декомпресивне баротрауме су мање уобичајене од компресивних баротраума, али имају тенденцију да имају неповољнији исход. Две области које су првенствено погођене су плућа и унутрашње ухо. Типична патолошка лезија плућне баротрауме тек треба да буде описана. Механизам се на различите начине приписује прекомерном надувавању алвеола или да би се „отвориле поре“ или механички да би се пореметиле алвеоле, или као последица смицања плућног ткива услед локалног диференцијалног ширења плућа. Максимални стрес је вероватно у основи алвеола и, с обзиром на то да многи подводни радници често дишу са малим плимним екскурзијама на нивоу или близу укупног капацитета плућа, ризик од баротрауме је повећан у овој групи јер је плућна усклађеност најмања при овим запреминама. Ослобађање гаса из оштећених плућа може се пратити кроз интерстицијум до хилума плућа, медијастинума и можда до поткожног ткива главе и врата. Овај интерстицијски гас може да изазове диспнеју, субстернални бол и кашаљ који може бити продуктиван са мало крвавог спутума. Гас у глави и врату је очигледан и може повремено да наруши фонацију. Компресија срца је изузетно ретка. Гас из баротрауматизованог плућа такође може да побегне у плеурални простор (да изазове пнеумоторакс) или у плућне вене (да на крају постане артеријска гасна емболија). Генерално, такав гас најчешће или излази у интерстицијум и плеурални простор или у плућне вене. Истовремена очигледна оштећења плућа и артеријске гасне емболије су (на срећу) ретке.

Аутохтони ткивни мехурићи

Ако се током декомпресије формира гасна фаза, то је обично у почетку у ткивима. Ови мехурићи ткива могу изазвати дисфункцију ткива путем различитих механизама - неки од њих су механички, а други биохемијски.

У слабо усклађеним ткивима, као што су дуге кости, кичмена мождина и тетиве, мехурићи могу компримовати артерије, вене, лимфне и сензорне ћелије. На другим местима, мехурићи ткива могу изазвати механичко оштећење ћелија или, на микроскопском нивоу, мијелинских омотача. Растворљивост азота у мијелину може објаснити честу укљученост нервног система у декомпресијску болест међу радницима који су дисали или ваздух или мешавину гаса кисеоник-азот. Мехурићи у ткивима такође могу изазвати биохемијски одговор „страног тела“. Ово изазива инфламаторни одговор и може објаснити запажање да је уобичајена презентација декомпресијске болести болест слична грипу. Значај инфламаторног одговора се показује код животиња као што су зечеви, где инхибиција одговора спречава настанак декомпресијске болести. Главне карактеристике инфламаторног одговора укључују коагулопатију (ово је посебно важно код животиња, али мање код људи) и ослобађање кинина. Ове хемикалије изазивају бол, а такође и екстравазацију течности. Хемоконцентрација је такође последица директног дејства мехурића на крвне судове. Крајњи резултат је значајан компромис микроциркулације и, генерално, мерење хематокрита добро корелира са тежином болести. Корекција ове хемоконцентрације има предвидљиво значајну корист на исход.

Интраваскуларни мехурићи

Могу се формирати и венски мехурићи де-ново како гас излази из раствора или се могу ослободити из ткива. Ови венски мехурићи путују са протоком крви до плућа да би били заробљени у плућној васкулатури. Плућна циркулација је веома ефикасан филтер мехурића због релативно ниског притиска у плућној артерији. Насупрот томе, неколико мехурића остаје заробљено на дуже периоде у системској циркулацији због значајно већег системског артеријског притиска. Гас у мехурићима заробљен у плућима дифундује у плућне ваздушне просторе одакле се издише. Међутим, док су ови мехурићи заробљени, они могу изазвати нежељене ефекте или изазивањем неравнотеже перфузије и вентилације плућа или повећањем притиска у плућној артерији и последично десног срца и централног венског притиска. Повећани притисак десног срца може да изазове кретање крви „здесна налево“ кроз плућне шантове или интракардијалне „анатомске дефекте“ тако да мехурићи заобилазе „филтер“ плућа и постану емболије артеријског гаса. Повећање венског притиска ће пореметити венски повратак из ткива, чиме ће се смањити клиренс инертног гаса из кичмене мождине; може доћи до венског хеморагијског инфаркта. Венски мехурићи такође реагују са крвним судовима и састојцима крви. Ефекат на крвне судове је уклањање површинског слоја са ендотелних ћелија и тиме повећање васкуларне пермеабилности, што може бити додатно угрожено физичким померањем ендотелних ћелија. Међутим, чак и у одсуству таквог оштећења, ендотелне ћелије повећавају концентрацију гликопротеинских рецептора за полиморфонуклеарне леукоците на својој ћелијској површини. Ово, заједно са директном стимулацијом белих крвних зрнаца мехурићима, изазива везивање леукоцита за ендотелне ћелије (смањење протока) и накнадну инфилтрацију уи кроз крвне судове (дијапедеза). Инфилтрирајући полиморфонуклеарни леукоцити изазивају будуће повреде ткива ослобађањем цитотоксина, слободних радикала кисеоника и фосфолипаза. У крви, мехурићи ће изазвати не само активацију и акумулацију полиморфонуклеарних леукоцита, већ и активацију тромбоцита, коагулације и комплемента и стварање масних емболија. Док ови ефекти имају релативно мали значај у високо компатибилној венској циркулацији, слични ефекти у артеријама могу смањити проток крви до исхемијских нивоа.

