Субота, КСНУМКС фебруар КСНУМКС КСНУМКС: КСНУМКС

Индустрија пластике

Оцените овај артикал
(КСНУМКС гласова)

Преузето из 3. издања, Енциклопедија здравља и безбедности на раду

Индустрија пластике је подељена на два главна сектора, чији се међусобни однос може видети на слици 1. Први сектор се састоји од добављача сировина који производе полимере и смеше за обликовање од међупроизвода које су можда сами произвели. Што се тиче уложеног капитала, ово је обично највећи од два сектора. Други сектор чине прерађивачи који претварају сировине у продајне артикле користећи различите процесе као што су екструзија и бризгање. Остали сектори укључују произвођаче машина који испоручују опрему прерађивачима и добављаче специјалних адитива за употребу у индустрији.

Слика 1. Производни редослед у преради пластике

ЦМП060Ф2

Полимер Мануфацтуринг

Пластични материјали спадају у две различите категорије: термопластични материјали, који се могу више пута омекшати применом топлоте и термореактивних материјала, који пролазе кроз хемијску промену када се загреју и обликују и након тога се не могу преобликовати применом топлоте. Може се направити неколико стотина појединачних полимера са веома различитим особинама, али само 20 типова чини око 90% укупне светске производње. Термопласти су највећа група и њихова производња расте брже од термореактивних. Што се тиче количине производње, најважнији термопласти су полиетилен високе и ниске густине и полипропилен (полиолефини), поливинилхлорид (ПВЦ) и полистирен.

Важне термореактивне смоле су фенол-формалдехид и уреа-формалдехид, како у облику смола, тако иу облику праха за обликовање. Значајне су и епоксидне смоле, незасићени полиестери и полиуретани. Мања количина „инжењерске пластике“, на пример, полиацетала, полиамида и поликарбоната, има велику вредност у употреби у критичним применама.

Значајну експанзију индустрије пластике у свету после Другог светског рата умногоме је олакшало проширење асортимана основних сировина које су је храниле; доступност и цена сировина су од кључне важности за сваку индустрију која се брзо развија. Традиционалне сировине нису могле да обезбеде хемијске интермедијере у довољним количинама по прихватљивој цени да би се олакшала економска комерцијална производња пластичних материјала велике тонаже, а развој петрохемијске индустрије је омогућио раст. Нафта као сировина је у изобиљу доступна, лако се транспортује и рукује и била је, до нафтне кризе 1970-их, релативно јефтина. Због тога је у свету индустрија пластике првенствено везана за употребу међупроизвода добијених крекингом нафте и природног гаса. Неконвенционалне сировине као што су биомаса и угаљ још увек нису имале велики утицај на снабдевање индустрије пластике.

Дијаграм тока на слици 2 илуструје разноврсност сировина сирове нафте и природног гаса као полазних тачака за важне термореактивне и термопластичне материјале. Након првих процеса дестилације сирове нафте, сировина нафте се или крекира или реформише како би се добили корисни међупроизводи. Тако је етилен произведен поступком крекинга од непосредне употребе за производњу полиетилена или за употребу у другом процесу који обезбеђује мономер, винил хлорид — основу ПВЦ-а. Пропилен, који такође настаје током процеса крекирања, користи се или путем кумена или путем изопропил алкохола за производњу ацетона потребног за полиметилметакрилат; такође се користи у производњи пропилен оксида за полиестарске и полиетарске смоле и поново се може директно полимеризовати у полипропилен. Бутени налазе примену у производњи пластификатора, а 1,3-бутадиен се користи директно за производњу синтетичке гуме. Ароматични угљоводоници као што су бензен, толуен и ксилен се сада широко производе из деривата дестилације нафте, уместо да се добијају процесима коксовања угља; као што дијаграм тока показује, ово су међупроизводи у производњи важних пластичних материјала и помоћних производа као што су пластификатори. Ароматични угљоводоници су такође полазна тачка за многе полимере потребне у индустрији синтетичких влакана, од којих су неки разматрани на другом месту у овом Енцицлопаедиа.

Слика 2. Производња сировина у пластику

ЦМП060Ф3

Многи различити процеси доприносе коначној производњи готовог производа направљеног у потпуности или делимично од пластике. Неки процеси су чисто хемијски, неки укључују чисто механичке поступке мешања, док други – посебно они који се налазе на доњем крају дијаграма – укључују широку употребу специјализованих машина. Неке од ових машина личе на оне које се користе у индустрији гуме, стакла, папира и текстила; остатак је специфичан за индустрију пластике.

Обрада пластике

Индустрија прераде пластике претвара расуте полимерне материјале у готове производе.

Сировине

Прерађивачки део индустрије пластике добија сировине за производњу у следећим облицима:

  • потпуно сложени полимерни материјал, у облику пелета, гранула или праха, који се директно убацује у машину за прераду
  • несложени полимер, у облику гранула или праха, који се мора мешати са адитивима пре него што је погодан за пуњење у машине
  • полимерни материјали од лимова, шипки, цеви и фолије који се даље обрађују у индустрији
  • разни материјали који могу бити потпуно полимеризоване материје у облику суспензија или емулзија (уопштено познате као латице) или течности или чврсте материје које могу да полимеризују, или супстанце у средњем стању између реактивних сировина и коначног полимера. Неки од њих су течности, а неки прави раствори делимично полимеризованих материја у води контролисане киселости (пХ) или у органским растварачима.

 

Спајање

Производња једињења од полимера подразумева мешање полимера са адитивима. Иако се у ту сврху користи велики број машина, где се ради са прахом, најчешће су куглични млинови или брзе елисне мешалице, а где се мешају пластичне масе, машине за гњечење као што су отворени ваљци или мешалице типа Банбури. , или се обично користе сами екструдери.

Број адитива који су потребни индустрији је велики број, а хемијски су у широком распону. Од око 20 часова најважнији су:

  • пластификатори - углавном естри ниске испарљивости
  • антиоксиданси—органске хемикалије за заштиту од термичког распадања током обраде
  • стабилизатори — неорганске и органске хемикалије за заштиту од термичког распадања и од деградације услед енергије зрачења
  • мазива
  • пунила — јефтина материја за давање посебних својстава или за појефтињење композиција
  • боје — неорганске или органске материје за бојење једињења
  • средства за дување — гасови или хемикалије које емитују гасове за производњу пластичне пене.

