分子和細胞生物學中尖端技術的出現刺激了包括毒理學在內的生命科學的相對快速發展。 實際上,毒理學的重點正在從整個動物和整個動物種群轉移到單個動物和人類的細胞和分子。 自 1980 世紀 XNUMX 年代中期以來,毒理學家開始採用這些新方法來評估化學品對生命系統的影響。 作為一個合乎邏輯的進展,這些方法正在適應毒性測試的目的。 這些科學進步與社會和經濟因素共同作用,影響了產品安全和潛在風險評估的變化。
經濟因素與必須測試的材料量特別相關。 每年都有大量新的化妝品、藥品、農藥、化學品和家用產品進入市場。 所有這些產品都必須評估其潛在毒性。 此外,還有大量已在使用但未經過充分測試的化學品積壓。 使用傳統的整體動物測試方法獲取所有這些化學品的詳細安全信息是一項艱鉅的任務,如果能夠完成的話,在金錢和時間方面都是昂貴的。
還有與公共健康和安全相關的社會問題,以及公眾對使用動物進行產品安全測試的日益關注。 關於人類安全,公共利益和環保倡導團體向政府機構施加了巨大壓力,要求其對化學品實施更嚴格的法規。 最近的一個例子是一些環保組織在美國禁止使用氯和含氯化合物。 這種極端行為的動機之一在於這些化合物中的大多數從未經過充分測試。 從毒理學的角度來看,僅基於氯的存在就禁止一整類不同化學品的概念在科學上是不合理的,也是不負責任的。 然而,從公眾的角度來看,必須保證釋放到環境中的化學品不會造成重大健康風險,這是可以理解的。 這種情況強調需要更有效和快速的方法來評估毒性。
影響毒性測試領域的另一個社會問題是動物福利。 世界各地越來越多的動物保護組織對使用整隻動物進行產品安全測試表示強烈反對。 為了阻止動物試驗,針對化妝品、家庭和個人護理產品以及藥品的製造商發起了積極的運動。 歐洲的此類努力促成了指令 76/768/EEC(化妝品指令)的第六次修正案的通過。 該指令的結果是,1 年 1998 月 XNUMX 日之後在動物身上測試過的化妝品或化妝品成分不能在歐盟銷售,除非替代方法未得到充分驗證。 雖然該指令對在美國或其他國家/地區銷售此類產品沒有管轄權,但它將對那些擁有包括歐洲在內的國際市場的公司產生重大影響。
替代品的概念構成了除了對整隻動物進行測試以外的測試開發的基礎,由三個定義 Rs: 減少 使用的動物數量; 精緻 協議,使動物經歷更少的壓力或不適; 和 替代 目前的動物試驗包括體外試驗(即在活體動物之外進行的試驗)、計算機模型或對低等脊椎動物或無脊椎動物進行的試驗。 他們三個 Rs 在 1959 年由兩位英國科學家 WMS Russell 和 Rex Burch 出版的一本書中進行了介紹, 人道實驗技術原理. Russell 和 Burch 堅持認為,獲得有效科學結果的唯一途徑是通過人道對待動物,並認為應該開發減少動物使用並最終取而代之的方法。 有趣的是,在 1970 世紀 XNUMX 年代中期動物福利運動重新興起之前,羅素和伯奇概述的原則很少受到關注。 今天的三個概念 Rs 在研究、測試和教育方面處於領先地位。
總之,體外測試方法的發展受到過去 20 到 XNUMX 年匯集的各種因素的影響。 很難確定這些因素中的任何一個是否會對毒性測試策略產生如此深遠的影響。
體外毒性試驗的概念
本節將僅關注用於評估毒性的體外方法,作為整體動物測試的替代方法之一。 本章其他文章中討論了計算機建模和定量構效關係等其他非動物替代方法。
體外研究通常在體外的動物或人體細胞或組織中進行。 體外的字面意思是“在玻璃中”,是指在規定條件下對在培養皿或試管中培養的活體材料或活體材料成分進行的程序。 這些可能與體內研究或“在活體動物身上”進行的研究形成對比。 當觀察僅限於培養皿中的單一類型細胞時,即使不是不可能,也很難預測化學物質對複雜生物體的影響,但體外研究確實提供了大量關於內在毒性的信息作為毒性的細胞和分子機制。 此外,與體內研究相比,它們具有許多優勢,因為它們通常更便宜並且可以在更受控的條件下進行。 此外,儘管事實上仍然需要少量動物來獲得用於體外培養的細胞,但這些方法可被視為減少替代方法(因為與體內研究相比使用的動物要少得多)和精煉替代方法(因為它們消除了需要使動物經受體內實驗造成的不良毒性後果)。