Артеријски мехурићи (гасна емболија) могу настати из:

  • плућна баротраума која изазива ослобађање мехурића у плућне вене
  • мехурићи се „гурају“ кроз плућне артериоле (овај процес је појачан токсичношћу кисеоника и оним бронходилататорима који су такође вазодилататори као што је аминофилин)
  • мехурићи који заобилазе плућни филтер кроз десни на леви васкуларни канал (нпр. отворени форамен овале).

 

Једном у плућним венама, мехурићи се враћају у леву преткомору, леву комору, а затим се пумпају у аорту. Мехурићи у артеријској циркулацији ће се дистрибуирати у складу са узгоном и протоком крви у великим судовима, али на другим местима само протоком крви. Ово објашњава преовлађујућу емболију мозга и, посебно, средње церебралне артерије. Већина мехурића који улазе у артеријску циркулацију проћи ће кроз системске капиларе и у вене да би се вратили на десну страну срца (обично да би били заробљени у плућима). Током овог транзита ови мехурићи могу изазвати привремени прекид функције. Ако мехурићи остану заробљени у системској циркулацији или се не прерасподеле у року од пет до десет минута, онда овај губитак функције може да траје. Ако мехурићи емболишу циркулацију можданог стабла, онда догађај може бити смртоносан. На срећу, већина мехурића ће се прерасподелити у року од неколико минута од првог доласка у мозак и опоравак функције је уобичајен. Међутим, током овог транзита мехурићи ће изазвати исте васкуларне (крвне судове и крв) реакције као што је горе описано у венској крви и венама. Сходно томе, може доћи до значајног и прогресивног пада церебралног крвотока, који може достићи нивое на којима се нормална функција не може одржати. Хипербарични радник ће, у овом тренутку, доживети рецидив или погоршање функције. Уопштено говорећи, око две трећине хипербаричних радника који пате од церебралне артеријске гасне емболије ће се спонтано опоравити, а око једне трећине њих ће се касније вратити.

Клиничка презентација декомпресије Поремећаји

Време почетка

Повремено, почетак декомпресијске болести је током декомпресије. Ово се најчешће види у баротрауми успона, посебно у плућима. Међутим, почетак већине декомпресијских болести јавља се након завршетка декомпресије. Декомпресијске болести услед стварања мехурића у ткивима и крвним судовима обично постају очигледне у року од неколико минута или сати након декомпресије. Природна историја многих од ових декомпресијских болести је за спонтано решавање симптома. Међутим, неки ће се спонтано повући и непотпуно и постоји потреба за лечењем. Постоје значајни докази да што је третман раније, то је бољи исход. Природна историја лечених декомпресијских болести је променљива. У неким случајевима се види да се преостали проблеми решавају у наредних 6-12 месеци, док се у другим чини да се симптоми не решавају.

Клиничке манифестације

Уобичајена презентација декомпресијске болести је стање слично грипу. Друге честе тегобе су различити сензорни поремећаји, локални бол, посебно у удовима; и друге неуролошке манифестације, које могу укључивати више функције, посебна чула и моторички умор (ређе могу бити захваћени кожа и лимфни системи). У неким групама хипербаричних радника, најчешћа презентација декомпресијске болести је бол. Ово може бити дискретни бол у вези са одређеним зглобом или зглобовима, бол у леђима или упућени бол (када је бол често лоциран у истом екстремитету као и очигледни неуролошки дефицити), или ређе, код акутне декомпресијске болести, нејасних миграторних болова и могу се приметити болови. Заиста, разумно је рећи да су манифестације декомпресијских болести протеанске. Било која болест код хипербаричног радника која се јави до 24-48 сати након декомпресије треба претпоставити да је повезана са том декомпресијом док се не докаже супротно.