 

Процеси конверзије

Сви процеси конверзије позивају се на „пластични“ феномен полимерних материјала и деле се на два типа. Прво, оне у којима се полимер топлотом доводи у пластично стање у којем му се даје механичко сужење што доводи до облика који задржава при консолидацији и хлађењу. Друго, они у којима је материјал који се може полимеризовати – који може бити делимично полимеризован – у потпуности полимеризован дејством топлоте, или катализатора или тако што оба делују заједно док су под механичким ограничењем што доводи до облика који задржава када је потпуно полимеризован и хладан. . Технологија пластике се развила да искористи ова својства за производњу робе са минималним људским напором и највећом доследношћу физичких својстава. Следећи процеси се обично користе.

Компресијско обликовање

Ово се састоји од загревања пластичног материјала, који може бити у облику гранула или праха, у калупу који се држи у преси. Када материјал постане "пластичан", притисак га тера да се прилагоди облику калупа. Ако је пластика од врсте која се стврдне при загревању, формирани предмет се уклања након кратког периода загревања отварањем пресе. Ако се пластика не стврдне при загревању, мора се извршити хлађење пре отварања пресе. Артикли направљени компресијским пресовањем укључују чепове за флаше, затвараче за тегле, електричне утикаче и утичнице, тоалетне даске, тацне и модерну робу. Компресијско обликовање се такође користи за израду лима за накнадно формирање у процесу вакуумског обликовања или за уградњу у резервоаре и велике контејнере заваривањем или облагањем постојећих металних резервоара.

Трансфер моулдинг

Ово је модификација компресионог обликовања. Термореактивни материјал се загрева у шупљини, а затим се клипом убацује у калуп, који је физички одвојен и независно загрејан од грејне шупљине. Пожељније је од нормалног пресовања када финални производ мора да носи деликатне металне уметке као што су мали електрични разводни уређаји, или када, као код веома дебелих предмета, завршетак хемијске реакције није могао да се постигне нормалним пресовањем.

Бризгање

У овом процесу, пластичне грануле или прах се загревају у цилиндру (познатом као буре), који је одвојен од калупа. Материјал се загрева док не постане течан, док се спиралним завртњем преноси кроз цев и затим се убацује у калуп где се хлади и стврдњава. Калуп се затим механички отвара и формирани артикли се уклањају (види слику 3). Овај процес је један од најважнијих у индустрији пластике. Екстензивно је развијен и постао је способан да прави артикле значајне сложености по веома ниској цени.

Слика 3. Оператер који вади полипропиленску посуду са машине за бризгање.

ЦМП060Ф1

Иако су трансфер и бризгање у принципу идентични, машине које се користе су веома различите. Преносно ливење је обично ограничено на термореактивне материјале, а бризгање на термопластику.

Истискивање

Ово је процес у коме машина омекшава пластику и гура је кроз калуп који јој даје облик који задржава при хлађењу. Производи екструзије су цеви или шипке које могу имати попречне пресеке скоро било које конфигурације (види слику 4). На овај начин се производе цеви за индустријску или кућну употребу, али се и други производи могу производити помоћним процесима. На пример, кесице се могу направити резањем цеви и затварањем оба краја, а кесе од савитљивих цеви са танким зидовима резањем и затварањем једног краја.

Процес екструзије има два главна типа. У једном се производи раван лим. Овај лист се може претворити у корисну робу другим процесима, као што је вакуумско обликовање.

Слика 4. Екструзија пластике: Трака се исече да би се направили пелети за машине за бризгање.

ЦМП060Ф4

Раи Воодцоцк

Други је процес у коме се формира екструдирана цев и када је још врућа у великој мери се шири притиском ваздуха који се одржава унутар цеви. Ово резултира цевчицом која може бити неколико стопа у пречнику са веома танким зидом. Приликом сечења, ова цев даје филм који се у великој мери користи у индустрији амбалаже за умотавање. Алтернативно, цев се може савити равно како би се добио двослојни лист који се може користити за прављење једноставних врећа резањем и заптивање. Слика 5 даје пример одговарајуће локалне вентилације у процесу екструзије.

Слика 5. Пластична екструзија са локалним издувним поклопцем и воденим купатилом на глави екструдера

ЦМП060Ф5

Раи Воодцоцк

Каландрирање

У овом процесу, пластика се напаја у два или више загрејаних ваљака и утискује у лим проласком кроз отвор између два таква ваљка и хлађењем након тога. На овај начин се прави лим дебљи од филма. Тако направљен лим се користи у индустријској и кућној примени и као сировина у производњи одеће и надуване робе као што су играчке (види слику 6).

Слика 6. Хаубе за хватање врућих емисија из млинова за загревање у процесу каландра

ЦМП060Ф6

Раи Воодцоцк

Дување

Овај процес се може посматрати као комбинација процеса екструзије и термоформирања. Цев се екструдира надоле у ​​отворени калуп; како дође до дна, калуп се затвара око њега и цев се шири под притиском ваздуха. Тако се пластика гура на бочне стране калупа и затвара се горњи и доњи део. Приликом хлађења, производ се вади из калупа. Овај процес прави шупље артикле од којих су боце најважније.

Чврстоћа на компресију и ударна чврстоћа одређених пластичних производа направљених дувањем може се значајно побољшати употребом техника обликовања истезањем. Ово се постиже производњом предформе која се накнадно шири ваздушним притиском и растеже биаксијално. Ово је довело до таквог побољшања јачине притиска на пуцање ПВЦ боца да се користе за газирана пића.

Ротационо обликовање

Овај процес се користи за производњу обликованих предмета загревањем и хлађењем шупље форме која се ротира како би се омогућила гравитација да распореди фино подељен прах или течност по унутрашњој површини тог облика. Артикли произведени овом методом укључују фудбалске лопте, лутке и друге сличне артикле.

Филм цастинг

Осим процеса екструзије, филмови се могу формирати екструдирањем врућег полимера на високо полирани метални бубањ, или се раствор полимера може распршити на покретну траку.

