Одштампајте ову страну
Четвртак, март КСНУМКС КСНУМКС КСНУМКС: КСНУМКС

Извори јонизујућег зрачења

Оцените овај артикал
(КСНУМКС гласова)

Врсте јонизујућег зрачења

Алфа честице

Алфа честица је чврсто везана колекција два протона и два неутрона. Идентично је хелијум-4 (4Он) језгро. Заиста, његова коначна судбина након што изгуби већину своје кинетичке енергије је да ухвати два електрона и постане атом хелијума.

Радионуклиди који емитују алфа су генерално релативно масивна језгра. Скоро сви алфа емитери имају атомске бројеве веће или једнаке броју олова (82Пб). Када се језгро распадне емитујући алфа честицу, његов атомски број (број протона) и број неутрона се смањују за два, а атомски масени број се смањује за четири. На пример, алфа распад уранијума-238 (238У) до торијум-234 (234Тх) представљају:

Леви индекс је атомски масени број (број протона плус неутрони), леви индекс је атомски број (број протона), а десни индекс је број неутрона.

Уобичајени алфа емитери емитују алфа честице са кинетичком енергијом између око 4 и 5.5 МеВ. Такве алфа честице имају домет у ваздуху не већи од око 5 цм (види слику 1). Алфа честице са енергијом од најмање 7.5 МеВ потребне су да продру у епидермис (заштитни слој коже, дебљине 0.07 мм). Алфа емитери генерално не представљају опасност од спољашњег зрачења. Они су опасни само ако се уносе у организам. Пошто депонују своју енергију на малој удаљености, алфа честице су зрачење са високим линеарним преносом енергије (ЛЕТ) и имају велики тежински фактор зрачења; обично, w R= КСНУМКС.

Слика 1. Домет-енергетско зрачење спорих алфа честица у ваздуху на 15 и 760 м

 

ИОН030Ф1

 

Бета честице

Бета честица је високоенергетски електрон или позитрон. (Позитрон је античестица електрона. Има исту масу и већину других својстава електрона осим његовог набоја, који је потпуно исте величине као електрон, али је позитиван.) Радионуклиди који емитују бета могу бити велике или мале атомске тежине.

Радионуклиди који имају вишак протона у поређењу са стабилним нуклидима приближно истог атомског масеног броја могу се распасти када се протон у језгру претвори у неутрон. Када се то догоди, језгро емитује позитрон и изузетно лагану честицу која није у интеракцији која се зове неутрино. (Неутрино и његова античестица нису од интереса за заштиту од зрачења.) Када се одрекне већине своје кинетичке енергије, позитрон се на крају судара са електроном и оба су анихилирана. Произведено анихилационо зрачење је скоро увек два фотона од 0.511 кеВ (килоелектрон волт) који путују у правцима удаљеним 180 степени. Типичан распад позитрона је представљен са:

где је позитрон представљен са β+ а неутрино од н. Имајте на уму да резултујући нуклид има исти атомски масени број као и родитељски нуклид и атомски (протонски) број већи за један и неутронски број мањи за један од оригиналног нуклида.

Хватање електрона се такмичи са распадом позитрона. У распаду хватања електрона, језгро апсорбује орбитални електрон и емитује неутрино. Типичан распад хватања електрона је дат:

Хватање електрона је увек могуће када резултујуће језгро има мању укупну енергију од почетног језгра. Међутим, распад позитрона захтева да укупна енергија почетне атом већи је од резултујућег атом за више од 1.02 МеВ (двоструко од енергије масе мировања позитрона).

Слично распаду хватања позитрона и електрона, негатрон (β-) долази до распада за језгра која имају вишак неутрона у поређењу са стабилним језгрима приближно истог атомског масеног броја. У овом случају, језгро емитује негатрон (енергетски електрон) и анти-неутрино. Типичан распад негатрона је представљен са:

где је негатрон представљен са β- и анти-неутрино би`н Овде резултујуће језгро добија један неутрон на рачун једног протона, али опет не мења свој атомски масени број.