Класификација

До недавно, декомпресијске болести су биле класификоване у:

  • тхе баротраумата
  • церебрална артеријска гасна емболија
  • декомпресијска болест.

 

Декомпресијска болест је даље подељена на тип 1 (бол, свраб, оток и осип на кожи), тип 2 (све друге манифестације) и тип 3 (манифестације и церебралне артеријске гасне емболије и декомпресијске болести). Овај систем класификације је произашао из анализе резултата кесонских радника који су користили нове распореде декомпресије. Међутим, овај систем је морао бити замењен и зато што није дискриминаторски нити прогностички, и зато што постоји ниска подударност у дијагнози између искусних лекара. Нова класификација декомпресијских болести препознаје потешкоће у разликовању између церебралне артеријске гасне емболије и церебралне декомпресијске болести, као и тешкоће у разликовању типа 1 од типа 2 и типа 3 декомпресијске болести. Све декомпресијске болести су сада класификоване као такве — декомпресионе болести, као што је описано у табели 1. Овај термин има предговор са описом природе болести, прогресије симптома и листом система органа у којима се симптоми манифестују ( не праве се претпоставке о основној патологији). На пример, ронилац може имати акутну прогресивну неуролошку декомпресијску болест. Потпуна класификација декомпресијске болести укључује коментар на присуство или одсуство баротрауме и вероватно пуњење инертног гаса. Ови последњи термини су релевантни и за лечење и за вероватну способност за повратак на посао.

 


Табела 1. Ревидирани систем класификације декомпресијских болести

 

Trajanje

Еволуција

simptomi

 

Акутна

Прогресивно

Мускулоскелетни

 

Хроничан

Спонтано решавање

Кожни

Болест декомпресије

+ или -

 

Статички

Лимфна

Докази о баротрауми

 

Опуштајуће

Неуролошки

 

 

 

Пријем

 

 

 

Кардиореспираторни

 

 


Управљање првом помоћи

 

Спасавање и реанимација

Неки хипербарични радници развијају декомпресијску болест и захтевају спасавање. Ово посебно важи за рониоце. Ово спасавање може захтевати њихово враћање на сцену или ронилачко звоно, или спасавање из подводног стања. Морају се успоставити и практиковати специфичне технике спасавања да би биле успешне. Генерално, рониоци треба да буду спасени из океана у хоризонталном положају (да би се избегли могући смртоносни падови срчаног минутног волумена пошто је ронилац поново подвргнут гравитацији – током сваког роњења долази до прогресивног губитка запремине крви као последица померања крви из периферије у грудни кош) и последичну диурезу и ово држање треба одржавати све док ронилац не буде, ако је потребно, у комори за рекомпресију.

Реанимација повређеног рониоца треба да следи исти режим који се користи у реанимацији на другим местима. Посебно треба напоменути да оживљавање хипотермичне особе треба да се настави барем док се особа не загреје. Нема убедљивих доказа да је реанимација повређеног рониоца у води ефикасна. Уопштено говорећи, најбољи интереси рониоца се обично служе раним спасавањем на копну или на ронилачком звону/платформи.

Реанимација кисеоником и течностима

Хипербарични радник са декомпресијском болешћу треба да буде положен равно, како би се минимизирале шансе да се мехурићи дистрибуирају у мозак, али не и постављен у положај главе надоле што вероватно негативно утиче на исход. Ронилац треба да добије 100% кисеоника да дише; ово ће захтевати или вентил за потребе свесног рониоца или заптивну маску, висок проток кисеоника и систем резервоара. Ако се администрација кисеоника треба продужити, онда треба дати ваздушне паузе да би се ублажио или успорио развој плућне токсичности кисеоника. Сваки ронилац са декомпресијском болешћу треба поново да се хидрира. У акутној реанимацији тешко повређеног радника вероватно нема места за оралне течности. Генерално, тешко је давати оралне течности некоме ко лежи равно. Оралне течности ће захтевати да се прекине давање кисеоника и тада обично имају занемарљив тренутни ефекат на запремину крви. Коначно, пошто накнадни третман хипербаричним кисеоником може изазвати конвулзије, није пожељно имати било какав садржај желуца. У идеалном случају тада би реанимација течности требало да буде интравенским путем. Нема доказа о предностима колоида у односу на кристалоидне растворе и течност избора је вероватно нормални физиолошки раствор. Растворе који садрже лактат не треба давати рониоцима на хладно, а растворе декстрозе не треба давати никоме са повредом мозга (јер је могуће погоршање повреде). Од суштинског је значаја да се одржава тачан баланс течности јер је то вероватно најбољи водич за успешну реанимацију хипербаричног радника са декомпресијском болешћу. Захваћеност мокраћне бешике је довољно честа да је рано прибегавање катетеризацији бешике оправдано у одсуству излучивања мокраће.