為了解釋體外毒性試驗的結果,確定它們在評估毒性方面的潛在用途並將它們與體內的整個毒理學過程聯繫起來,有必要了解正在檢查毒理學過程的哪一部分。 整個毒理學過程包括以下事件:從有機體暴露於物理或化學試劑開始,通過細胞和分子相互作用進展,並最終在整個有機體的反應中表現出來。 體外試驗通常僅限於發生在細胞和分子水平的毒理學過程的一部分。 可從體外研究中獲得的信息類型包括代謝途徑、活性代謝物與細胞和分子靶標的相互作用以及可作為暴露分子生物標誌物的潛在可測量毒性終點。 在理想情況下,每種化學物質暴露於有機體表現的毒性機制是已知的,這樣從體外試驗中獲得的信息就可以得到充分解釋,並與整個有機體的反應相關聯。 然而,這實際上是不可能的,因為已經闡明的完整毒理學機制相對較少。 因此,毒理學家面臨這樣一種情況,即體外試驗的結果不能用作對體內毒性的完全準確預測,因為機制未知。 然而,在開發體外測試的過程中,通常會闡明毒性的細胞和分子機制的組成部分。
圍繞體外測試的開發和實施的關鍵未解決問題之一與以下考慮有關:它們應該以機械為基礎,還是足以讓它們具有描述性? 從科學的角度來看,僅使用基於機械的測試來替代體內測試無疑更好。 然而,在缺乏完整的機理知識的情況下,在不久的將來開發完全替代整體動物試驗的體外試驗的前景幾乎為零。 然而,這並不排除使用更具描述性的分析類型作為早期篩查工具,目前就是這種情況。 這些屏幕導致動物使用顯著減少。 因此,在生成更多機械信息之前,可能有必要在更有限的範圍內採用其結果與體內獲得的結果完全相關的測試。
體外細胞毒性試驗
在本節中,將描述為評估化學品的細胞毒性潛力而開發的幾種體外測試。 在大多數情況下,這些測試很容易執行,並且可以自動進行分析。 一種常用的細胞毒性體外試驗是中性紅測定。 該測定是在培養細胞上進行的,對於大多數應用,細胞可以保存在包含 96 個小孔的培養皿中,每個孔的直徑為 6.4 毫米。 由於每個孔都可用於單次測定,因此這種佈置可以容納多種濃度的測試化學品以及陽性和陰性對照,每種都有足夠數量的重複。 在用至少兩個數量級(例如,從 0.01mM 到 1mM)的不同濃度的測試化學品以及陽性和陰性對照化學品處理細胞後,將細胞沖洗並用中性紅處理,只能被活細胞吸收和保留的染料。 可以在去除測試化學品時添加染料以確定即時效果,或者可以在去除測試化學品後的不同時間添加染料以確定累積或延遲效果。 每個孔中的顏色強度對應於該孔中活細胞的數量。 顏色強度通過可配備讀板器的分光光度計測量。 讀板器經過編程,可為培養皿的 96 個孔中的每個孔提供單獨的測量值。 這種自動化方法允許研究人員快速執行濃度響應實驗並獲得統計上有用的數據。
另一種相對簡單的細胞毒性試驗是 MTT 試驗。 MTT(3[4,5-二甲基噻唑-2-基]-2,5-二苯基四唑溴化物)是一種四唑染料,可被線粒體酶還原成藍色。 只有具有活線粒體的細胞才能保留進行該反應的能力; 因此,顏色強度與線粒體完整性的程度直接相關。 這是檢測一般細胞毒性化合物以及那些專門針對線粒體的藥物的有用測試。
乳酸脫氫酶 (LDH) 活性的測量也用作細胞毒性的廣泛檢測。 這種酶通常存在於活細胞的細胞質中,並通過已被毒劑不利影響的死亡或垂死細胞的滲漏細胞膜釋放到細胞培養基中。 在對細胞進行化學處理後,可在不同時間去除少量培養基,以測量釋放的 LDH 量並確定毒性的時程。 雖然 LDH 釋放試驗是一種非常普遍的細胞毒性評估,但它很有用,因為它易於執行並且可以實時完成。
正在開發許多新方法來檢測細胞損傷。 更複雜的方法使用熒光探針來測量各種細胞內參數,例如鈣釋放以及 pH 和膜電位的變化。 一般來說,這些探針非常敏感,可以檢測到更細微的細胞變化,從而減少使用細胞死亡作為終點的需要。 此外,許多這些熒光測定可以通過使用 96 孔板和熒光板閱讀器實現自動化。
