星期二,15 March 2011 15:19

光和紅外輻射

評價這個項目
(2票)

光和紅外 (IR) 輻射能是光輻射的兩種形式,它們與紫外線輻射一起形成光譜。 在光譜中,不同的波長具有相當不同的引起生物效應的潛力,因此光譜可以進一步細分。

術語 應保留 400 至 760 nm 之間的輻射能量波長,這會引起視網膜的視覺反應 (CIE 1987)。 光是照明燈、視覺顯示器和各種照明器輸出的重要組成部分。 然而,除了照明對視覺的重要性之外,由於工作場所任務的人體工程學設計不佳,某些光源可能會造成不良的生理反應,例如失能和不適的眩光、閃爍和其他形式的眼睛壓力。 強光的發射也是某些工業過程(例如弧焊)的潛在危險副作用。

紅外輻射(IRR,波長 760 nm 至 1 mm)通常也可以稱為 熱輻射 輻射熱),並從任何溫暖的物體(熱發動機、熔融金屬和其他鑄造源、熱處理表面、白熾電燈、輻射加熱系統等)中散發出來。 紅外輻射也從各種各樣的電氣設備中發出,例如電動機、發電機、變壓器和各種電子設備。

紅外輻射是熱應激的促成因素。 高環境空氣溫度和濕度以及低程度的空氣循環可以與輻射熱結合產生熱應激,並有可能導致熱損傷。 在較冷的環境中,不受歡迎或設計不當的輻射熱源也會產生不適——這是一個符合人體工程學的考慮。

生物效應

可見光和紅外線形式的輻射對眼睛和皮膚造成的職業危害受到眼睛對強光的厭惡和強烈輻射加熱導致的皮膚疼痛感的限制。 眼睛非常適合保護自己免受周圍陽光的急性光輻射損傷(由於紫外線、可見光或紅外線輻射能)。 它受到對觀看明亮光源的自然厭惡反應的保護,這種反應通常可以保護它免受因暴露於太陽、弧光燈和焊接電弧等光源而造成的傷害,因為這種厭惡將暴露的持續時間限制在一小部分(大約兩倍)十分之一)秒。 然而,如果長期暴露在沒有強烈視覺刺激的情況下,富含 IRR 的光源可能會對眼睛的晶狀體造成危害。 一個人也可以強迫自己盯著太陽、焊弧或雪地,從而遭受暫時(有時是永久)的視力喪失。 在強光在視野中顯得較低的工業環境中,眼睛的保護機制不太有效,危險預防措施尤為重要。

強光和 IRR 源對眼睛和皮膚至少有五種不同類型的危害,必須在了解每種情況的情況下選擇保護措施。 除了來自某些強光源的紫外線輻射 (UVR) 帶來的潛在危害外,還應考慮以下危害(Sliney 和 Wolbarsht 1980 年;WHO 1982 年):

  1. 視網膜熱損傷,可在 400 nm 至 1,400 nm 波長范圍內發生。 通常,只有激光、非常強烈的氙弧源或核火球才會造成此類傷害的危險。 視網膜的局部灼傷會導致盲點(暗點)。
  2. 藍光對視網膜的光化學損傷(主要與波長為 400 nm 至 550 nm 的藍光相關的危害)(Ham 1989)。 這種損傷通常被稱為“藍光”光性視網膜炎; 根據其來源,這種傷害的一種特殊形式被命名為, 日光性視網膜炎. 日光性視網膜炎曾被稱為“日食失明”和相關的“視網膜灼傷”。 僅在最近幾年,人們才清楚地認識到,光性視網膜炎是由視網膜暴露於可見光譜中較短波長的光(即紫光和藍光)後的光化學損傷機制引起的。 直到 1970 世紀 1989 年代,它才被認為是熱損傷機制的結果。 與藍光相反,IRA 輻射在造成視網膜損傷方面非常無效。 (Ham 1980;Sliney 和 Wolbarsht XNUMX)。
  3. 近紅外熱對晶狀體的危害(與大約 800 nm 至 3,000 nm 的波長相關)可能導致工業熱性白內障。 平均角膜暴露於陽光中的紅外輻射約為 10 W/m2. 相比之下,玻璃和鋼鐵工人暴露在 0.8 至 4 kW/m 量級的紅外輻射下2 據報導,在 10 到 15 年的時間裡每天都會出現晶狀體混濁(Sliney 和 Wolbarsht 1980)。 這些光譜帶包括 IRA 和 IRB(見圖 1)。 美國政府工業衛生學家會議 (ACGIH) 針對眼前部 IRA 暴露的指南是 100 W/m 的時間加權總輻照度2 暴露時間超過 1,000 秒(16.7 分鐘)(ACGIH 1992 和 1995)。
  4. 角膜和結膜的熱損傷(波長約為 1,400 nm 至 1 mm)。 這種類型的傷害幾乎完全限於暴露於激光輻射。
  5. 皮膚的熱損傷。 這在傳統光源中很少見,但可能發生在整個光譜範圍內。