Алфа распад је реакција два тела, тако да се алфа честице емитују са дискретном кинетичком енергијом. Међутим, бета распад је реакција три тела, тако да се бета честице емитују преко спектра енергија. Максимална енергија у спектру зависи од распадајућег радионуклида. Просечна бета енергија у спектру је приближно једна трећина максималне енергије (види слику 2).

Слика 2. Енергетски спектар негатрона емитованих из 32P

ИОН030Ф2

Типичне максималне бета енергије се крећу од 18.6 кеВ за трицијум (3Х) до 1.71 МеВ за фосфор-32 (32П).

Опсег бета честица у ваздуху је приближно 3.65 м по МеВ кинетичке енергије. Бета честице од најмање 70 кеВ енергије потребне су да продру у епидермис. Бета честице су ниско-ЛЕТ зрачење.

 

Гама зрачење

Гама зрачење је електромагнетно зрачење које емитује језгро када се подвргне транзицији из вишег у ниже енергетско стање. Број протона и неутрона у језгру се у таквом прелазу не мења. Језгро је можда остављено у стању више енергије након ранијег алфа или бета распада. То јест, гама зраци се често емитују одмах након алфа или бета распада. Гама зраци такође могу бити резултат хватања неутрона и нееластичног расејања субатомских честица језгрима. Најенергетнији гама зраци примећени су у космичким зрацима.

Слика 3 је слика шеме распадања кобалта-60 (60Цо). Приказује каскаду од два гама зрака емитована у никлу-60 (60Ни) са енергијама од 1.17 МеВ и 1.33 МеВ након бета распада 60Цо

Слика 3. Шема радиоактивног распада за 60Co

ИОН030Ф3

Слика 4 је слика шеме распада за молибден-99 (99Мо). Имајте на уму да добијени технецијум-99 (99Тц) језгро има побуђено стање које траје изузетно дуго (t½ = 6 х). Такво побуђено језгро се назива ан изомер. Већина узбуђених нуклеарних стања има време полураспада између неколико пикосекунди (пс) и 1 микросекунде (μс).

Слика 4. Шема радиоактивног распада за 99Mo

ИОН030Ф4

Слика 5 је слика шеме распадања арсена-74 (74Као што). То илуструје да се неки радионуклиди распадају на више начина.

Слика 5. Шема радиоактивног распада за 74Као, илуструјући конкурентне процесе емисије негатрона, емисије позитрона и хватања електрона (м0 је маса мировања електрона)

ИОН030Ф5

Док алфа и бета честице имају одређене опсеге материје, гама зраци се експоненцијално пригушују (занемарујући накупљање које је резултат расејања унутар материјала) док пролазе кроз материју. Када се нагомилавање може занемарити, слабљење гама зрака се даје на следећи начин:

где И(к) је интензитет гама зрака у функцији удаљености x у материјал и μ је масени коефицијент слабљења. Масени коефицијент слабљења зависи од енергије гама зрака и од материјала са којим гама зраци ступају у интеракцију. Вредности коефицијента масеног пригушења су табеларно приказане у многим референцама. Слика 6 приказује апсорпцију гама зрака у материји у условима добре геометрије (нагомилавање се може занемарити).

Слика 6. Слабљење гама зрака од 667 кеВ у Ал и Пб у условима добре геометрије (испрекидана линија представља слабљење полиенергетског фотонског снопа)

ИОН030Ф6

До накупљања долази када широки сноп гама зрака ступи у интеракцију са материјом. Измерени интензитет у тачкама унутар материјала се повећава у односу на очекивану вредност „добре геометрије“ (уски сноп) услед гама зрака расејаних са страна директног снопа у мерни уређај. Степен нагомилавања зависи од геометрије зрака, од материјала и од енергије гама зрака.

