打印此頁
星期二,15 March 2011 14:46

電磁頻譜:基本物理特性

評價這個項目
(4票)

最熟悉的電磁能形式是陽光。 太陽光(可見光)的頻率是較高頻率下強度更高的電離輻射(X 射線、宇宙射線)與較低頻率下更溫和的非電離輻射之間的分界線。 有一個非電離輻射的光譜。 在本章的上下文中,位於可見光下方的高端是紅外輻射。 在此之下是廣泛的無線電頻率,包括(按降序排列)微波、蜂窩無線電、電視、FM 無線電和 AM 無線電、用於電介質和感應加熱器的短波,以及低端的電源頻率領域。 電磁頻譜如圖 1 所示。 

圖 1. 電磁頻譜

ELF010F1

正如可見光或聲音滲透到我們的環境、我們生活和工作的空間一樣,電磁場的能量也是如此。 此外,正如我們接觸到的大部分聲能都是由人類活動產生的一樣,電磁能也是如此:從我們日常電器(使我們的收音機和電視機工作的電器)發出的微弱電平到高電平醫生為有益目的應用的水平——例如,透熱療法(熱處理)。 通常,這種能量的強度會隨著與源的距離的增加而迅速減弱。 這些領域在環境中的自然含量很低。

非電離輻射 (NIR) 包括電磁波譜中沒有足夠能量產生物質電離的所有輻射和場。 也就是說,NIR 無法通過去除一個或多個電子來向分子或原子提供足夠的能量來破壞其結構。 NIR 和電離輻射之間的分界線通常設置在大約 100 納米的波長處。

與任何形式的能量一樣,NIR 能量有可能與生物系統相互作用,結果可能沒有意義,可能有不同程度的危害,也可能是有益的。 對於射頻 (RF) 和微波輻射,主要的相互作用機制是加熱,但在頻譜的低頻部分,高強度場可能會在體內感應出電流,從而產生危險。 然而,低水平場強的相互作用機制是未知的。

 

 

 

 

 

 

 

 

數量和單位

頻率低於約 300 MHz 的場根據電場強度進行量化(E) 和磁場強度 (H). E 以伏特每米 (V/m) 表示,並且 H 以安培每米 (A/m) 為單位。 兩者都是矢量場——也就是說,它們的特徵在於每個點的大小和方向。 對於低頻範圍,磁場通常用磁通密度表示, B, 與國際單位特斯拉 (T)。 當討論我們日常環境中的場時,亞單位微特斯拉 (μT) 通常是首選單位。 在一些文獻中,通量密度以高斯 (G) 表示,這些單位之間的轉換是(對於空氣中的場):

1噸=104 G 或 0.1 μT = 1 mG 和 1 A/m = 1.26 μT。

可以查閱非電離輻射防護(包括射頻輻射)的概念、數量、單位和術語(NCRP 1981;Polk 和 Postow 1986;WHO 1993)。

術語 輻射 簡單來說就是波浪傳輸的能量。 電磁波是電力和磁力的波,其中波動被定義為物理系統中擾動的傳播。 電場的變化伴隨著磁場的變化,反之亦然。 這些現像在 1865 年由 JC 麥克斯韋用四個方程式描述,這些方程式後來被稱為麥克斯韋方程組。

電磁波的特徵在於一組參數,包括頻率(f), 波長 (λ), 電場強度, 磁場強度, 電極化 (P)(的方向 E 場),傳播速度(c) 和坡印亭向量 (S). 圖 2  說明電磁波在自由空間中的傳播。 頻率定義為電場或磁場在給定點每秒發生完全變化的次數,以赫茲 (Hz) 表示。 波長是波的兩個連續波峰或波谷(最大值或最小值)之間的距離。 頻率、波長和波速(v) 相互關聯如下:

v = f λ

圖2。 在x方向以光速傳播的平面波

ELF010F2

電磁波在自由空間中的速度等於光速,但材料中的速度取決於材料的電氣特性,即介電常數 (ε) 和磁導率 (μ)。 介電常數涉及材料與電場的相互作用,而磁導率表示與磁場的相互作用。 生物物質的介電常數與自由空間的介電常數大不相同,取決於波長(尤其是在射頻範圍內)和組織類型。 然而,生物物質的滲透性等於自由空間的滲透性。

在平面波中,如圖2所示 ,電場垂直於磁場,傳播方向垂直於電場和磁場。

 

 

 

對於平面波,電場強度值與磁場強度值之比為常數,稱為特性阻抗(Z):

Z = E/H

在自由空間, Z= 120π≈377Ω 然而在其他方面 Z 取決於波穿過的材料的介電常數和磁導率。

能量傳遞由 Poynting 矢量描述,它表示電磁通量密度的大小和方向:

S = E x H

對於傳播波,積分 S 在任何表面上表示通過該表面傳輸的瞬時功率(功率密度)。 Poynting 矢量的大小以每平方米瓦特 (W/m2)(在某些文獻中單位為 mW/cm2 使用 - 轉換為 SI 單位為 1 mW/cm2 = 10 瓦/米2) 和平面波與電場和磁場強度的值有關:

S = E2 / 120π = E2 / 377

S =120π H2 = 377 H2

並非所有在實踐中遇到的曝光條件都可以用平面波來表示。 在靠近射頻輻射源的距離處,平面波的關係特性不滿足。 天線輻射的電磁場可分為兩個區域:近場區和遠場區。 這些區域之間的邊界通常位於:

r = 2a2

哪裡 a 是天線的最大尺寸。

在近場區,暴露必須同時由電場和磁場來表徵。 在遠場中,其中一個就足夠了,因為它們通過上述方程相互關聯,涉及 EH. 實際上,近場情況通常在 300 Mhz 以下的頻率下實現。

電磁波與物體的相互作用使暴露於射頻場變得更加複雜。 通常,當電磁波遇到物體時,一些入射能量被反射,一些被吸收,一些被傳輸。 物體傳輸、吸收或反射的能量比例取決於場的頻率和極化以及物體的電氣特性和形狀。 入射波和反射波的疊加導致駐波和空間上不均勻的場分佈。 由於波被金屬物體完全反射,因此在靠近這些物體的地方形成駐波。

由於 RF 場與生物系統的相互作用取決於許多不同的場特性,並且在實踐中遇到的場很複雜,因此在描述 RF 場暴露時應考慮以下因素:

  • 曝光是發生在近場還是遠場
  • 如果是近場,則兩者的值 EH 需要; 如果是遠場,那麼要么 E or H
  • 場大小的空間變化
  • 場極化,即電場相對於波傳播方向的方向。

 

對於暴露於低頻磁場,目前尚不清楚場強或磁通密度是否是唯一重要的考慮因素。 事實證明,其他因素也很重要,例如曝光時間或場變化的速度。

術語 電磁場 (EMF),因為它在新聞媒體和大眾媒體中使用,通常是指頻譜低頻端的電場和磁場,但它也可以用於更廣泛的意義上,包括整個頻譜電磁輻射。 請注意,在低頻範圍內 E B 場的耦合或相互關聯的方式與它們在更高頻率下的方式不同,因此將它們稱為“電場和磁場”而不是 EMF 更為準確。

 

上一頁

更多內容 13228 最後修改於 17 年 2011 月 17 日星期三 44:XNUMX