波長和曝光時間的重要性

上述熱損傷 (1) 和 (4) 通常僅限於非常短暫的暴露持續時間,而眼睛保護裝置旨在防止這些急性損傷。 然而,如上文 (2) 中所述的光化學損傷可能是由於整個工作日的低劑量率造成的。 劑量率和暴露持續時間的乘積總是導致劑量(劑量決定了光化學危害的程度)。 與任何光化學損傷機制一樣,必須考慮作用光譜,它描述了不同波長在引起光生物學效應方面的相對有效性。 例如,光化學視網膜損傷的作用光譜在大約 440 nm 處達到峰值(Ham 1989)。 大多數光化學效應僅限於非常窄的波長范圍; 而熱效應可以發生在光譜中的任何波長。 因此,針對這些特定效果的眼睛保護只需要阻擋相對較窄的光譜帶才能有效。 通常,在寬帶光源的眼睛保護中,必須過濾一​​個以上的光譜帶。

光輻射源

陽光

最大的職業性光輻射暴露是戶外工作人員暴露在陽光下造成的。 太陽光譜從紫外線波段的平流層臭氧層截止波長約 290-295 nm 延伸到紅外波段的至少 5,000 nm(5 μm)。 太陽輻射可達 1 kW/m2 在夏季。 它會導致熱應激,具體取決於環境空氣溫度和濕度。

人工來源

人類暴露於光輻射的最重要的人工來源包括:

  1. 焊接和切割。 焊工及其同事通常不僅會暴露在強烈的紫外線輻射下,還會暴露在電弧發出的強烈可見光和紅外輻射下。 在極少數情況下,這些來源會對眼睛的視網膜造成急性損傷。 在這些環境中必須保護眼睛。
  2. 金屬工業和鑄造廠。 可見光和紅外線照射的最重要來源是鋼鐵和鋁工業以及鑄造廠中熔融和高溫的金屬表面。 工人接觸的範圍通常為 0.5 至 1.2 kW/m2.
  3. 弧光燈。 許多工業和商業過程,例如涉及光化學固化燈的過程,都會發出強烈的短波可見(藍光)光以及紫外線和紅外線輻射。 雖然由於屏蔽而有害暴露的可能性很低,但在某些情況下可能會發生意外暴露。
  4. 紅外燈。 這些燈主要在 IRA 範圍內發射,通常用於熱處理、油漆乾燥和相關應用。 這些燈不會對人類造成任何顯著的暴露危害,因為暴露時產生的不適會將暴露限制在安全水平。
  5. 藥物治療。 紅外燈在物理醫學中用於各種診斷和治療目的。 根據治療的類型,對患者的照射有很大差異,工作人員需要小心使用紅外線燈。
  6. 一般照明。 熒光燈發出的紅外線非常少,通常亮度不足以對眼睛造成潛在危害。 鎢和鎢-鹵素白熾燈在紅外線中發射大部分輻射能。 此外,如果人盯著燈絲看,鹵鎢燈發出的藍光會對視網膜造成危害。 幸運的是,眼睛對強光的厭惡反應即使在短距離內也能防止急性傷害。 在這些燈上放置玻璃“熱”過濾器應該可以最大限度地減少/消除這種危險。
  7. 光學投影儀和其他設備。 強光源用於探照燈、電影放映機和其他光束准直設備。 這些可能會對非常近距離的直射光束造成視網膜危害。

 

源屬性的測量

任何光源最重要的特性是其光譜功率分佈。 這是使用分光輻射計測量的,該分光輻射計由合適的輸入光學器件、單色儀和光電探測器組成。

在許多實際情況下,寬帶光輻射計用於選擇給定的光譜區域。 出於可見照明和安全目的,儀器的光譜響應將被定制以遵循生物光譜響應; 例如,照度計適用於眼睛的適光(視覺)反應。 通常,除了UVR危害測量儀,強光源和紅外光源的測量和危害分析對於常規的職業健康和安全專家來說過於復雜。 燈的安全類別標準化正在取得進展,因此將不需要用戶進行測量來確定潛在危險。

人體接觸限值

根據人眼的光學參數和光源輻射的知識,可以計算視網膜的輻照度(劑量率)。 人眼的前部結構暴露於紅外輻射也可能很有趣,還應牢記光源的相對位置和眼瞼閉合程度會極大地影響眼睛暴露的正確計算劑量。 對於紫外線和短波長光曝光,光源的光譜分佈也很重要。