Не постоје лекови који су доказано корисни у лечењу декомпресијских болести. Међутим, постоји све већа подршка за лигнокаин и ово је под клиничким испитивањем. Сматра се да је улога лигнокаина и као стабилизатор мембране и као инхибитор акумулације полиморфонуклеарних леукоцита и адхеренције крвних судова коју изазивају мехурићи. Важно је напоменути да је једна од вероватних улога хипербаричног кисеоника такође да инхибира акумулацију и приањање леукоцита на крвне судове. Коначно, нема доказа да је било каква корист изведена од употребе инхибитора тромбоцита као што су аспирин или други антикоагуланси. Заиста, пошто је крварење у централни нервни систем повезано са тешком неуролошком декомпресијском болешћу, такви лекови могу бити контраиндиковани.

Дохваћање

Довођење хипербаричног радника са декомпресијском болешћу у терапијску рекомпресију требало би да се деси што је пре могуће, али не сме укључивати даљу декомпресију. Максимална надморска висина на коју такав радник треба да буде декомпресован током ваздушно-медицинске евакуације је 300 м надморске висине. Током овог извлачења, треба обезбедити прву помоћ и помоћну негу описану горе.

Рекомпресиони третман

aplikacije

Дефинитивни третман већине декомпресијских болести је рекомпресија у комори. Изузетак од ове изјаве су баротрауме које не изазивају артеријску гасну емболију. Већина жртава ауралне баротрауме захтева серијску аудиологију, назалне деконгестиве, аналгетике и, ако се сумња на баротрауму унутрашњег уха, строго мировање у кревету. Међутим, могуће је да хипербарични кисеоник (плус блокада звездастих ганглија) може бити ефикасан третман ове последње групе пацијената. Друге баротрауме које често захтевају лечење су плућа - већина њих добро реагује на 100% кисеоник на атмосферском притиску. Понекад може бити потребна канулација грудног коша за пнеумоторакс. За друге пацијенте је индикована рана рекомпресија.

Механизми

Повећање притиска околине ће учинити мехуриће мањим и самим тим мање стабилним (повећањем притиска површинског напона). Ови мањи мехурићи ће такође имати већу површину у односу на запремину за разрешавање дифузијом и њихов механички ремети и ефекат компресије на ткиво ће бити смањен. Такође је могуће да постоји гранична запремина мехурића која ће стимулисати реакцију „страног тела“. Смањењем величине мехурића, овај ефекат се може смањити. Коначно, смањење запремине (дужине) стубова гаса који су заробљени у системској циркулацији ће подстаћи њихову прерасподелу у вене. Други исход већине рекомпресија је повећање удахнутог (ПиО2) и артеријске напетости кисеоника (ПаО2). Ово ће ублажити хипоксију, снизити притисак интерстицијалне течности, инхибирати активацију и акумулацију полиморфонуклеарних леукоцита које обично изазивају мехурићи и смањити хематокрит, а самим тим и вискозитет крви.

Притисак

Идеалан притисак за лечење декомпресијске болести није утврђен, иако је конвенционални први избор апсолутних 2.8 бара (60 фсв; 282 кПа), са даљом компресијом до 4 и 6 бара апсолутног притиска ако је одговор на симптоме и знакове лош. Експерименти на животињама сугеришу да је апсолутни притисак од 2 бара једнако ефикасан као притисак третмана као и веће компресије.