Важна примена одређених пластичних маса је премазивање папира. При томе се филм од растопљене пластике екструдира на папир под условима у којима се пластика пријања за папир. Плоча се може премазати на исти начин. Тако обложени папир и картон се широко користе у амбалажи, а ова врста картона се користи у изради кутија.

Термоформирање

Под овим насловом су груписани бројни процеси у којима се плоча од пластичног материјала, најчешће термопластичног, загрева, углавном у пећи, и након стезања на периметру се присиљава да добије унапред дизајнирани облик притиском који може бити од механички управљани овнови или компримованим ваздухом или паром. За веома велике артикле, „гумени“ врући лист се рукује клештима преко калупа. Тако направљени производи укључују спољна светла, рекламне и путне знакове, каде и другу тоалетну опрему и контактна сочива.

Вакуумско формирање

Постоји много процеса који спадају под овај општи наслов, а сви су аспекти термичког обликовања, али свима им је заједничко да се лист пластике загрева у машини изнад шупљине, око чије ивице је стегнут, и када је савитљив, гура се усисавањем у шупљину, где поприма одређени облик и хлади се. У следећој операцији, артикал се одсече од листа. Овим процесима се производе веома јефтине посуде са танким зидовима свих врста, као и излагачка и рекламна роба, тацни и слични артикли, као и материјали који амортизују ударце за паковање робе као што су фенси колачи, меко воће и резано месо.

Ламинирање

У свим различитим процесима ламинирања, два или више материјала у облику листова се компримују како би се добио консолидовани лист или панел посебних својстава. У једном екстрему налазе се декоративни ламинати направљени од фенолних и амино смола, а на другим сложеним фолијама које се користе за паковање које имају, на пример, целулозу, полиетилен и металну фолију у свом саставу.

Процеси технологије смоле

То укључује производњу шперплоче, производњу намештаја и израду великих и сложених предмета као што су каросерије аутомобила и трупови чамаца од стаклених влакана импрегнираних полиестерским или епоксидним смолама. У свим овим процесима, течна смола се консолидује под дејством топлоте или катализатора и тако везује дискретне честице или влакна или механички слабе филмове или листове, што резултира чврстим панелом круте конструкције. Ове смоле се могу наносити техникама ручног полагања, као што су четкање и потапање или прскањем.

Мали предмети као што су сувенири и пластични накит такође се могу направити ливењем, где се течна смола и катализатор мешају заједно и сипају у калуп.

Завршни процеси

Под овим насловом укључени су бројни процеси заједнички за многе индустрије, на пример употреба боја и лепкова. Међутим, постоји низ специфичних техника које се користе за заваривање пластике. То укључује употребу растварача као што су хлоровани угљоводоници, метил етил кетон (МЕК) и толуен, који се користе за спајање чврстих пластичних плоча за општу производњу, рекламне изложбене штандове и сличне радове. Радиофреквентно (РФ) зрачење користи комбинацију механичког притиска и електромагнетног зрачења са фреквенцијама углавном у опсегу од 10 до 100 мХз. Ова метода се обично користи за заваривање флексибилног пластичног материјала у производњи новчаника, актовки и дечијих гурачких столица (погледајте пратећу кутију). Ултразвучне енергије се такође користе у комбинацији са механичким притиском за сличан опсег рада.

 


РФ диелектрични грејачи и заптивачи

Радиофреквентни (РФ) грејачи и заптивачи се користе у многим индустријама за загревање, топљење или очвршћавање диелектричних материјала, као што су пластика, гума и лепак који су електрични и топлотни изолатори и који се тешко загревају уобичајеним методама. РФ грејачи се обично користе за заптивање поливинилхлорида (нпр. производња пластичних производа као што су кабанице, пресвлаке за седишта и материјали за паковање); очвршћавање лепкова који се користе у обради дрвета; утискивање и сушење текстила, папира, коже и пластике; и очвршћавање многих материјала који садрже пластичне смоле.

РФ грејачи користе РФ зрачење у фреквенцијском опсегу од 10 до 100МХз са излазном снагом од испод 1кВ до око 100кВ за производњу топлоте. Материјал који се загрева поставља се између две електроде под притиском, а РФ снага се примењује у периоду од неколико секунди до отприлике једног минута, у зависности од употребе. РФ грејачи могу произвести високо залутала РФ електрична и магнетна поља у околном окружењу, посебно ако су електроде незаштићене.

Апсорпција РФ енергије од стране људског тела може изазвати локализовано и загревање целог тела, што може имати штетне последице по здравље. Температура тела може порасти за 1 °Ц или више, што може изазвати кардиоваскуларне ефекте као што су повећан број откуцаја срца и минутни волумен. Локализовани ефекти укључују очну катаракту, смањен број сперматозоида у мушком репродуктивном систему и тератогене ефекте на фетус у развоју.

Индиректне опасности укључују РФ опекотине од директног контакта са металним деловима грејача који су болни, дубоко смештени и споро зарастају; утрнулост руку; и неуролошки ефекти, укључујући синдром карпалног тунела и ефекте на периферни нервни систем.

Контроле

Две основне врсте контрола које се могу користити за смањење опасности од РФ грејача су радна пракса и заштита. Заштита је, наравно, пожељна, али правилне процедуре одржавања и друге радне праксе такође могу смањити изложеност. Ограничавање времена изложености оператера, такође је коришћена административна контрола.

Правилно одржавање или процедуре поправке су важне јер неуспех да се правилно поново инсталирају штитници, блокаде, панели ормара и причвршћивачи могу довести до прекомерног РФ цурења. Поред тога, електрична енергија за грејач треба да буде искључена и закључана или означена како би се заштитило особље за одржавање.

Нивои изложености руковаоца могу се смањити тако што ће руке и горњи део тела руковаоца држати што даље од РФ грејача. Контролни панели оператера за неке аутоматизоване грејаче су постављени на удаљености од електрода грејача коришћењем шатла, окретних столова или транспортних трака за напајање грејача.

Изложеност и оперативног и неоперативног особља може се смањити мерењем РФ нивоа. Пошто нивои РФ опадају са повећањем удаљености од грејача, око сваког грејача се може идентификовати „област опасности од РФ”. Радници могу бити упозорени да не заузимају ова опасна подручја када ради РФ грејач. Где је могуће, треба користити непроводне физичке баријере како би се људи држали на безбедној удаљености.