許多國家和國際組織已經推薦了光輻射的職業暴露限值 (EL)(ACGIH 1992 和 1994;Sliney 1992)。 儘管大多數此類團體都推薦了用​​於紫外線和激光輻射的 EL,但只有一個團體推薦了用於可見輻射(即光)的 EL,即 ACGIH,這是職業健康領域的一家知名機構。 ACGIH 將其 EL 稱為閾限值或 TLV, 由於這些每年發布一次,因此有機會進行年度修訂(ACGIH 1992 和 1995)。 它們在很大程度上基於來自動物研究的眼部損傷數據以及來自觀察太陽和焊接電弧導致的人類視網膜損傷的數據。 TLV 還基於這樣一個基本假設,即暴露於可見輻射能的室外環境通常不會對眼睛造成危害,除非是在非常不尋常的環境中,例如雪地和沙漠,或者當人們真正將眼睛固定在太陽上時。

光輻射安全評估

由於全面的危害評估需要對光源的光譜輻照度和輻射度進行複雜的測量,有時還需要非常專業的儀器和計算,因此工業衛生學家和安全工程師很少在現場進行。 相反,要部署的眼睛保護設備是危險環境中安全法規的強制要求。 研究評估了範圍廣泛的電弧、激光和熱源,以便為實用、易於應用的安全標準制定廣泛的建議。

保護措施

職業暴露於可見光和紅外線輻射很少有危險,通常是有益的。 然而,有些光源會發出相當多的可見輻射,在這種情況下會引起自然的厭惡反應,因此眼睛意外過度曝光的可能性很小。 另一方面,在人造光源僅發射近紅外輻射的情況下,意外暴露很可能發生。 可採取的措施盡量減少工作人員不必要地暴露於紅外輻射,包括對使用中的光學系統進行適當的工程設計,佩戴合適的護目鏡或面罩,限制與工作直接相關的人員接觸,並確保工作人員了解與暴露於強可見光和紅外輻射源相關的潛在危害。 更換弧光燈的維護人員必須經過充分培訓,以防止接觸危險。 工人出現皮膚紅斑或光性角膜炎是不可接受的。 如果確實發生這些情況,則應檢查工作實踐並採取措施以確保將來不太可能發生過度暴露。 就懷孕的完整性而言,懷孕的操作員不會面臨光輻射的特定風險。

護目鏡設計及標準

隨著 Crooke 玻璃的開發,本世紀初開始設計用於焊接和其他存在工業光輻射源(例如,鑄造工作、鋼鐵和玻璃製造)的護目鏡。 後來發展起來的護目鏡標準遵循的一般原則是,由於視覺不需要紅外線和紫外線輻射,因此應使用現有的玻璃材料盡可能地阻擋這些光譜帶。

眼部防護設備的經驗標准在 1970 年代進行了測試,結果表明,當根據當前的職業暴露限制測試傳輸係數時,它包括了很大的紅外線和紫外線輻射安全係數,而藍光的防護係數就足夠了。 部分標準的要求因此進行了調整。

紫外線和紅外線輻射防護

許多專用紫外燈在工業上用於熒光檢測和油墨、塑料樹脂、牙科聚合物等的光固化。 儘管 UVA 來源通常不會帶來什麼風險,但這些來源可能含有微量的有害 UVB 或造成失能眩光問題(來自眼睛晶狀體的熒光)。 具有非常高衰減係數的玻璃或塑料紫外線濾鏡被廣泛使用,以防止整個紫外線光譜。 如果對 400 nm 提供保護,則可能會檢測到輕微的淡黃色。 對於此類眼鏡(以及工業太陽鏡)來說,為周邊視野提供保護至關重要。 側護罩或環繞式設計對於防止暫時的傾斜光線聚焦到晶狀體的鼻赤道區域很重要,皮質性白內障經常起源於此。

幾乎所有的玻璃和塑料鏡片材料都能阻擋 300 納米以下的紫外線輻射和波長大於 3,000 納米(3 微米)的紅外線輻射,對於少數激光和光源,普通的耐衝擊透明安全眼鏡將提供良好的保護(例如,透明聚碳酸酯鏡片可有效阻擋大於 3 μm 的波長)。 然而,必須添加吸收劑,例如玻璃中的金屬氧化物或塑料中的有機染料,以消除高達約 380–400 nm 的紫外線和超過 780 nm 至 3 μm 的紅外線。 根據材料的不同,這可能很容易,也可能非常困難或昂貴,並且吸收器的穩定性可能會有所不同。 符合美國國家標準協會 ANSI Z87.1 標準的濾波器必須在每個關鍵光譜帶中具有適當的衰減係數。

各行業防護

消防

消防員可能會暴露在強烈的近紅外輻射中,除了至關重要的頭部和麵部保護外,IRR 衰減過濾器也經常被使用。 在這裡,衝擊保護也很重要。

鑄造和玻璃工業眼鏡

專為保護眼睛免受紅外輻射而設計的眼鏡和護目鏡通常具有淡綠色調,但如果需要一些舒適度以防止可見輻射,則色調可能會更深。 此類護目鏡不應與鋼鐵和鑄造作業中使用的藍色鏡片相混淆,後者的目的是目視檢查熔化物的溫度; 這些藍色眼鏡不提供保護,只能短暫佩戴。