一旦使用這些測試之一收集了一系列化學品的數據,就可以確定相對毒性。 在體外試驗中確定的化學品的相對毒性可以表示為對未處理細胞的終點反應產生 50% 影響的濃度。 這一決定被稱為 EC50 (E有效的 C濃度為 50細胞的百分比),可用於比較不同化學品的體外毒性。 (用於評估相對毒性的類似術語是 IC50,表示導致細胞過程 50% 抑制的化學物質的濃度,例如,吸收中性紅的能力。)評估化學物質的相對體外毒性是否與其在體外的相對毒性相當並不容易體內毒性,因為體內系統中有很多混雜因素,例如毒代動力學、代謝、修復和防禦機制。 此外,由於大多數這些測定測量的是一般細胞毒性終點,因此它們不是基於機械的。 因此,體外和體內相對毒性之間的一致性是簡單相關的。 儘管從體外外推到體內存在許多複雜性和困難,但這些體外試驗被證明是非常有價值的,因為它們執行起來簡單且成本低廉,並且可以用作篩選以在早期階段標記劇毒藥物或化學品。發展。
靶器官毒性
體外試驗也可用於評估特定的靶器官毒性。 設計此類測試存在許多困難,最值得注意的是體外系統無法在體內保持器官的許多特徵。 通常,當細胞從動物身上取出並置於培養物中時,它們往往會迅速退化和/或去分化,即失去其器官樣功能並變得更加通用。 這帶來了一個問題,即在很短的時間內(通常是幾天),培養物不再可用於評估毒素的器官特異性影響。
由於分子和細胞生物學的最新進展,許多這些問題正在被克服。 獲得的關於體內細胞環境的信息可用於調節體外培養條件。 自 1980 世紀 XNUMX 年代中期以來,新的生長因子和細胞因子被發現,其中許多現已上市。 將這些因子添加到培養的細胞中有助於保持它們的完整性,也可能有助於在更長的時間內保留更多的分化功能。 其他基礎研究增加了對培養細胞的營養和激素需求的認識,因此可以配製新的培養基。 最近在識別可以在其上培養細胞的天然存在的和人工的細胞外基質方面也取得了進展。 在這些不同的基質上培養細胞會對它們的結構和功能產生深遠的影響。 從這些知識中獲得的一個主要優勢是能夠複雜地控制培養細胞的環境,並單獨檢查這些因素對基本細胞過程和它們對不同化學試劑的反應的影響。 簡而言之,這些系統可以深入了解特定器官的毒性機制。
許多靶器官毒性研究是在原代細胞中進行的,根據定義,原代細胞是從器官中新鮮分離出來的,通常在培養中的壽命有限。 使用來自器官的單一細胞類型的原代培養物進行毒性評估有很多優勢。 從機械的角度來看,這種培養物可用於研究化學物質的特定細胞靶標。 在某些情況下,可以將來自一個器官的兩種或多種細胞類型一起培養,這提供了一個額外的優勢,即能夠觀察細胞間相互作用對毒素的反應。 一些皮膚共培養系統已被設計成可以在體內形成類似於皮膚的三維結構。 也可以共培養來自不同器官(例如肝臟和腎臟)的細胞。 這種類型的培養物可用於評估必須在肝臟中生物激活的化學物質對腎細胞的特異性影響。
分子生物學工具在可用於靶器官毒性測試的連續細胞系的開發中也發揮了重要作用。 這些細胞係是通過將 DNA 轉染到原代細胞中產生的。 在轉染過程中,處理細胞和 DNA,使 DNA 可以被細胞吸收。 DNA 通常來自病毒,包含一個或多個基因,表達後可使細胞永生化(即能夠在培養物中長期存活和生長)。 還可以對 DNA 進行工程改造,使永生化基因受誘導型啟動子控制。 這種構建體的優點是細胞只有在接受適當的化學刺激以允許永生化基因表達時才會分裂。 這種構建體的一個例子是來自猿猴病毒 40 (SV40) 的大 T 抗原基因(永生化基因),其前面是金屬硫蛋白基因的啟動子區域,它是由培養基中存在的金屬誘導的。 因此,在將基因轉染到細胞中後,可以用低濃度的鋅處理細胞以刺激MT啟動子並開啟T抗原基因的表達。 在這些條件下,細胞增殖。 當從培養基中去除鋅時,細胞停止分裂並在理想條件下恢復到表達其組織特異性功能的狀態。
產生永生化細胞的能力與細胞培養技術的進步相結合,極大地促進了從許多不同器官(包括大腦、腎臟和肝臟)創建細胞系。 然而,在將這些細胞系用作真正細胞類型的替代物之前,必須仔細表徵它們以確定它們到底有多“正常”。