Унутрашња конверзија се такмичи са гама емисијом када се језгро трансформише из вишег енергетског стања у ниже. У унутрашњој конверзији, унутрашњи орбитални електрон се избацује из атома уместо да језгро емитује гама зраке. Избачени електрон директно јонизује. Како спољни орбитални електрони падају на ниже нивое електронске енергије како би попунили празно место које је оставио избачени електрон, атом емитује рендгенске зраке. Вероватноћа унутрашње конверзије у односу на вероватноћу гама емисије расте са повећањем атомског броја.

Кс зраке

Рендгенски зраци су електромагнетно зрачење и, као такви, идентични су гама зрацима. Разлика између к зрака и гама зрака је њихово порекло. Док гама зраци потичу из атомског језгра, рендгенски зраци су резултат интеракција електрона. Иако рендгенски зраци често имају нижу енергију од гама зрака, ово није критеријум за њихово разликовање. Могуће је произвести рендгенске зраке са енергијама много већим од гама зрака који су резултат радиоактивног распада.

Унутрашња конверзија, о којој је било речи горе, је један од метода производње рендгенских зрака. У овом случају, резултујући рендгенски зраци имају дискретне енергије једнаке разлици енергетских нивоа између којих пролазе орбитални електрони.

Наелектрисане честице емитују електромагнетно зрачење кад год су убрзане или успорене. Количина емитованог зрачења је обрнуто пропорционална четвртом степену масе честице. Као резултат тога, електрони емитују много више рендгенског зрачења од тежих честица као што су протони, при чему су сви остали услови једнаки. Рендгенски системи производе рендгенске зраке тако што убрзавају електроне преко велике разлике електричног потенцијала од много кВ или МВ. Електрони се затим брзо успоравају у густом материјалу отпорном на топлоту, као што је волфрам (В).

Рендгенски зраци који се емитују из таквих система имају енергију раширену по спектру у распону од око нуле до максималне кинетичке енергије коју поседују електрони пре успоравања. На овај континуирани спектар често су постављени рендгенски зраци дискретне енергије. Настају када електрони који успоравају јонизују циљни материјал. Како се други орбитални електрони крећу да попуне празна места која су остала након јонизације, они емитују рендгенске зраке дискретне енергије сличне начину на који се рендгенски зраци емитују након унутрашње конверзије. Они се зову Карактеристика рендгенски зраци јер су карактеристични за циљни (анодни) материјал. Погледајте слику 7 за типичан спектар рендгенских зрака. Слика 8 приказује типичну рендгенску цев.

Слика 7. Рендгенски спектар који илуструје допринос карактеристичних рендгенских зрака произведених док електрони испуњавају рупе у К љусци В (таласна дужина рендгенских зрака је обрнуто пропорционална њиховој енергији)

ИОН030Ф7

Кс зраци реагују са материјом на исти начин као гама зраци, али једноставна експоненцијална једначина слабљења не описује адекватно слабљење рендгенских зрака са континуираним опсегом енергија (види слику 6). Међутим, како се рендгенски зраци ниже енергије брже уклањају из зрака него рендгенски зраци веће енергије док пролазе кроз материјал, опис слабљења се приближава експоненцијалној функцији.

 

 

 

 

 

Слика 8. Поједностављена рендгенска цев са стационарном анодом и загрејаним филаментом

ИОН030Ф8

Неутронс

Генерално, неутрони се не емитују као директан резултат природног радиоактивног распада. Настају током нуклеарних реакција. Нуклеарни реактори производе неутроне у највећој количини, али акцелератори честица и специјални извори неутрона, звани (α, н) извори, такође могу да дају неутроне.

Нуклеарни реактори производе неутроне када се језгра уранијума (У) у нуклеарном гориву цепају или фисују. Заиста, производња неутрона је неопходна за одржавање нуклеарне фисије у реактору.