焊接

通過氧化鐵等添加劑可以很容易地將紅外線和紫外線過濾特性賦予玻璃過濾器,但嚴格可見的衰減程度決定了 樹蔭數,這是衰減的對數表達式。 通常,氣焊使用 3 到 4 的遮光度(需要護目鏡),電弧焊和等離子弧操作使用 10 到 14 的遮光度(此處需要頭盔保護)。 經驗法則是,如果焊工發現電弧可以舒適地觀看,則可以提供足夠的衰減以防止眼部危害。 主管、焊工助手和工作區域中的其他人員可能需要色度數相對較低(例如 3 至 4)的過濾器,以防止光性角膜炎(“電弧眼”或“焊工閃光”)。 近年來一種新型的電焊濾光片——自動變光濾光片嶄露頭角。 無論濾光片的類型如何,都應符合 ANSI Z87.1 和 Z49.1 標準,用於指定用於深色陰影的固定焊接濾光片(Buhr 和 Sutter 1989;CIE 1987)。

自動變光焊接濾光片

自動變光焊接濾光片的陰影數隨著照射在其上的光輻射強度而增加,代表了焊工在更高效、更符合人體工程學的情況下生產始終如一的高質量焊縫的能力方面的重要進步。 以前,每次啟動和熄滅電弧時,焊工都必須降低和升高頭盔或過濾器。 焊工必須在引弧之前“盲目”工作。 此外,頭盔通常會隨著頸部和頭部的猛烈撞擊而降低和升高,這可能導致頸部拉傷或更嚴重的傷害。 面對這種不舒服且繁瑣的程序,一些焊工經常在抬高位置的傳統頭盔上啟動電弧,從而導致光性角膜炎。 在正常的環境照明條件下,戴上裝有自動變光濾光片的頭盔的焊工在佩戴護目鏡的情況下可以看得很清楚,可以執行諸如對齊待焊部件、精確定位焊接設備和引弧等任務。 在最典型的頭盔設計中,光傳感器幾乎在電弧閃光一出現就檢測到它,並指示電子驅動單元將液晶濾光片從淺色切換到預選的深色,從而無需笨拙和危險的操作使用固定遮光濾鏡練習的動作。

人們經常提出這樣一個問題,即自動變暗濾鏡是否會產生安全隱患。 例如,工作場所出現的殘像(“閃光失明”)是否會導致永久性視力受損? 新型過濾器是否真的提供了與傳統固定過濾器所能提供的保護程度相當或更好的保護程度? 儘管可以肯定地回答第二個問題,但必須明白並非所有自動暗化濾鏡都是等效的。 過濾器反應速度、在給定光照強度下達到的明暗度值,以及每個單元的重量可能因設備的一種模式而異。 設備性能的溫度依賴性、遮陽程度隨電池退化的變化、“靜止狀態遮陽”和其他技術因素因每個製造商的設計而異。 這些考慮因素正在新標準中得到解決。

由於所有系統都提供了足夠的過濾器衰減,自動變暗過濾器製造商指定的最重要的一個屬性是過濾器切換的速度。 當前的自動變暗濾波器的切換速度從十分之一秒到快於 1/10,000 秒不等。 Buhr 和 Sutter (1989) 指出了一種指定最大切換時間的方法,但他們的公式隨著切換的時間進程而變化。 開關速度是至關重要的,因為它為最重要(但未指定)的測量提供了最好的線索,即與相同工作色號的固定濾光片所允許的光相比,當電弧被擊中時有多少光進入眼睛. 如果白天每次開關時有太多光線進入眼睛,累積的光能劑量會產生“短暫適應”和抱怨“眼睛疲勞”等問題。 (瞬時適應是指光環境突然變化引起的視覺體驗,其特徵可能是不適、暴露在強光下的感覺和暫時失去詳細視覺。)當前產品的切換速度為 0.1 毫秒左右將更好地提供足夠的保護以防止光性視網膜炎。 然而,最短的切換時間(大約 1985 毫秒)具有減少瞬態適應效應的優勢(Eriksen 1992 年;Sliney XNUMX 年)。

沒有廣泛的實驗室測試,焊工可以使用簡單的檢查測試。 有人可能會建議焊工,他或她只需通過多個自動變暗過濾器查看一頁詳細打印。 這將指示每個過濾器的光學質量。 接下來,可能會要求焊工嘗試引弧,同時通過考慮購買的每個過濾器觀察它。 幸運的是,人們可以相信這樣一個事實,即為了觀看目的而舒適的光照水平不會造成危險。 應在製造商的規格表中檢查 UV 和 IR 過濾的有效性,以確保過濾掉不需要的波段。 幾次重複的引弧應該讓焊工了解瞬態適應是否會帶來不適,儘管一天的試驗是最好的。