У идеалном случају, РФ грејачи би требало да имају кутију око РФ апликатора да задржи РФ зрачење. Штит и сви спојеви треба да имају високу проводљивост за унутрашње електричне струје које ће тећи у зидовима. У штиту треба да буде што мање отвора и да буду што мањи колико је то практично за рад. Отвори треба да буду усмерени даље од оператера. Струје у штиту се могу минимизирати тако што ће унутар ормарића бити одвојени проводници за вођење великих струја. Грејач треба да буде правилно уземљен, са жицом за уземљење у истој цеви као и далековод. Грејач треба да има одговарајуће блокаде како би се спречило излагање високим напонима и високим РФ емисијама.

Много је лакше уградити ову заштиту у нове дизајне РФ грејача произвођача. Надоградња је тежа. Кутије за кутије могу бити ефикасне. Правилно уземљење такође често може бити ефикасно у смањењу РФ емисије. РФ мерења морају бити пажљиво предузета након тога како би се осигурало да су РФ емисије заиста смањене. Пракса затварања грејача у просторију обложену металним екраном може заправо повећати изложеност ако је оператер такође у тој просторији, иако смањује изложеност ван просторије.

Извор: ИЦНИРП у штампи.


 

Опасности и њихова превенција

Производња полимера

Посебне опасности у индустрији полимера уско су повезане са онима у петрохемијској индустрији и у великој мери зависе од супстанци које се користе. Опасности по здравље појединачних сировина налазе се негде другде у овоме Енцицлопаедиа. Опасност од пожара и експлозије је важна општа опасност. Многи процеси полимера/смоле имају ризик од пожара и експлозије због природе примарних сировина које се користе. Ако се не предузму адекватне мере заштите, понекад постоји ризик да током реакције, углавном унутар делимично затворених зграда, запаљиви гасови или течности излазе на температурама изнад тачака паљења. Ако су притисци веома високи, потребно је обезбедити адекватно испуштање ваздуха у атмосферу. Може доћи до прекомерног повећања притиска услед неочекивано брзих егзотермних реакција, а руковање неким адитивима и припрема неких катализатора може повећати ризик од експлозије или пожара. Индустрија се позабавила овим проблемима, а посебно за производњу фенолних смола је произвела детаљна упутства о пројектовању постројења и безбедним радним процедурама.

Обрада пластике

Индустрија прераде пластике има опасности од повреда због машина које се користе, опасности од пожара због запаљивости пластике и њихових прахова и опасности по здравље због многих хемикалија које се користе у индустрији.

Повреде

Највећа област за повреде је у сектору прераде пластике у индустрији пластике. Већина процеса конверзије пластике скоро у потпуности зависи од употребе машина. Као резултат тога, главне опасности су оне повезане са употребом такве машинерије, не само током нормалног рада већ и током чишћења, подешавања и одржавања машина.

Машине за компресију, трансфер, бризгање и обликовање дувањем имају плоче за пресовање са силом закључавања од више тона по квадратном центиметру. Треба поставити одговарајућу заштиту како би се спречиле повреде од ампутације или пригњечења. Ово се генерално постиже затварањем опасних делова и спајањем свих покретних штитника са командама машине. Заштитник који се блокира не би требало да дозволи опасно кретање унутар заштићеног подручја са отвореним штитником и требало би да омести опасне делове или да преокрене опасно кретање ако је штитник отворен током рада машине.

Тамо где постоји озбиљан ризик од повреда на машинама, као што су плоче машина за калуповање, и редован приступ опасном подручју, онда је потребан виши стандард међусобног блокирања. Ово се може постићи помоћу другог независног склопа за закључавање на штитнику како би се прекинуло напајање и спречило опасно кретање када је отворено.

За процесе који укључују пластичну плочу, уобичајена опасност од машина је замке у раду између ваљака или између ваљака и лима који се обрађује. Ово се дешава на затезним ваљцима и уређајима за извлачење у постројењу за екструзију и каландрима. Заштита се може постићи коришћењем одговарајуће лоцираног уређаја за окидање, који моментално зауставља ваљке или преокреће опасно кретање.

Многе машине за прераду пластике раде на високим температурама и могу се задобити тешке опекотине ако делови тела дођу у контакт са врелим металом или пластиком. Тамо где је практично, такве делове треба заштитити када температура пређе 50 ºЦ. Поред тога, блокаде које се јављају на машинама за бризгање и екструдерима могу се насилно ослободити. Приликом покушаја ослобађања замрзнутих пластичних чепова треба се придржавати безбедног система рада, који треба да укључује употребу одговарајућих рукавица и заштите за лице.

Већина савремених функција машине се сада контролише програмираном електронском контролом или компјутерским системима који такође могу да контролишу механичке уређаје за полетање или су повезани са роботима. На новим машинама постоји мања потреба да се руковалац приближи опасним подручјима и из тога следи да би безбедност на машинама требало да се побољша. Међутим, постоји већа потреба за постављачима и инжењерима да приступе овим деловима. Због тога је од суштинске важности да се успостави адекватан програм закључавања/означавања пре него што се ова врста радова изведе, посебно када се не може постићи потпуна заштита сигурносним уређајима машине. Поред тога, адекватни резервни системи или системи за хитне случајеве треба да буду тако дизајнирани и осмишљени да се носе са ситуацијама када програмирана контрола откаже из било ког разлога, на пример, током губитка напајања.

Важно је да машине буду правилно распоређене у радионици са добрим чистим радним просторима за сваку. Ово помаже у одржавању високих стандарда чистоће и уредности. Саме машине такође треба да се правилно одржавају, а сигурносне уређаје треба редовно проверавати.

Добро одржавање је од суштинског значаја и посебну пажњу треба посветити одржавању чистоће подова. Без редовног чишћења, подови ће постати јако контаминирани од машинског уља или просутих пластичних гранула. Методе рада укључујући безбедна средства за приступ просторима изнад нивоа пода такође треба размотрити и обезбедити.