Акцелератори честица производе неутроне тако што убрзавају наелектрисане честице, као што су протони или електрони, до високих енергија за бомбардовање стабилних језгара у мети. Неутрони су само једна од честица које могу настати у таквим нуклеарним реакцијама. На пример, следећа реакција производи неутроне у циклотрону који убрзава јоне деутеријума да бомбардује мету берилијума:

Алфа емитери помешани са берилијумом су преносиви извори неутрона. Ови (α, н) извори производе неутроне реакцијом:

Извор алфа честица могу бити такви изотопи као што је полонијум-210 (210По),
плутонијум-239 (239Пу) и америцијум-241 (241Сам).

Неутрони се генерално класификују према њиховој енергији као што је илустровано у табели 1. Ова класификација је донекле произвољна и може варирати у различитим контекстима.

Табела 1. Класификација неутрона према кинетичкој енергији

тип

Енергетски опсег

Споро или топлотно

0-0.1 кеВ

Средњи

0.1-20 кеВ

брзо

20 кеВ-10 МеВ

Висока енергија

>10 МеВ

 

Постоји велики број могућих начина интеракције неутрона са материјом, али два главна начина за потребе радијационе безбедности су еластично расејање и хватање неутрона.

Еластично расејање је начин на који се неутрони више енергије своде на топлотну енергију. Неутрони више енергије међусобно делују првенствено еластичним расејањем и генерално не изазивају фисију нити производе радиоактивни материјал хватањем неутрона. За последње врсте интеракције првенствено су одговорни топлотни неутрони.

Еластично расејање настаје када неутрон ступи у интеракцију са језгром и одбија се са смањеном енергијом. Интеракционо језгро преузима кинетичку енергију коју неутрон губи. Након што је узбуђено на овај начин, језгро убрзо одустаје од ове енергије као гама зрачења.

Када неутрон на крају достигне топлотну енергију (тзв. јер је неутрон у топлотној равнотежи са својим окружењем), већина језгара га лако хвата. Неутроне, који немају наелектрисање, позитивно наелектрисано језгро не одбија као протоне. Када се термални неутрон приближи језгру и дође у домет јаке нуклеарне силе, реда величине неколико фм (фм = 10-КСНУМКС метара), језгро хвата неутрон. Резултат тада може бити радиоактивно језгро које емитује фотон или другу честицу или, у случају фисионих језгара, као што је 235У и 239Пу, језгро за хватање може да се подели на два мања језгра и више неутрона.

Закони кинематике указују на то да ће неутрони брже достићи топлотну енергију ако еластични медијум за распршивање укључује велики број лаких језгара. Неутрон који се одбија од лаког језгра губи много већи проценат своје кинетичке енергије него када се одбија од тешког језгра. Из тог разлога, вода и водоник материјали су најбољи заштитни материјал за успоравање неутрона.

Моноенергетски сноп неутрона ће експоненцијално ослабити у материјалу, поштујући једначину сличну оној датој горе за фотоне. Вероватноћа интеракције неутрона са датим језгром описује се у смислу количине попречни пресек. Попречни пресек има јединице површине. Посебна јединица за попречни пресек је барн (б), дефинисано према:

Изузетно је тешко произвести неутроне без пратећих гама и рендгенских зрака. Може се генерално претпоставити да ако су присутни неутрони, присутни су и фотони високе енергије.

Извори јонизујућег зрачења

Примордијални радионуклиди

Примордијални радионуклиди се јављају у природи јер је њихов полуживот упоредив са старошћу Земље. У табели 2 наведени су најважнији примордијални радионуклиди.