自動變光濾光片的靜止或故障狀態陰影數(電池失效時出現故障狀態)應為焊工的眼睛提供至少一到幾秒的 100% 保護。 一些製造商使用黑暗狀態作為“關閉”位置,而其他製造商則使用介於黑暗和淺色狀態之間的中間陰影。 在任何一種情況下,過濾器的靜止狀態透射率都應明顯低於淺色透射率,以排除視網膜危害。 在任何情況下,該設備都應向用戶提供清晰明了的指示器,指示何時關閉過濾器或何時發生系統故障。 這將確保在過濾器未打開或焊接開始前未正常運行的情況下提前警告焊工。 其他功能,例如電池壽命或極端溫度條件下的性能,可能對某些用戶很重要。

結論

儘管保護眼睛免受光輻射源影響的設備的技術規格可能看起來有些複雜,但存在指定色號的安全標準,並且這些標準為佩戴者提供了保守的安全係數。

 

上一頁

更多內容 11330 最後修改於 24 年 2011 月 19 日星期三 38:XNUMX
更多此類別中: “ 紅外輻射 激光器 »

" 免責聲明:國際勞工組織不對本門戶網站上以英語以外的任何其他語言呈現的內容負責,英語是原始內容的初始製作和同行評審所使用的語言。自此以來,某些統計數據尚未更新百科全書第 4 版的製作(1998 年)。”

內容

輻射:非電離參考

艾倫,SG。 1991. 射頻場測量和危害評估。 J Radiol Protect 11:49-62。

美國政府工業衛生學家會議 (ACGIH)。 1992. 閾限值文檔。 俄亥俄州辛辛那提:ACGIH。

—. 1993. 化學物質和物理因素的閾限值以及生物暴露指數。 俄亥俄州辛辛那提:ACGIH。

—. 1994a. ACGIH 物理試劑閾值委員會的年度報告。 俄亥俄州辛辛那提:ACGIH。

—. 1994b。 1994-1995 年 TLV、閾限值和生物暴露指數。 俄亥俄州辛辛那提:ACGIH。

—. 1995. 1995-1996 化學物質和物理因素的閾限值和生物暴露指數。 俄亥俄州辛辛那提:ACGIH。

—. 1996. TLVs© 和 BEIs©。 化學物質和物理因素的閾限值; 生物暴露指數。 俄亥俄州辛辛那提:ACGIH。

美國國家標準協會 (ANSI)。 1993. 安全使用激光。 標準號 Z-136.1。 紐約:ANSI。

Aniolczyk, R. 1981。透熱療法、焊機和感應加熱器環境中電磁場衛生評估的測量。 Medycina Pracy 32:119-128。

Bassett、CAL、SN Mitchell 和 SR Gaston。 1982. 未癒合骨折和失敗的關節固定術中的脈衝電磁場治療。 J Am Med Assoc 247:623-628。

Bassett、CAL、RJ Pawluk 和 AA Pilla。 1974. 通過電感耦合電磁場增強骨修復。 科學 184:575-577。

Berger, D、F Urbach 和 RE Davies。 1968. 紫外線引起的紅斑作用譜。 在初步報告十三。 Congressus Internationalis Dermatologiae,慕尼黑,由 W Jadassohn 和 CG Schirren 編輯。 紐約:施普林格出版社。

伯恩哈特,JH。 1988a. 電場和磁場的頻率相關限制的建立和間接影響的評估。 Rad Envir Biophys 27:1。

Bernhardt、JH 和 R Matthes。 1992. ELF 和 RF 電磁源。 在非電離輻射防護中,由 MW Greene 編輯。 溫哥華:UBC 出版社。

Bini、M、A Checccucci、A Ignesti、L Millanta、R Olmi、N Rubino 和 R Vanni。 1986 年,工人暴露在從塑料封口機洩漏的強射頻電場中。 J 微波功率 21:33-40。

Buhr、E、E Sutter 和荷蘭衛生委員會。 1989. 保護裝置的動態過濾器。 在醫學和生物學中激光輻射的劑量學,由 GJ Mueller 和 DH Sliney 編輯。 華盛頓州貝靈厄姆:SPIE。

放射衛生局。 1981. 視頻顯示終端的輻射評估。 馬里蘭州羅克維爾:放射衛生局。

Cleuet, A 和 A Mayer。 1980. Risques liés à l'utilisation industrielle des lasers。 在 Institut National de Recherche et de Sécurité,Cahiers de Notes Documentaires,No. 99 Paris:Institut National de Recherche et de Sécurité。

Coblentz、WR、R Stair 和 JM Hogue。 1931. 皮膚與紫外線輻射的光譜紅斑關係。 在美利堅合眾國華盛頓特區國家科學院院刊:美國國家科學院。