Такође треба омогућити одговарајући размак за складиштење сировина и готових производа; ове области треба да буду јасно означене.

Пластика је добар електрични изолатор и због тога се статички набоји могу накупити на машинама по којима се креће плоча или филм. Ова пуњења могу имати довољно висок потенцијал да изазову озбиљну несрећу или да делују као извори паљења. Треба користити елиминаторе статичког електрицитета за смањење ових наелектрисања и металне делове правилно уземљене или уземљене.

Отпадни пластични материјал се све више прерађује помоћу гранулатора и мешања са новим материјалом. Гранулатори треба да буду потпуно затворени како би се спречила свака могућност да дођу до ротора кроз отворе за пражњење и довод. Дизајн отвора за довод на великим машинама треба да буде такав да спречи улазак целог тела. Ротори раде великом брзином и поклопце не треба скидати док се не зауставе. Тамо где су уграђени штитници за блокирање, они треба да спрече контакт са сечивима док се потпуно не зауставе.

Опасности од пожара и експлозије

Пластика је запаљив материјал, иако сви полимери не подржавају сагоревање. У фино уситњеном облику праха, многи могу формирати експлозивне концентрације у ваздуху. Тамо где је ово ризик, прашкове треба контролисати, по могућству у затвореном систему, са довољним рељефним панелима који се одводе под ниским притиском (око 0.05 бара) на безбедно место. Пажљива чистоћа је неопходна да би се спречиле акумулације у радним просторијама које би могле да дођу у ваздух и да изазову секундарну експлозију.

Полимери могу бити подложни термичкој деградацији и пиролизи на температурама које нису много изнад нормалних температура обраде. Под овим околностима, у бурету екструдера се може створити довољан притисак, на пример, да се избаци растопљена пластика и било који чврсти пластични чеп који изазива почетну блокаду.

Запаљиве течности се обично користе у овој индустрији, на пример, као боје, лепкови, средства за чишћење и заваривање растварачем. Смоле од стаклених влакана (полиестер) такође развијају запаљиве паре стирена. Залихе таквих течности треба свести на минимум у радној просторији и чувати на безбедном месту када се не користе. Простори за складиштење треба да обухватају безбедна места на отвореном или складиште отпорно на ватру.

Пероксиде који се користе у производњи пластике ојачане стаклом (ГРП) треба чувати одвојено од запаљивих течности и других запаљивих материјала и не излагати екстремним температурама јер су експлозивни када се загреју.

Опасности по здравље

Постоји низ потенцијалних опасности по здравље повезаних са прерадом пластике. Сирова пластика се ретко користи сама и треба предузети одговарајуће мере предострожности у вези са адитивима који се користе у различитим формулацијама. Кориштени адитиви укључују оловне сапуне у ПВЦ-у и одређене органске и кадмијумске боје.

Постоји значајан ризик од дерматитиса од течности и праха обично од „реактивних хемикалија” као што су фенол формалдехидне смоле (пре умрежавања), уретани и незасићене полиестерске смоле које се користе у производњи ГРП производа. Треба носити одговарајућу заштитну одећу.

Могуће је да се паре стварају термичком деградацијом полимера током вруће обраде. Инжењерске контроле могу минимизирати проблем. Међутим, посебна пажња се мора посветити избегавању удисања производа пиролизе у неповољним условима, на пример, пражњење цеви екструдера. Услови доброг ЛЕВ-а могу бити неопходни. Проблеми су се јавили, на пример, где су оператери били савладани гасом хлороводоничне киселине и патили од „грознице полимерних пара“ након прегревања ПВЦ-а и политетрафлуоретилена (ПТФЕ), респективно. У пратећој кутији су дати детаљи о неким производима хемијског распадања пластике.


 

Табела 1. Испарљиви производи распадања пластике (референтне компоненте)*

*Прештампано из БИА 1997, уз дозволу.

У многим индустријским секторима, пластика је подложна топлотном напрезању. Температуре се крећу од релативно ниских вредности у преради пластике (нпр. 150 до 250 ºЦ) до екстремних случајева, на пример, где се заварују фарбани лим или пластифициране цеви). Питање које се стално поставља у оваквим случајевима је да ли се у радним просторима јављају токсичне концентрације испарљивих продуката пиролизе.

Да би се одговорило на ово питање, прво треба утврдити испуштене супстанце, а затим измерити концентрације. Док је други корак у принципу изводљив, обично није могуће одредити релевантне производе пиролизе на терену. Беруфсгеноссенсцхафтлицхес Институт фур Арбеитссицхерхеит (БИА) је стога годинама испитивао овај проблем и током многих лабораторијских испитивања утврдио је испарљиве производе распадања пластике. Објављени су резултати испитивања за поједине врсте пластике (Лицхтенстеин и Куеллмалз 1984, 1986а, 1986б, 1986ц).

Следи кратак резиме досадашњих резултата. Ова табела је намењена као помоћ свима онима који се суочавају са задатком мерења концентрација опасних материја у релевантним радним областима. Производи разградње наведени за појединачне пластике могу послужити као „референтне компоненте“. Међутим, треба имати на уму да пиролиза може довести до веома сложених смеша супстанци, чији састав зависи од многих фактора.

Табела стога не тврди да је потпуна када су у питању производи пиролизе који су наведени као референтне компоненте (све су одређене у лабораторијским експериментима). Не може се искључити појава других супстанци са потенцијалним здравственим ризицима. Практично је немогуће у потпуности снимити све супстанце које се јављају.

пластика

Скраћеница

Испарљиве супстанце

Полиоксиметилен

ПОМ

Формалдехид

Епоксидне смоле на бази
бисфенол А.