Табела 2. Примордијални радионуклиди

Радиоизотоп

Полуживот (109 Y)

Заступљеност (%)

238U

4.47

99.3

232Th

14.0

100

235U

0.704

0.720

40K

1.25

0.0117

87Rb

48.9

27.9

 

Изотопи уранијума и торијума предводе дуги ланац радиоизотопа потомака који се, као резултат, такође јављају у природи. Слика 9, АЦ, илуструје ланце распадања за 232Тх, 238У и 235У, респективно. Пошто је алфа распад уобичајен изнад атомског масеног броја 205, а атомски масени број алфа честице је 4, постоје четири различита ланца распада за тешка језгра. Један од ових ланаца (види слику 9, Д), који за 237Нп, не јавља се у природи. То је зато што не садржи примордијални радионуклид (то јест, ниједан радионуклид у овом ланцу нема време полураспада упоредиво са старошћу Земље).

Слика 9. Серија распадања (З = атомски број; Н = атомски масени број)    

 ИОН030Ф9Имајте на уму да се изотопи радона (Рн) јављају у сваком ланцу (219Рн, 220Рн и 222Рн). Пошто је Рн гас, када се Рн произведе, он има шансу да побегне у атмосферу из матрице у којој је формиран. Међутим, време полураспада 219Рн је превише кратак да би омогућио значајним количинама да дођу до зоне дисања. Релативно кратко време полураспада 220Рн га обично чини мањим здравственим ризиком него 222Рн.

Не укључујући Рн, примордијални радионуклиди изван тела испоручују у просеку око 0.3 мСв годишње ефективне дозе људској популацији. Стварна годишња ефективна доза увелико варира и одређена је првенствено концентрацијом уранијума и торијума у ​​локалном тлу. У неким деловима света где је моназитни песак уобичајен, годишња ефективна доза за члана популације је чак око 20 мСв. На другим местима, као што су корални атоли и близу морских обала, вредност може бити чак 0.03 мСв (види слику 9).

Радон се обично сматра одвојено од других земаљских радионуклида који се јављају у природи. Из земље продире у ваздух. Једном у ваздуху, Рн се даље распада на радиоактивне изотопе По, бизмут (Би) и Пб. Ови потомски радионуклиди се везују за честице прашине које се могу удахнути и заробити у плућима. Пошто су алфа емитери, они испоручују скоро сву своју енергију зрачења у плућа. Процењује се да је просечна годишња еквивалентна доза плућа од таквог излагања око 20 мСв. Ова еквивалентна доза плућа је упоредива са ефективном дозом целог тела од око 2 мСв. Јасно је да су Рн и радионуклиди из његових потомака најзначајнији допринос ефективној дози позадинског зрачења (видети слику 9).

Космички зраци

Космичко зрачење укључује енергетске честице ванземаљског порекла које ударају у атмосферу земље (првенствено честице и углавном протони). Такође укључује секундарне честице; углавном фотони, неутрони и миони, настали интеракцијом примарних честица са гасовима у атмосфери.

На основу ових интеракција, атмосфера служи као штит од космичког зрачења, а што је тањи тај штит, већа је ефективна брзина дозе. Дакле, ефективна брзина дозе космичких зрака расте са висином. На пример, брзина дозе на надморској висини од 1,800 метара је двоструко већа од нивоа мора.

Пошто се примарно космичко зрачење састоји углавном од наелектрисаних честица, на њега утиче Земљино магнетно поље. Људи који живе у вишим географским ширинама примају веће ефективне дозе космичког зрачења од оних ближе Земљином екватору. Варијације због овог ефекта су потребне
од КСНУМКС%.

Коначно, ефективна брзина дозе космичких зрака варира у зависности од модулације излаза сунчевих космичких зрака. У просеку, космички зраци доприносе око 0.3 мСв ефективној дози позадинског зрачења целог тела.

Космогени радионуклиди

Космички зраци производе космогене радионуклиде у атмосфери. Најистакнутији од њих су трицијум (3Х), берилијум-7 (7Бе), угљеник-14 (14Ц) и натријум-22 (22На). Настају космичким зрацима у интеракцији са атмосферским гасовима. Космогени радионуклиди испоручују око 0.01 мСв годишње ефективне дозе. Већина овога долази од 14C.