Cole、CA、DF Forbes 和 PD Davies。 1986. UV 光致癌的作用光譜。 光化學光生物學 43(3):275-284。

國際照明委員會 (CIE)。 1987. 國際照明詞彙。 維也納:CIE。

Cullen、AP、BR Chou、MG Hall 和 SE Jany。 1984. 紫外線-B 損害角膜內皮。 Am J Optom Phys Opt 61(7):473-478。

Duchene、A、J Lakey 和 M Repacholi。 1991. IRPA 非電離輻射防護指南。 紐約:佩加蒙。

Elder、JA、PA Czerki、K Stuchly、K Hansson Mild 和 AR Sheppard。 1989. 射頻輻射。 在非電離輻射防護中,由 MJ Suess 和 DA Benwell-Morison 編輯。 日內瓦:世界衛生組織。

Eriksen, P. 1985。MIG 焊接電弧點火的時間分辨光譜。 Am Ind Hyg Assoc J 46:101-104。

Everett, MA, RL Olsen 和 RM Sayer。 1965. 紫外線紅斑。 Arch Dermatol 92:713-719。

Fitzpatrick、TB、MA Pathak、LC Harber、M Seiji 和 A Kukita。 1974. 陽光和人,正常和異常的光生物學反應。 東京:大學。 東京出版社。

福布斯、PD 和 PD Davies。 1982. 影響光致癌的因素。 第一章7 in Photoimmunology,由 JAM Parrish、L Kripke 和 WL Morison 編輯。 紐約:全會。

弗里曼、RS、DW 歐文斯、JM 諾克斯和 HT 哈德森。 1966. 皮膚對太陽光譜中紫外線單色波長的紅斑反應的相對能量需求。 J Invest Dermatol 47:586-592。

Grandolfo、M 和 K Hansson Mild。 1989. 全球公共和職業射頻和微波保護。 在電磁生物相互作用中。 機制、安全標準、保護指南,由 G Franceschetti、OP Gandhi 和 M Grandolfo 編輯。 紐約:全會。

格林,兆瓦。 1992. 非電離輻射。 第二屆國際非電離輻射研討會,2 月 10-14 日,溫哥華。

火腿,WTJ。 1989. 激光和其他光源產生的藍光和近紫外線視網膜病變的光病理學和性質。 在激光在醫學和生物學中的應用,由 ML Wolbarsht 編輯。 紐約:全會。

Ham、WT、HA Mueller、JJ Ruffolo、D Guerry III 和 RK Guerry。 1982. 近紫外線輻射對無晶狀體猴視網膜損傷的作用光譜。 Am J Ophthalmol 93(3):299-306。

Hansson Mild, K. 1980。射頻電磁場的職業暴露。 Proc IEEE 68:12-17。

豪瑟,KW。 1928. 輻射生物學中波長的影響。 Strahlentherapie 28:25-44。

電氣和電子工程師協會 (IEEE)。 1990a. 射頻和微波的 IEEE COMAR 位置。 紐約:IEEE。

—. 1990b。 IEEE COMAR 關於暴露於 RF 密封器和電介質加熱器的電場和磁場的健康方面的立場聲明。 紐約:IEEE。

—. 1991. 關於人體暴露於 3 KHz 至 300 GHz 射頻電磁場的安全級別的 IEEE 標準。 紐約:IEEE。

國際非電離輻射防護委員會 (ICNIRP)。 1994. 靜態磁場暴露限制指南。 健康物理學 66:100-106。

—. 1995. 激光輻射人體暴露限值指南。

ICNIRP 聲明。 1996. 與使用手持無線電話和基站發射機有關的健康問題。 健康物理學,70:587-593。

國際電工委員會 (IEC)。 1993. IEC 標準第 825-1 號。 日內瓦:IEC。

國際勞工局 (ILO)。 1993a. 工頻電場和磁場防護。 職業安全與健康叢書,第 69 期。日內瓦:國際勞工組織。

國際輻射防護協會 (IRPA)。 1985. 人體暴露於激光輻射的限制指南。 健康物理學 48(2):341-359。

—. 1988a. 變更:建議對 IRPA 1985 激光輻射暴露限制指南進行微小更新。 健康物理學 54(5):573-573。

—. 1988b。 頻率範圍為 100 kHz 至 300 GHz 的射頻電磁場暴露限值指南。 健康物理 54:115-123。

—. 1989. 提議修改 IRPA 1985 準則中的紫外線輻射限制。 健康物理學 56(6):971-972。

國際輻射防護協會 (IRPA) 和國際非電離輻射委員會。 1990. 暴露於 50/60 Hz 電場和磁場限制的臨時指南。 健康物理學 58(1):113-122。

Kolmodin-Hedman、B、K Hansson Mild、E Jönsson、MC Anderson 和 A Eriksson。 1988. 塑料焊接機操作和暴露於射頻電磁場中的健康問題。 Int Arch Occup Environ Health 60:243-247。