гас(и)

Слично, идеалан гас који треба удисати током терапијске рекомпресије ових повређених радника није утврђен. Мешавине кисеоника и хелијума могу бити ефикасније у скупљању ваздушних мехурића од ваздуха или 100% кисеоника и предмет су сталних истраживања. Идеалан ПиО2 се сматра из ин виво истраживања, да буде око 2 бара апсолутног притиска, иако је добро утврђено, код пацијената са повредом главе, да је идеална напетост нижа на 1.5 бара апсолутне. Однос дозе у погледу кисеоника и инхибиције акумулације полиморфонуклеарних леукоцита изазваних мехурићима још није утврђен.

Адјувантна нега

Не сме се дозволити да третман повређеног хипербаричног радника у комори за рекомпресију угрози његову/њену потребу за помоћном негом као што су вентилација, рехидрација и праћење. Да би била коначна установа за лечење, комора за рекомпресију мора имати радни интерфејс са опремом која се рутински користи у медицинским јединицама критичне неге.

Накнадни третман и испитивања

Упорни симптоми и знаци декомпресијске болести су чести и понављајући се и већина повређених радника ће захтевати поновљене рекомпресије. Ово би требало да се настави све док се повреда не исправи и не буде исправљена или барем док два узастопна третмана не дају трајну корист. Основа текуће истраге је пажљив клинички неуролошки преглед (укључујући ментални статус), пошто доступне технике снимања или провокативне истражне технике имају или повезану прекомерну стопу лажно позитивних (ЕЕГ, скенирање радио-изотопа костију, СПЕЦТ скенирање) или повезану прекомерну стопу лажно негативних (ЦТ, МРИ, ПЕТ, студије изазваног одговора). Годину дана након епизоде ​​декомпресијске болести, радник треба да буде рендгенски да би се утврдило да ли постоји било каква дисбарична остеонекроза (асептична некроза) њихових дугих костију.

Исход

Исход након рекомпресијске терапије декомпресијске болести у потпуности зависи од групе која се проучава. Већина хипербаричних радника (нпр. војни рониоци и рониоци на нафтним пољима) добро реагују на третман и значајни резидуални дефицити су неуобичајени. Насупрот томе, многи рекреативни рониоци који се лече од декомпресијске болести имају накнадни лош исход. Разлози за ову разлику у исходу нису утврђени. Уобичајене последице декомпресијске болести су опадајуће учесталости: депресивно расположење; проблеми са краткорочном меморијом; сензорни симптоми као што су утрнулост; потешкоће са мокрењем и сексуалном дисфункцијом; и нејасне болове.

Вратите се на хипербарични рад

На срећу, већина хипербаричних радника може да се врати на хипербарични рад након епизоде ​​декомпресијске болести. Ово би требало одложити најмање месец дана (да би се омогућило враћање у нормалу поремећене физиологије) и мора се обесхрабрити ако је радник претрпео плућну баротрауму или има историју рекурентне или тешке баротрауме унутрашњег уха. Повратак на посао такође треба да зависи од:

  • озбиљност декомпресијске болести сразмерна степену хипербаричне изложености/декомпресијском стресу
  • добар одговор на лечење
  • нема доказа о последицама.

 

Назад

Читати 6657 пута Последња измена у уторак, 26. јула 2022. 20:57

" ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

Садржај

Барометријски притисак, повећане референце

Бенет, П и Д Елиот (ур.) 1993. Физиологија и медицина роњења. Лондон: ВБ Саундерс.

 

Фуереди, ГА, ДЈ Цзарнецки и ЕП Киндвалл. 1991. МР налази у мозгу радника тунела са компримованим ваздухом: однос према психометријским резултатима. Ам Ј Неурорадиол КСНУМКС (КСНУМКС): КСНУМКС-КСНУМКС.

 

Киндвалл, ЕП. 1994а. Ординација хипербаричне медицине. Флагстафф, Ариз: Најбољи издавачи.

—. 1994б. Медицински аспекти комерцијалног роњења и рада на компримованом ваздуху. Ин Медицина рада, приредио Ц Зенз. Ст. Лоуис: Мосби.

 

Киндвалл, ЕП, ПО Едел и ХЕ Мелтон. 1983. Распоред безбедне декомпресије за кесонске раднике. Коначни извештај, грант за истраживање Националног института за безбедност и здравље на раду број 5Р01-ОХ0094703, децембар XNUMX.

 

Рицхардсон, ХВ и РС Маио. 1960. Практична вожња кроз тунел. Нев Иорк: МцГрав-Хилл.

Амерички биро за статистику рада. 1971. Савезни регистар. Вол. 36, бр. 75, дио 2, поддио С, пар. 1518.803, 17. април.