Среда, март КСНУМКС КСНУМКС КСНУМКС: КСНУМКС

Производња оловних батерија

Оцените овај артикал
(КСНУМКС гласова)

Први практични дизајн оловне батерије развио је Гастон Планте 1860. године, а производња је од тада наставила да расте. Аутомобилске батерије представљају главну употребу оловно-киселинске технологије, а следе индустријске батерије (станд-би снага и вуча). Више од половине светске производње олова одлази на батерије.

Ниска цена и лакоћа производње оловно-киселинских батерија у односу на друге електрохемијске парове требало би да обезбеде сталну потражњу за овим системом у будућности.

Оловно-киселинска батерија има позитивну електроду од оловног пероксида (ПбО2) и негативна електрода спужвастог олова велике површине (Пб). Електролит је раствор сумпорне киселине са специфичном тежином у опсегу од 1.21 до 1.30 (28 до 39% по тежини). Приликом пражњења, обе електроде се претварају у оловни сулфат, као што је приказано у наставку:

Производни процес

Процес производње, који је приказан у дијаграму тока процеса (слика 1), описан је у наставку:

Слика 1. Процес производње оловних батерија

ЕЛА020Ф1

Производња оксида: Оловни оксид се производи од свиња олова (масе олова из пећи за топљење) једном од две методе — Бартон пот или процес млевења. У Бартон Пот процесу, ваздух се дува преко растопљеног олова да би се добио фини млаз оловних капљица. Капљице реагују са кисеоником у ваздуху и формирају оксид, који се састоји од језгра олова са превлаком од оловног оксида (ПбО).

У процесу млевења, чврсто олово (које може бити у величини од малих куглица до комплетних свиња) се убацује у ротирајући млин. Превртање олова ствара топлоту и површина олова оксидира. Како се честице котрљају у бубњу, површински слојеви оксида се уклањају да би се оксидацији изложило чистије олово. Струја ваздуха носи прах до врећастог филтера, где се сакупља.

Производња мреже: Решетке се производе углавном ливењем (и аутоматским и ручним) или, посебно за аутомобилске акумулаторе, експанзијом од коване или ливене легуре олова.

Лепљење: Паста за батерије се прави мешањем оксида са водом, сумпорном киселином и низом заштићених адитива. Паста се машински или ручно утискује у решетку, а плоче се обично брзо суше у пећници на високој температури.

Залепљене плоче очвршћавају се чувањем у пећницама под пажљиво контролисаним условима температуре, влажности и времена. Слободно олово у пасти се претвара у оловни оксид.

Формирање, сечење плоча и монтажа: Плоче батерија пролазе кроз процес електричног формирања на један од два начина. У формирању резервоара, плоче се стављају у велике купке са разблаженом сумпорном киселином и једносмерна струја се пропушта да би се формирале позитивне и негативне плоче. Након сушења, плоче се секу и склапају, са сепараторима између њих, у кутије за батерије. Плоче сличног поларитета су повезане заваривањем спојница плоча.

У формирању тегле, плоче се електрично формирају након склапања у кутије за батерије.

Опасности и контроле здравља на раду

Довести

Олово је главна опасност по здравље повезана са производњом батерија. Главни пут излагања је удисањем, али гутање такође може представљати проблем ако се не поклања довољно пажње личној хигијени. Излагање се може појавити у свим фазама производње.

Производња оловног оксида је потенцијално веома опасна. Изложеност се контролише аутоматизацијом процеса, чиме се радници уклањају из опасности. У многим фабрикама процесом управља једна особа.

Код ливења на мрежи, изложеност испарењима олова се минимизира употребом локалне издувне вентилације (ЛЕВ) заједно са термостатском контролом оловних посуда (емисије оловних испарења значајно се повећавају изнад 500 Ц). Оловна шљака, која се формира на врху растопљеног олова, такође може изазвати проблеме. Шљунак садржи велику количину веома фине прашине, па је при њеном одлагању потребна велика пажња.