Krause, N. 1986。人們在技術、醫學、研究和公共生活中暴露於靜態和隨時間變化的磁場:劑量學方面。 在靜態和極低頻磁場的生物效應中,由 JH Bernhardt 編輯。 慕尼黑:MMV Medizin Verlag。

Lövsund, P 和 KH 溫和。 1978. 一些感應加熱器附近的低頻電磁場。 斯德哥爾摩:斯德哥爾摩職業健康與安全委員會。

Lövsund、P、PA Oberg 和 SEG Nilsson。 1982. 電工鋼和焊接工業中的極低頻磁場。 無線電科學 17(5S):355-385。

Luckiesh、ML、L Holladay 和 AH Taylor。 1930. 未曬黑的人體皮膚對紫外線輻射的反應。 J Optic Soc Am 20:423-432。

McKinlay、AF 和 B Diffey。 1987. 人體皮膚紫外線誘發紅斑的參考作用光譜。 在人體暴露於紫外線輻射:風險和法規中,由 WF Passchier 和 BFM Bosnjakovic 編輯。 紐約:醫學摘錄部,愛思唯爾科學出版社。

McKinlay, A、JB Andersen、JH Bernhardt、M Grandolfo、KA Hossmann、FE van Leeuwen、K Hansson Mild、AJ Swerdlow、L Verschaeve 和 B Veyret。 歐盟委員會專家組的研究計劃提案。 與使用無線電話有關的可能的健康影響。 未發表的報告。

Mitbriet、IM 和 VD Manyachin。 1984. 磁場對骨骼修復的影響。 莫斯科,瑙卡,292-296。

國家輻射防護和測量委員會 (NCRP)。 1981. 射頻電磁場。 特性、數量和單位、生物物理相互作用和測量。 馬里蘭州貝塞斯達:NCRP。

—. 1986. 射頻電磁場的生物效應和暴露標準。 第 86 號報告。馬里蘭州貝塞斯達:NCRP。

國家輻射防護委員會 (NRPB)。 1992. 電磁場和癌症風險。 卷。 3(1)。 英國奇爾頓:NRPB。

—. 1993. 人體暴露於靜態和時變電磁場和輻射的限制。 英國迪德科特:NRPB。

國家研究委員會 (NRC)。 1996. 暴露於住宅電場和磁場可能對健康產生的影響。 華盛頓:NAS 出版社。 314.

奧爾森,EG 和 A Ringvold。 1982. 人角膜內皮和紫外線輻射。 Acta Ophthalmol 60:54-56。

Parrish、JA、KF Jaenicke 和 RR Anderson。 1982. 紅斑和黑素生成:正常人體皮膚的作用光譜。 Photochem Photobiol 36(2):187-191。

Passchier、WF 和 BFM Bosnjakovic。 1987. 人體暴露於紫外線輻射:風險和法規。 紐約:Excerpta Medica Division,Elsevier Science Publishers。

皮茨,DG。 1974. 人體紫外線作用光譜。 Am J Optom Phys Opt 51(12):946-960。

皮茨、DG 和 TJ Tredici。 1971. 紫外線對眼睛的影響。 Am Ind Hyg Assoc J 32(4):235-246。

Pitts、DG、AP Cullen 和 PD Hacker。 1977a. 295 至 365nm 的紫外線輻射對眼睛的影響。 Invest Ophthalmol Vis Sci 16(10):932-939。

—. 1977b。 兔眼中 295 至 400nm 的紫外線效應。 俄亥俄州辛辛那提:國家職業安全與健康研究所 (NIOSH)。

Polk、C 和 E Postow。 1986. CRC 電磁場生物效應手冊。 博卡拉頓:CRC 出版社。

雷帕喬利,MH。 1985. 視頻顯示終端——運營商應該關注嗎? Austalas Phys Eng Sci Med 8(2):51-61。

—. 1990. 暴露於 50760 Hz 電場和磁場導致的癌症:一場重大的科學辯論。 Austalas Phys Eng Sci Med 13(1):4-17。

Repacholi、M、A Basten、V Gebski、D Noonan、J Finnic 和 AW Harris。 1997. 暴露於 1 MHz 脈衝電磁場的 E-Pim900 轉基因小鼠的淋巴瘤。 輻射研究,147:631-640。

Riley、MV、S Susan、MI Peters 和 CA Schwartz。 1987. UVB 照射對角膜內皮的影響。 Curr Eye Res 6(8):1021-1033。

Ringvold, A. 1980a。 角膜和紫外線輻射。 Acta Ophthalmol 58:63-68。

—. 1980b。 房水和紫外線輻射。 Acta Ophthalmol 58:69-82。

—. 1983. 紫外線輻射引起的角膜上皮損傷。 Acta Ophthalmol 61:898-907。

Ringvold, A 和 M Davanger。 1985. 紫外線輻射引起的兔角膜基質的變化。 Acta Ophthalmol 63:601-606。

Ringvold、A、M Davanger 和 EG 奧爾森。 1982. 紫外線照射後角膜內皮的變化。 Acta Ophthalmol 60:41-53。

新澤西州羅伯茨和 SM 邁克爾森。 1985. 人體暴露於射頻輻射的流行病學研究:批判性回顧。 Int Arch Occup Environ Health 56:169-178。