其他用於研究靶器官毒性的體外系統涉及越來越複雜。 隨著體外系統從單細胞培養到整個器官培養的複雜性不斷提高,它們變得與體內環境更具可比性,但與此同時,鑑於變量數量的增加,它們變得更加難以控制。 因此,在研究人員無法控制實驗環境時,可能會失去在更高級別組織中可能獲得的收益。 表 1 比較了用於研究肝毒性的各種體外系統的一些特徵。
表 1. 肝毒性研究的體外系統比較
系統 | 複雜 (互動水平) |
保留肝臟特定功能的能力 | 培養的潛在持續時間 | 環境控制能力 |
永生化細胞系 | 一些細胞到細胞(因細胞係而異) | 從差到好(因細胞係而異) | 不定 | 優秀 |
原代肝細胞培養 | 細胞到細胞 | 一般到優秀(因文化條件而異) | 幾天到幾週 | 優秀 |
肝細胞共培養 | 細胞到細胞(相同和不同細胞類型之間) | 好到好 | 週 | 優秀 |
肝片 | 細胞到細胞(在所有細胞類型中) | 好到好 | 數小時至數天 | 好 |
離體灌注肝臟 | 細胞間(在所有細胞類型中)和器官內 | 優秀 | 個小時裡 | 公平 |
精密切割的組織切片正被更廣泛地用於毒理學研究。 有可用的新儀器,使研究人員能夠在無菌環境中切割均勻的組織切片。 組織切片提供了一些優於細胞培養系統的優勢,因為器官的所有細胞類型都存在,並且它們保持其體內結構和細胞間通訊。 因此,可以進行體外研究以確定器官內的靶細胞類型以及研究特定的靶器官毒性。 切片的一個缺點是它們在培養的前 24 小時後迅速退化,這主要是由於氧氣向切片內部細胞的擴散不良。 然而,最近的研究表明,通過溫和的旋轉可以實現更有效的曝氣。 這與使用更複雜的介質一起,使切片能夠存活長達 96 小時。
組織外植體在概念上類似於組織切片,也可用於確定特定目標器官中化學物質的毒性。 組織外植體是通過取出一小塊組織(用於致畸研究,一個完整的胚胎)並將其放入培養物中進行進一步研究而建立的。 外植體培養物可用於短期毒性研究,包括皮膚刺激和腐蝕性、氣管石棉研究和腦組織神經毒性研究。
分離的灌注器官也可用於評估靶器官毒性。 這些系統提供了類似於組織切片和外植體的優勢,因為所有細胞類型都存在,但不會因製備切片的操作而對組織造成壓力。 此外,它們允許維持器官內相互作用。 一個主要的缺點是它們的短期生存能力,這限制了它們在體外毒性測試中的使用。 就作為替代品而言,這些培養物可以被認為是一種改進,因為動物不會經歷體內毒物治療的不良後果。 然而,它們的使用並沒有顯著減少所需的動物數量。
總之,有幾種類型的體外系統可用於評估靶器官毒性。 使用這些技術中的一種或多種,可以獲得有關毒性機制的大量信息。 困難仍然在於知道如何從代表毒理學過程的相對較小部分的體外系統外推到體內發生的整個過程。
眼部刺激的體外測試
從動物福利的角度來看,最具爭議的全動物毒性試驗可能是在兔子身上進行的眼睛刺激 Draize 試驗。 在這個測試中,將少量固定劑量的化學物質放入兔子的一隻眼睛中,而另一隻眼睛用作對照。 在接觸後的不同時間對刺激和炎症的程度進行評分。 正在努力開發替代該測試的方法,該測試不僅出於人道原因,而且還因為觀察的主觀性和結果的可變性而受到批評。 有趣的是,儘管 Draize 測試受到了嚴厲的批評,但它已被證明在預測人眼刺激物方面非常成功,尤其是其他方法難以識別的輕微至中度刺激性物質。 因此,對體外替代品的需求很大。
尋找 Draize 測試的替代方案是一項複雜的工作,儘管預計會成功。 已經開發了許多體外和其他替代方案,並且在某些情況下它們已經實施。 根據定義,Draize 測試的改進替代品對動物的痛苦或痛苦較小,包括 Low Volume Eye Test,其中將少量測試材料放入兔子的眼睛中,不僅出於人道原因,而且為了更接近地模擬人們實際可能意外接觸的量。 另一個改進是 pH 值小於 2 或大於 11.5 的物質不再在動物身上進行測試,因為已知它們會嚴重刺激眼睛。