Подручја лепљења су традиционално резултирала високим излагањем олову. Метода производње често доводи до прскања оловне суспензије на машине, под, кецеље и чизме. Ова прскања се суше и производе оловну прашину у ваздуху. Контрола се постиже сталним влажним подом и честим спуштањем кецеља сунђером.

До изложености олову у другим одељењима (формирање, сечење плоча и монтажа) долази руковањем сувим, прашњавим плочама. Изложеност се минимизира помоћу ЛЕВ-а заједно са одговарајућом употребом личне заштитне опреме.

Многе земље имају законе који ограничавају степен професионалне изложености, а постоје нумерички стандарди за нивое олова у ваздуху и крви.

Професионалац медицине рада је обично запослен да узима узорке крви од изложених радника. Учесталост тестирања крви може да варира од годишњег за раднике са ниским ризиком до тромесечних за оне у одељењима високог ризика (нпр. лепљење). Ако ниво олова у крви радника премашује законску границу, онда радник треба да буде уклоњен са било каквог радног излагања олову све док олово у крви не падне на ниво који лекарски саветник сматра прихватљивим.

Узимање узорака ваздуха за олово је комплементарно са тестирањем олова у крви. Лично, а не статичко, узорковање је преферирани метод. Обично је потребан велики број оловних узорака из ваздуха због инхерентне варијабилности резултата. Коришћење тачних статистичких процедура у анализи података може дати информације о изворима олова и може пружити основу за побољшање инжењерског дизајна. Редовно узимање узорака ваздуха може се користити за процену сталне ефикасности контролних система.

Дозвољене концентрације олова у ваздуху и концентрације олова у крви варирају од земље до земље и тренутно се крећу од 0.05 до 0.20 мг/м3 и 50 до 80 мг/дл респективно. Постоји континуирани тренд смањења ових граница.

Поред уобичајених инжењерских контрола, неопходне су и друге мере да се излагање олову сведе на минимум. Ни у једном производном простору не би требало да буде јело, пушење, пиће или жвакање жвакаће гуме.

Треба обезбедити одговарајуће просторије за прање и пресвлачење како би се радна одећа могла држати у простору одвојеном од личне одеће и обуће. Простори за прање/туширање треба да се налазе између чистих и прљавих подручја.

Сумпорна киселина

Током процеса формирања активни материјал на плочама се претвара у ПбО2 на позитивној и Пб на негативној електроди. Како се плоче потпуно напуне, струја формирања почиње да раздваја воду у електролиту на водоник и кисеоник:

Позитивно:        

Негативно:      

Гашење ствара маглу сумпорне киселине. Ерозија зуба је једно време била уобичајена карактеристика радника у формацијским подручјима. Компаније за производњу батерија традиционално користе услуге стоматолога, а многе то и даље чине.

Недавне студије (ИАРЦ 1992) сугеришу могућу везу између излагања магли неорганске киселине (укључујући сумпорну киселину) и рака ларинкса. Истраживања се настављају у овој области.

Стандард изложености на радном месту у УК за маглу сумпорне киселине је 1 мг/м3. Експозиције се могу одржавати испод овог нивоа са ЛЕВ на месту преко формацијских кола.

Изложеност коже корозивној течности сумпорне киселине је такође забрињавајућа. Мере предострожности укључују опрему за личну заштиту, фонтане за испирање очију и тушеве за хитне случајеве.

талк

Талк се користи у одређеним операцијама ручног ливења као средство за отпуштање калупа. Дуготрајно излагање талк прашини може изазвати пнеумокониозу и важно је да се прашина контролише одговарајућом вентилацијом и мерама контроле процеса.

Умјетна минерална влакна (ММФ)

Сепаратори се користе у оловним батеријама за електричну изолацију позитивних од негативних плоча. Током година коришћене су различите врсте материјала (нпр. гума, целулоза, поливинилхлорид (ПВЦ), полиетилен), али се све више користе сепаратори стаклених влакана. Ови сепаратори се производе од ММФ-а.