 

Фенол

Хлоропренска гума

CR

хлоропрен (2-хлоробута-1,3-диен),
хлороводоник

Полистирен

PS

Стирене

Акрилонитрил бутадиен стирен-
кополимер

АБС

Стирен, 1,3-бутадиен, акрилонитрил

Стирен-акрилонитрилни кополимер

САН

Акрилонитрил, стирен

Поликарбонати

PC

Фенол

Поливинил хлорид

ПВЦ

Хлороводоник, пластификатори
(често естри фталне киселине, нпр
као диоктил фталат, дибутил фталат)

Полиамид 6

ПА 6

е-капролактам

Полиамид 66

ПА 66

циклопентанон,
хексаметилендиамин

полиетилен

ХДПЕ, ЛДПЕ

Незасићени алифатични угљоводоници,
алифатски алдехиди

Политетрафлуороетилен

ПТФЕ

Перфлуорисане незасићене
угљоводоници (нпр. тетрафлуороетилен,
хексафлуоропропен, октафлуоробутен)

Полиметил метакрилат

ПММА

Метил метакрилат

полиуретан

ПУР

У зависности од врсте, веома варира
производи распадања
(нпр. ЦФЦ1 као средства за пењење,
етар и гликол етар,
диизоцијанати, цијановодоник,
2 ароматични амини, хлорисани
естри фосфорне киселине као пламен
заштитни агенси)

Полипропилен

PP

Незасићени и засићени алифатични
угљоводоници

Полибутил ентерефталат
(полиестер)

ПБТП

1,3-бутадиен, бензен

Полиацрилонитриле

ПАН

Акрилонитрил, цијанид водоник2

Целулоза ацетат

CA

Сирћетна киселина

Норберт Лихтенштајн

1 Употреба се прекида.
2 Није било могуће открити коришћеном аналитичком техником (ГЦ/МС), али је познато из литературе.

 


 

Постоји и опасност од удисања токсичних пара из одређених термореактивних смола. Удисање изоцијаната који се користе са полиуретанским смолама може довести до хемијске упале плућа и тешке астме и, након сензибилизације, особе треба превести на алтернативни посао. Сличан проблем постоји и са формалдехидним смолама. У оба ова примера неопходан је висок стандард ЛЕВ. У производњи ГРП производа издвајају се значајне количине паре стирена и овај посао се мора обављати у условима добре опште вентилације у радној просторији.

Постоје и одређене опасности које су заједничке за бројне индустрије. Ово укључује употребу растварача за разблаживање или у претходно поменуте сврхе. Хлоровани угљоводоници се обично користе за чишћење и везивање и без адекватне издувне вентилације људи могу патити од наркозе.

Одлагање отпада од пластике спаљивањем треба да се врши под пажљиво контролисаним условима; на пример, ПТФЕ и уретани треба да буду у области где се испарења одводе на безбедно место.

Веома високи нивои буке се генерално добијају током употребе гранулатора, што може довести до губитка слуха код оператера и особа које раде у близини. Ова опасност се може ограничити одвајањем ове опреме од других радних подручја. Пожељно је да ниво буке буде смањен на извору. Ово је успешно постигнуто премазивањем гранулатора материјалом за пригушивање звука и постављањем преграда на отвору за довод. Такође може постојати опасност по слух који ствара звучни звук који производи ултразвучне машине за заваривање као нормална пратња ултразвучне енергије. Одговарајућа кућишта могу бити дизајнирана да смање нивое примљене буке и могу бити међусобно закључана како би се спречила механичка опасност. Као минимални стандард, особе које раде у областима високог нивоа буке треба да носе одговарајућу заштиту за слух и да постоји одговарајући програм за очување слуха, укључујући аудиометријско тестирање и обуку.

Опекотине такође представљају опасност. Неки адитиви и катализатори за производњу и прераду пластике могу бити веома реактивни у контакту са ваздухом и водом и могу лако изазвати хемијске опекотине. Где год се рукује или транспортује растопљени термопласт, постоји опасност од прскања врућег материјала и последичних опекотина и опекотина. Озбиљност ових опекотина може бити повећана тенденцијом врућих термопласта, попут врућег воска, да приањају на кожу.

Органски пероксиди су иританти и могу изазвати слепило ако се попрскају у око. Треба носити одговарајућу заштиту за очи.

 

Назад

Читати 47270 пута Последња измена у среду, 19. октобра 2011. 20:00

" ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

Садржај

Референце за хемијску обраду

Адамс, ВВ, РР Дингман и ЈЦ Паркер. 1995. Технологија двоструког гасног заптивања за пумпе. Зборник радова 12. Међународни симпозијум корисника пумпи. марта, Цоллеге Статион, ТКС.

Амерички институт за нафту (АПИ). 1994. Системи заптивки вратила за центрифугалне пумпе. АПИ стандард 682. Вашингтон, ДЦ: АПИ.

Аугер, ЈЕ. 1995. Изградите прави ПСМ програм од темеља. Цхемицал Енгинееринг Прогресс 91:47-53.

Бахнер, М. 1996. Алати за мерење нивоа држе садржај резервоара тамо где му је место. Енвиронментал Енгинееринг Ворлд 2:27-31.

Балзер, К. 1994. Стратегије развоја програма биолошке безбедности у биотехнолошким објектима. Представљен на 3. националном симпозијуму о биолошкој безбедности, 1. марта, Атланта, Џорџија.

Барлетта, Т, Р Баиле и К Кеннеллеи. 1995. ТАПС дно резервоара за складиштење: Опремљен побољшаним прикључком. Оил & Гас Јоурнал 93:89-94.

Барткнецхт, В. 1989. Дуст Екплосионс. Њујорк: Спрингер-Верлаг.

Баста, Н. 1994. Технологија подиже облак ВОЦ. Хемијско инжењерство 101:43-48.

Бенет, АМ. 1990. Здравствени хазарди у биотехнологији. Салисбури, Вилтсхире, УК: Одсек за биологију, Лабораторијска служба за јавно здравље, Центар за примењену микробиологију и истраживање.

Беруфсгеноссенсцхафтлицес Институт фур Арбеитссицхерхеит (БИА). 1997. Меасуремент оф Хазардоус Субстанцес: Детерминатион оф Екпосуре то Цхемицал анд Биологицал Агентс. Радни фолдер БИА. Билефелд: Ерицх Сцхмидт Верлаг.

Бевангер, ПЦ и РА Крецтер. 1995. Учинити безбедносне податке „безбедним”. Хемијско инжењерство 102:62-66.

Боицоурт, ГВ. 1995. Пројектовање система хитне помоћи (ЕРС): Интегрисани приступ коришћењем ДИЕРС методологије. Процесс Сафети Прогресс 14:93-106.