1980 年至 1989 年間,用於化妝品眼部刺激性測試的兔子數量估計下降了 87%。 體外測試已被納入分層測試方法的一部分,以實現整體動物測試的大幅減少。 這種方法是一個多步驟過程,首先要全面檢查歷史眼睛刺激數據,並對要評估的化學品進行物理和化學分析。 如果這兩個過程沒有產生足夠的信息,則會進行一系列體外測試。 從體外試驗中獲得的額外數據可能足以評估物質的安全性。 如果沒有,那麼最後一步將是進行有限的體內測試。 很容易看出這種方法如何消除或至少大大減少預測測試物質安全性所需的動物數量。
用作此分級測試策略的一部分的體外測試電池取決於特定行業的需求。 從化妝品到製藥再到工業化學品,許多行業都在進行眼睛刺激測試。 每個行業所需的信息類型各不相同,因此不可能定義一個單一的體外測試電池組。 測試電池通常設計用於評估五個參數:細胞毒性、組織生理學和生物化學的變化、定量構效關係、炎症介質以及恢復和修復。 細胞毒性測試的一個例子是使用培養細胞進行的中性紅測定(見上文),這是一種可能的刺激原因。 可以在人角膜上皮細胞的培養物中測定因接觸化學品而導致的細胞生理學和生物化學變化。 或者,研究人員還使用了從屠宰場獲得的完整或解剖的牛或雞眼球。 在這些全器官培養物中測量的許多終點與體內測量的終點相同,例如角膜混濁和角膜腫脹。
炎症通常是化學性眼損傷的一個組成部分,並且有許多檢測方法可用於檢查此參數。 各種生化測定檢測在炎症過程中釋放的介質的存在,例如花生四烯酸和細胞因子。 雞蛋的絨毛尿囊膜 (CAM) 也可用作炎症指標。 在 CAM 測定中,將 14 到 XNUMX 天的雞胚的一小塊殼移除以暴露 CAM。 然後將化學物質應用於 CAM,然後在不同時間對炎症跡象(例如血管出血)進行評分。
在體外評估最困難的體內過程之一是眼部損傷的恢復和修復。 一種新開發的儀器,矽微生理計,測量細胞外 pH 值的微小變化,可用於實時監測培養的細胞。 該分析已被證明與體內恢復相當好,並已被用作該過程的體外測試。 這是對用作 Draize 眼刺激測試替代方法的測試類型的簡要概述。 在接下來的幾年內,很可能會定義一個完整的體外測試電池系列,並且每個電池都將針對其特定用途進行驗證。
驗證
監管機構接受和實施體外測試方法的關鍵是驗證,即為特定目的確定候選測試可信度的過程。 美國和歐洲都在努力定義和協調驗證過程。 歐盟於 1993 年成立了歐洲替代方法驗證中心 (ECVAM),以協調那裡的工作並與美國組織進行互動,例如美國學術中心約翰霍普金斯動物試驗替代中心 (CAAT)和替代方法驗證機構間協調委員會 (ICCVAM),由美國國立衛生研究院、美國環境保護署、美國食品和藥物管理局以及消費品安全委員會的代表組成。
體外試驗的驗證需要大量的組織和計劃。 政府監管機構以及工業界和學術界的科學家必須就可接受的程序達成共識,並由科學顧問委員會進行充分監督,以確保協議符合既定標準。 驗證研究應在一系列參考實驗室中進行,使用來自化學庫的校準化學品組和來自單一來源的細胞或組織。 必須證明候選測試的實驗室內重複性和實驗室間再現性,並對結果進行適當的統計分析。 一旦驗證研究的不同組成部分的結果得到匯總,科學顧問委員會就可以針對特定目的對候選測試的有效性提出建議。 此外,研究結果應發表在同行評審的期刊上,並放入數據庫中。
驗證過程的定義目前正在進行中。 每項新的驗證研究都將為下一項研究的設計提供有用的信息。 國際交流與合作對於快速制定廣泛接受的一系列協議至關重要,特別是考慮到 EC 化妝品指令的通過所帶來的緊迫性。 這項立法確實可以為進行認真的驗證工作提供所需的動力。 只有完成這一過程,才能開始接受各種監管機構的體外方法。
結論
本文概述了體外毒性測試的現狀。 體外毒理學科學相對年輕,但它正在呈指數級增長。 未來幾年的挑戰是將細胞和分子研究產生的機理知識納入大量體內數據清單,以提供更完整的毒理學機制描述,並建立可以使用體外數據的範例預測體內毒性。 只有通過毒理學家和政府代表的共同努力,才能實現這些體外方法的內在價值。