Roy、CR、KH Joyner、HP Gies 和 MJ Bangay。 1984. 測量可視顯示終端 (VDT) 發出的電磁輻射。 Rad Prot Austral 2(1):26-30。

Scotto, J, TR Fears 和 GB Gori。 1980. 美國紫外線輻射的測量以及與皮膚癌數據的比較。 華盛頓特區:美國政府印刷局。

顯克微支、ZJ、RD Saunder 和 CI Kowalczuk。 1991. 暴露於非電離電磁場和輻射的生物效應。 11 極低頻電場和磁場。 英國迪德科特:國家輻射防護委員會。

Silverman, C. 1990。癌症和電磁場的流行病學研究。 在第一章17 in 電磁能的生物效應和醫學應用,由 OP Gandhi 編輯。 新澤西州恩格爾伍德懸崖:Prentice Hall。

斯萊尼,DH。 1972. 用於紫外線輻射暴露標準的包絡作用光譜的優點。 Am Ind Hyg Assoc J 33:644-653。

—. 1986. 白內障發生的物理因素:環境紫外線輻射和溫度。 Invest Ophthalmol Vis Sci 27(5):781-790。

—. 1987. 估計人工晶狀體植入物的太陽紫外線輻射暴露。 J Cataract Refract Surg 13(5):296-301。

—. 1992. 新焊接過濾器的安全經理指南。 焊接 J 71(9):45-47。
Sliney、DH 和 ML Wolbarsht。 1980. 激光和其他光源的安全性。 紐約:全會。

Stenson, S. 1982. 色素性乾皮病的眼部發現:兩例報告。 Ann Ophthalmol 14(6):580-585。

Sterenborg、HJCM 和 JC van der Leun。 1987. 紫外線輻射致腫瘤的作用光譜。 在人體暴露於紫外線輻射:風險和法規中,由 WF Passchier 和 BFM Bosnjakovic 編輯。 紐約:Excerpta Medica Division,Elsevier Science Publishers。

Stuchly,媽媽。 1986. 人體暴露在靜態和時變磁場中。 健康物理 51(2):215-225。

Stuchly,MA 和 DW Lecuyer。 1985. 感應加熱和操作員暴露於電磁場。 健康物理學 49:693-700。

—. 1989. 電弧焊中的電磁場暴露。 健康物理學 56:297-302。

Szmigielski、S、M Bielec、S Lipski 和 G Sokolska。 1988. 暴露於低水平微波和射頻場的免疫學和癌症相關方面。 在現代生物電中,由 AA Mario 編輯。 紐約:Marcel Dekker。

Taylor、HR、SK West、FS Rosenthal、B Munoz、HS Newland、H Abbey 和 EA Emmett。 1988. 紫外線輻射對白內障形成的影響。 新英格蘭醫學雜誌 319:1429-1433。

告訴,RA。 1983. 電磁場測量儀器:設備、校準和選定應用。 在非電離輻射、射頻和微波能量的生物效應和劑量學中,由 M Grandolfo、SM Michaelson 和 A Rindi 編輯。 紐約:全會。

Urbach, F. 1969。紫外線輻射的生物學效應。 紐約:佩加蒙。

世界衛生組織 (WHO)。 1981. 射頻和微波。 環境健康標準,第 16 號。 日內瓦:世界衛生組織。

—. 1982. 激光和光輻射。 環境衛生標準,第 23 號。日內瓦:世界衛生組織。

—. 1987. 磁場。 環境健康標準,第 69 號。 日內瓦:世界衛生組織。

—. 1989. 非電離輻射防護。 哥本哈根:世衛組織歐洲區域辦事處。

—. 1993. 電磁場 300 Hz 至 300 GHz。 環境衛生標準,第 137 號。日內瓦:世界衛生組織。

—. 1994. 紫外線輻射。 環境衛生標準,第 160 號。日內瓦:世界衛生組織。

世界衛生組織 (WHO)、聯合國環境規劃署 (UNEP) 和國際輻射防護協會 (IRPA)。 1984. 極低頻 (ELF)。 環境衛生標準,第 35 號。日內瓦:世界衛生組織。

Zaffanella、LE 和 DW DeNo。 1978. 超高壓傳輸線的靜電和電磁效應。 加利福尼亞州帕洛阿爾托:電力研究所。

Zuclich、JA 和 JS Connolly。 1976. 近紫外激光輻射引起的眼部損傷。 Invest Ophthalmol Vis Sci 15(9):760-764。