Повећан ризик од карцинома плућа међу радницима показао се у раним данима индустрије минералне вуне (ХСЕ 1990). Међутим, ово је могло бити узроковано другим канцерогеним материјалима који су се користили у то време. Ипак, разумно је осигурати да се свака изложеност новчаним фондовима сведе на минимум било потпуном ограђивањем или ЛЕВ-ом.

Стибине и арсина

Антимон и арсен се обично користе у легурама олова и стибина (СбХ3) или арсина (АсХ3) може се произвести под одређеним околностима:

    • када је ћелија прекомерно напуњена
    • када се шљака из легуре оловног калцијума помеша са шљаком од оловног антимона или легуре оловног арсена. Ове две шљаке могу хемијски да реагују и формирају калцијум стибид или калцијум арсенид који, након накнадног влажења, може да генерише СбХ3 или АХ3.

       

      Стибин и арсин су веома токсични гасови који делују уништавањем црвених крвних зрнаца. Строга контрола процеса током производње батерија треба да спречи сваки ризик од излагања овим гасовима.

      Физичке опасности

      Разне физичке опасности такође постоје у производњи батерија (нпр. бука, прскање растопљеног метала и киселине, електричне опасности и ручно руковање), али се ризици од њих могу смањити одговарајућим инжењерингом и контролом процеса.

      Еколошки проблеми

      Утицај олова на здравље деце је опширно проучаван. Због тога је веома важно да се испуштање олова у животну средину сведе на минимум. За фабрике батерија, најзагађујуће емисије у ваздух треба да се филтрирају. Сав процесни отпад (обично кисели раствор који садржи олово) треба да се преради у постројењу за пречишћавање отпадних вода како би се неутралисала киселина и исталожило олово из суспензије.

      Будући развој

      Вероватно је да ће у будућности бити све већа ограничења употребе олова. У професионалном смислу ово ће резултирати повећањем аутоматизације процеса тако да се радник уклони опасности.

       

      Назад

      Читати 31970 пута Последња измена у суботу, 30. јула 2022. у 20:55
      Више у овој категорији: « Општи профил батерије »

      " ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

      Садржај

      Референце за електричне уређаје и опрему

      Дуцатман, АМ, БС Дуцатман и ЈА Барнес. 1988. Опасност од литијумске батерије: старомодне импликације нове технологије на планирање. Ј Оццуп Мед 30:309–311.

      Извршни директор за здравље и безбедност (ХСЕ). 1990. Ман-маде Минерал Фибрес. Извршно упутство ЕХ46. Лондон: ХСЕ.

      Међународна агенција за истраживање рака (ИАРЦ). 1992. Монографије о процени канцерогених ризика за људе, Вол. 54. Лион: ИАРЦ.

      Мат ТД, ЈП Фигуероа, Г Бурр, ЈП Флесцх, РХ Кеенлисиде и ЕЛ Бакер. 1989. Изложеност олову међу радницима на оловним батеријама на Јамајци. Амер Ј Инд Мед 16:167–177.

      МцДиармид, МА, ЦС Фрееман, ЕА Гроссман и Ј Мартоник. 1996. Резултати биолошког мониторинга радника изложених кадмијуму. Амер Инд Хиг Ассоц Ј 57: 1019–1023.

      Роелс, ХА, ЈП Гхиселен, Е Цеулеманс и РР Лауверис. 1992. Процена дозвољеног нивоа изложености мангану код радника изложених прашини манган диоксида. Брит Ј Инд Мед 49:25–34.

      Телесца, ДР. 1983. Преглед система контроле опасности по здравље за употребу и прераду живе. Извештај бр. ЦТ-109-4. Синсинати, ОХ: НИОСХ.

      Валлис, Г, Р Менке и Ц Цхелтон. 1993. Теренско тестирање на радном месту респиратора за прашину са полумаском са негативним притиском за једнократну употребу (3М 8710). Амер Инд Хиг Ассоц Ј 54:576-583.