Царролл, ЛА и ЕН Рудди. 1993. Изаберите најбољу стратегију контроле ВОЦ. Цхемицал Енгинееринг Прогресс 89:28-35.

Центар за безбедност хемијских процеса (ЦЦПС). 1988. Смернице за безбедно складиштење и руковање високо токсичним опасним материјалима. Њујорк: Амерички институт хемијских инжењера.

—. 1993. Смернице за инжењерско пројектовање за безбедност процеса. Њујорк: Амерички институт хемијских инжењера.
Цесана, Ц и Р Сивек. 1995. Понашање прашине при паљењу значење и тумачење. Напредак у безбедности процеса 14:107-119.

Хемијске и инжењерске вести. 1996. Чињенице и бројке за хемијску индустрију. Ц&ЕН (24. јун): 38-79.

Удружење произвођача хемикалија (ЦМА). 1985. Управљање безбедношћу процеса (Контрола акутних опасности). Вашингтон, ДЦ: ЦМА.

Одбор за рекомбинантне ДНК молекуле, Скупштина наука о животу, Национални истраживачки савет, Национална академија наука. 1974. Писмо уреднику. Сциенце 185:303.

Савет европских заједница. 1990а. Директива Савета од 26. новембра 1990. о заштити радника од ризика у вези са изложеношћу биолошким агенсима на раду. 90/679/ЕЕЦ. Службени лист Европских заједница 50(374):1-12.

—. 1990б. Директива Савета од 23. априла 1990. о намерном пуштању у животну средину генетски модификованих организама. 90/220/ЕЕЦ. Службени лист Европских заједница 50(117): 15-27.

Дов Цхемицал Цомпани. 1994а. Дов-ов водич за класификацију опасности од пожара и експлозија, 7. издање. Њујорк: Амерички институт хемијских инжењера.

—. 1994б. Дов-ов водич за индекс изложености хемикалијама. Њујорк: Амерички институт хемијских инжењера.

Ебадат, В. 1994. Тестирање за процену опасности од пожара и експлозије вашег барута. Повдер анд Булк Енгинееринг 14:19-26.
Агенција за заштиту животне средине (ЕПА). 1996. Предлог смерница за процену еколошког ризика. Савезни регистар 61.

Фоне, ЦЈ. 1995. Примена иновација и технологије за задржавање заптивки вратила. Представљен на Првој европској конференцији о контроли фугитивних емисија из вентила, пумпи и прирубница, 18-19. октобра, Антверпен.

Фоудин, АС и Ц Гаи. 1995. Уношење генетски модификованих микроорганизама у животну средину: Преглед под УСДА, АПХИС регулаторно тело. Ин Енгинееред Органисмс ин Енвиронментал Сеттингс: Биотецхнологицал анд Агрицултурал Апплицатионс, уредник МА Левин и Е Исраели. Боца Ратон, ФЛ:ЦРЦ Пресс.

Фреифелдер, Д (ур.). 1978. Полемика. У рекомбинантној ДНК. Сан Франциско, Калифорнија: ВХ Фрееман.

Гарзиа, ХВ и ЈА Сенецал. 1996. Заштита од експлозије цевних система који преносе запаљиву прашину или запаљиве гасове. Представљен на 30. симпозијуму о превенцији губитка, 27. фебруара, Њу Орлеанс, ЛА.

Греен, ДВ, ЈО Малонеи и РХ Перри (ур.). 1984. Перри'с Цхемицал Енгинеер'с Хандбоок, 6. издање. Њујорк: МцГрав-Хилл.

Хаген, Т и Р Риалс. 1994. Метода детекције цурења обезбеђује интегритет резервоара са двоструким дном. Оил & Гас Јоурнал (14. новембар).

Хо, МВ. 1996. Да ли су тренутне трансгене технологије безбедне? Представљен на Радионици о изградњи капацитета у биолошкој безбедности за земље у развоју, 22-23. маја, Стокхолм.

Удружење за индустријску биотехнологију. 1990. Биотехнологија у перспективи. Кембриџ, УК: Хобсонс Публисхинг плц.

Осигуравачи индустријског ризика (ИРИ). 1991. Распоред постројења и размаци за нафтна и хемијска постројења. ИРИ Информациони приручник 2.5.2. Хартфорд, ЦТ: ИРИ.

Међународна комисија за заштиту од нејонизујућег зрачења (ИЦНИРП). У штампи. Практични водич за безбедност при коришћењу РФ диелектричних грејача и заптивача. Женева: МОР.

Лее, СБ и ЛП Риан. 1996. Здравље и безбедност на раду у биотехнолошкој индустрији: Анкета професионалаца у пракси. Ам Инд Хиг Ассоц Ј 57:381-386.

Легаспи, ЈА и Ц Зенз. 1994. Здравствени аспекти пестицида: клинички и хигијенски принципи. У Оццупатионал Медицине, 3. издање, уредили Ц Зенз, ОБ Дицкерсон и ЕП Хорватх. Ст. Лоуис: Мосби-Иеар Боок, Инц.

Липтон, С и ЈР Линцх. 1994. Приручник за контролу опасности по здравље у хемијској процесној индустрији. Њујорк: Џон Вили и синови.

Либерман, ДФ, АМ Дуцатман и Р Финк. 1990. Биотехнологија: Постоји ли улога медицинског надзора? У Безбедност биопроцесирања: Разматрања безбедности и здравља радника и заједнице. Филаделфија, Пенсилванија: Америчко друштво за испитивање и материјале.

Либерман, ДФ, Л Волфе, Р Финк и Е Гилман. 1996. Разматрања биолошке безбедности за ослобађање трансгених организама и биљака у животну средину. Ин Енгинееред Органисмс ин Енвиронментал Сеттингс: Биотецхнологицал анд Агрицултурал Апплицатионс, уредник МА Левин и Е Исраели. Боца Ратон, ФЛ: ЦРЦ Пресс.

Лицхтенстеин, Н анд К Куеллмалз. 1984. Флуцхтиге Зерсетзунгспродукте вон Кунстстоффен И: АБС-Полимере. Стауб-Реинхалт 44(1):472-474.

—. 1986а. Флуцхтиге Зерсетзунгспродукте вон Кунстстоффен ИИ: Полиетилен. Стауб-Реинхалт 46(1):11-13.