Нуклеарне падавине

Од 1940-их до 1960-их догодила су се опсежна тестирања нуклеарног оружја изнад земље. Ово тестирање је произвело велике количине радиоактивних материјала и дистрибуирало их у животну средину широм света као испадање. Иако се велики део ових остатака од тада распао до стабилних изотопа, мале количине које остану биће извор изложености у годинама које долазе. Поред тога, нације које настављају да повремено тестирају нуклеарно оружје у атмосфери додају светски инвентар.

Тренутно примарни фактори који доприносе ефективној дози су стронцијум-90 (90Ср) и цезијум-137 (137Цс), од којих оба имају период полураспада око 30 година. Просечна годишња ефективна доза од падавина је око 0.05 мСв.

Радиоактивни материјал у телу

Таложење природно присутних радионуклида у људском телу је првенствено резултат удисања и гутања ових материјала у ваздуху, храни и води. Такви нуклиди укључују радиоизотопе Пб, По, Би, Ра, К (калијум), Ц, Х, У и Тх. Ових, 40К је највећи допринос. Природни радионуклиди депоновани у телу доприносе око 0.3 мСв годишњој ефективној дози.

Машински произведено зрачење

Употреба рендгенских зрака у уметности лечења је највећи извор изложености зрачењу произведеном у машинама. Милиони медицинских рендгенских система су у употреби широм света. Просечна изложеност овим медицинским рендгенским системима у великој мери зависи од приступа нези становништва. У развијеним земљама, просечна годишња ефективна доза од медицински прописаног зрачења рендгенских зрака и радиоактивног материјала за дијагностику и терапију је реда величине 1 мСв.

Рендгенски зраци су нуспроизвод већине акцелератора честица из физике високе енергије, посебно оних који убрзавају електроне и позитроне. Међутим, одговарајућа заштита и мере предострожности плус ограничена популација у опасности чине овај извор изложености зрачењу мање значајним од горе наведених извора.

Радионуклиди произведени машинама

Убрзивачи честица могу произвести велики број радионуклида у различитим количинама путем нуклеарних реакција. Убрзане честице укључују протоне, деутероне (2Х језгра), алфа честице, наелектрисани мезони, тешки јони и тако даље. Циљни материјали могу бити направљени од скоро сваког изотопа.

Акцелератори честица су практично једини извор радиоизотопа који емитују позитрон. (Нуклеарни реактори имају тенденцију да производе радиоизотопе богате неутронима који се распадају емисијом негатрона.) Такође се све више користе за производњу краткотрајних изотопа за медицинску употребу, посебно за позитронску емисиону томографију (ПЕТ).

Технолошки побољшани материјали и производи широке потрошње

Рендгенски зраци и радиоактивни материјали се појављују, жељени и нежељени, у великом броју савремених операција. Табела 3 наводи ове изворе зрачења.

Табела 3. Извори и процене повезаних ефективних доза становништва из технолошки побољшаних материјала и производа широке потрошње

Група И - Укључује велики број људи и индивидуална ефективна доза је веома
велики

Дувански производи

Запаљива горива

Домаће снабдевање водом

Стакло и керамика

Грађевински материјал

Офталмолошко стакло

Рударски и пољопривредни производи

 

Група ИИ – Укључује много људи, али ефективна доза је релативно мала или је ограничена
на мали део тела

Телевизијски пријемници

Материјали за изградњу путева и путева

Радиолуминоус производи

Превоз радиоактивних материја авионом

Системи за инспекцију аеродрома

Озрачивачи са варничним размаком и електронске цеви

Гасни и аеросолни (димни) детектори

Производи од торијума - стартери за флуоресцентне лампе
и гасне мантије

Група ИИИ - Укључује релативно мало људи и колективна ефективна доза је мала

Производи од торијума - волфрамове шипке за заваривање

 

Извор: НЦРП 1987.

 

Назад

Читати 13451 пута Последња измена у четвртак, 13. октобар 2011. у 21:30