—. 1986б. Флуцхтиге Зерсетзунгспродукте вон Кунстстоффен ИИИ: Полиамид. Стауб-Реинхалт 46(1):197-198.

—. 1986ц. Флуцхтиге Зерсетзунгспродукте вон Кунстстоффен ИВ: Поликарбонат. Стауб-Реинхалт 46(7/8):348-350.

Одбор за односе са заједницом Савета за биотехнологију Масачусетса. 1993. Необјављена статистика.

Мекленбург, ЈЦ. 1985. Изглед процесног постројења. Њујорк: Џон Вили и синови.

Миллер, Х. 1983. Извештај о радној групи Светске здравствене организације о здравственим импликацијама биотехнологије. Рекомбинантна ДНК Тецхницал Буллетин 6:65-66.

Миллер, ХИ, МА Тарт и ТС Боззо. 1994. Производња нових биотехнолошких производа: Добици и болови у расту. Ј Цхем Тецхнол Биотецхнол 59:3-7.

Моретти, ЕЦ и Н Мукхопадхиаи. 1993. ВОЦ контрола: Тренутна пракса и будући трендови. Цхемицал Енгинееринг Прогресс 89:20-26.

Косач, ДС. 1995. Користите квантитативну анализу за управљање ризиком од пожара. Прерада угљоводоника 74:52-56.

Мурпхи, МР. 1994. Припремите се за правило програма управљања ризиком ЕПА. Цхемицал Енгинееринг Прогресс 90:77-82.

Национално удружење за заштиту од пожара (НФПА). 1990. Запаљива и запаљива течност. НФПА 30. Куинци, МА: НФПА.

Национални институт за безбедност и здравље на раду (НИОСХ). 1984. Препоруке за контролу безбедности и здравља на раду. Производња боја и сродних премазних производа. ДХСС (НИОСХ) Публикација бр. 84-115. Синсинати, ОХ: НИОСХ.

Национални институт за здравље (Јапан). 1996. Лична комуникација.

Национални институти за здравље (НИХ). 1976. Истраживање рекомбинантне ДНК. Федерални регистар 41:27902-27905.

—. 1991. Акције истраживања рекомбинантне ДНК према смерницама. Савезни регистар 56:138.

—. 1996. Смернице за истраживања која укључују рекомбинантне ДНК молекуле. Савезни регистар 61:10004.

Нетзел, ЈП. 1996. Технологија заптивки: Контрола индустријског загађења. Представљен на 45. годишњим састанцима Друштва триболога и инжењера подмазивања. 7-10 мај, Денвер.

Нордлее, ЈА, СЛ Таилор, ЈА Товнсенд, ЛА Тхомас и РК Бусх. 1996. Идентификација алергена бразилског ораха у трансгеној соји. Нев Енгл Ј Мед 334 (11): 688-692.

Управа за безбедност и здравље на раду (ОСХА). 1984. 50 ФР 14468. Васхингтон, ДЦ: ОСХА.

—. 1994. ЦФР 1910.06. Вашингтон, ДЦ: ОСХА.

Канцеларија за политику науке и технологије (ОСТП). 1986. Координирани оквир за биотехнолошку регулативу. ФР 23303. Васхингтон, ДЦ: ОСТП.

Опенсхав, ПЈ, ВХ Алван, АХ Цхеррие и ФМ Рецорд. 1991. Случајна инфекција лабораторијског радника рекомбинантним вирусом вакциније. Ланцет 338. (8764):459.

Парламента Европских заједница. 1987. Уговор о успостављању Јединственог савета и Јединствене комисије Европских заједница. Службени лист Европских заједница 50(152):2.

Пеннингтон, РЛ. 1996. Операције контроле ВОЦ и ХАП. Часопис Сепаратионс анд Филтратион Системс 2:18-24.

Пратт, Д и Ј Маи. 1994. Пољопривредна медицина рада. У Оццупатионал Медицине, 3. издање, уредили Ц Зенз, ОБ Дицкерсон и ЕП Хорватх. Ст. Лоуис: Мосби-Иеар Боок, Инц.

Реутсцх, ЦЈ и ТР Бродерицк. 1996. Ново биотехнолошко законодавство у Европској заједници и Савезној Републици Немачкој. Биотехнологија.

Саттелле, Д. 1991. Биотехнологија у перспективи. Ланцет 338:9,28.

Сцхефф, ПА и РА Вадден. 1987. Инжењерски пројекат за контролу опасности на радном месту. Њујорк: МцГрав-Хилл.

Сиегелл, ЈХ. 1996. Истраживање опција контроле ВОЦ. Хемијско инжењерство 103:92-96.

Друштво триболога и инжењера за подмазивање (СТЛЕ). 1994. Смернице за испуњавање прописа о емисији за ротационе машине са механичким заптивкама. СТЛЕ Специјална публикација СП-30. Парк Риџ, ИЛ: СТЛЕ.

Суттон, ИС. 1995. Интегрисани системи управљања побољшавају поузданост постројења. Прерада угљоводоника 74:63-66.

Швајцарски интердисциплинарни комитет за биолошку безбедност у истраживању и технологији (СЦБС). 1995. Смернице за рад са генетски модификованим организмима. Цирих: СЦБС.

Тхомас, ЈА и ЛА Миерс (ур.). 1993. Биотехнологија и процена безбедности. Њујорк: Равен Пресс.

Ван Хоутен, Ј и ДО Флемминг. 1993. Компаративна анализа актуелних прописа САД и ЕЗ о биолошкој безбедности и њиховог утицаја на индустрију. Јоурнал оф Индустриал Мицробиологи 11:209-215.

Ватруд, ЛС, СГ Метз и ДА Фисхофф. 1996. Пројектована постројења у окружењу. Ин Енгинееред Органисмс ин Енвиронментал Сеттингс: Биотецхнологицал анд Агрицултурал Апплицатионс, едитед би М Левин анд Е Исраели. Боца Ратон, ФЛ: ЦРЦ Пресс.

Воодс, ДР. 1995. Пројектовање процеса и инжењерска пракса. Енглевоод Цлиффс, Њ: Прентице Халл.