stampa questa pagina
Domenica, Gennaio 16 2011 18: 49

Valutazione della tossicità genetica

Vota questo gioco
(Voto 1)

La valutazione della tossicità genetica è la valutazione degli agenti per la loro capacità di indurre uno dei tre tipi generali di cambiamenti (mutazioni) nel materiale genetico (DNA): genico, cromosomico e genomico. In organismi come gli esseri umani, i geni sono composti da DNA, che consiste di singole unità chiamate basi nucleotidiche. I geni sono disposti in strutture fisiche discrete chiamate cromosomi. La genotossicità può provocare effetti significativi e irreversibili sulla salute umana. Il danno genotossico è un passaggio critico nell'induzione del cancro e può anche essere coinvolto nell'induzione di difetti alla nascita e morte fetale. Le tre classi di mutazioni sopra menzionate possono verificarsi all'interno di uno dei due tipi di tessuti posseduti da organismi come gli esseri umani: spermatozoi o uova (cellule germinali) e il tessuto rimanente (cellule somatiche).

I test che misurano la mutazione genica sono quelli che rilevano la sostituzione, l'aggiunta o la delezione di nucleotidi all'interno di un gene. I test che misurano la mutazione cromosomica sono quelli che rilevano rotture o riarrangiamenti cromosomici che coinvolgono uno o più cromosomi. I test che misurano la mutazione genomica sono quelli che rilevano i cambiamenti nel numero di cromosomi, una condizione chiamata aneuploidia. La valutazione della tossicità genetica è cambiata notevolmente dallo sviluppo da parte di Herman Muller nel 1927 del primo test per rilevare agenti genotossici (mutageni). Da allora sono stati sviluppati più di 200 test che misurano le mutazioni nel DNA; tuttavia, oggi vengono utilizzati comunemente meno di dieci test per la valutazione della tossicità genetica. Questo articolo esamina questi test, descrive ciò che misurano ed esplora il ruolo di questi test nella valutazione della tossicità.

Identificazione dei rischi di cancroPrima dello sviluppo del Campo di tossicologia genetica

La tossicologia genetica è diventata parte integrante del processo complessivo di valutazione del rischio e negli ultimi tempi ha guadagnato importanza come predittore affidabile dell'attività cancerogena. Tuttavia, prima dello sviluppo della tossicologia genetica (prima del 1970), altri metodi erano e sono tuttora utilizzati per identificare potenziali rischi di cancro per l'uomo. Esistono sei principali categorie di metodi attualmente utilizzati per identificare i rischi di cancro nell'uomo: studi epidemiologici, saggi biologici in vivo a lungo termine, saggi biologici in vivo a medio termine, saggi biologici in vivo e in vitro a breve termine, intelligenza artificiale (struttura-attività), e inferenza basata sui meccanismi.

La tabella 1 fornisce vantaggi e svantaggi per questi metodi.

Tabella 1. Vantaggi e svantaggi dei metodi attuali per l'identificazione dei rischi di cancro nell'uomo

  Vantaggi Svantaggi
Studi epidemiologici (1) gli esseri umani sono i massimi indicatori di malattia;
(2) valutare le popolazioni sensibili o suscettibili;
(3) coorti di esposizione professionale; (4) allarmi sentinella ambientale
(1) generalmente retrospettivo (certificati di morte, bias di richiamo, ecc.); (2) insensibile, costoso, lungo; (3) dati affidabili sull'esposizione a volte non disponibili o difficili da ottenere; (4) esposizioni combinate, multiple e complesse; mancanza di adeguate coorti di controllo; (5) esperimenti sugli esseri umani non fatti; (6) rilevamento del cancro, non prevenzione
Saggi biologici in vivo a lungo termine (1) valutazioni prospettiche e retrospettive (convalida); (2) eccellente correlazione con cancerogeni umani identificati; (3) livelli e condizioni di esposizione noti; (4) identifica la tossicità chimica e gli effetti cancerogeni; (5) risultati ottenuti in tempi relativamente brevi; (6) confronti qualitativi tra classi chimiche; (7) sistemi biologici integrativi e interattivi strettamente legati all'uomo (1) raramente replicato, ad alta intensità di risorse; (3) strutture limitate adatte a tali esperimenti; (4) dibattito sull'estrapolazione delle specie; (5) le esposizioni utilizzate sono spesso a livelli di gran lunga superiori a quelli sperimentati dall'uomo; (6) l'esposizione a una singola sostanza chimica non imita l'esposizione umana, che generalmente avviene a più sostanze chimiche contemporaneamente
Saggi biologici in vivo e in vitro a medio e breve termine (1) più rapido e meno costoso di altri test; (2) grandi campioni facilmente replicabili;
(3) vengono misurati i punti finali biologicamente significativi (mutazione, ecc.); (4) può essere utilizzato come analisi di screening per selezionare sostanze chimiche per analisi biologiche a lungo termine
(1) in vitro non completamente predittivo di in vivo; (2) solitamente organismo o organo specifico; (3) potenze non paragonabili a animali interi o umani
Associazioni struttura chimica-attività biologica (1) relativamente facile, rapido e poco costoso; (2) affidabile per alcune classi chimiche (ad esempio, nitrosammine e coloranti benzidinici); (3) sviluppato da dati biologici ma non dipendente da ulteriori sperimentazioni biologiche (1) non "biologico"; (2) molte eccezioni alle regole formulate; (3) retrospettiva e raramente (ma diventa) prospettica
Inferenze basate sui meccanismi (1) ragionevolmente accurato per determinate classi di sostanze chimiche; (2) consente di perfezionare le ipotesi; (3) può orientare le valutazioni del rischio verso popolazioni sensibili (1) meccanismi di cancerogenesi chimica indefiniti, multipli e probabilmente chimici o specifici per classe; (2) può non evidenziare eccezioni ai meccanismi generali

 

Basi razionali e concettuali per saggi di tossicologia genetica

Sebbene i tipi e i numeri esatti dei test utilizzati per la valutazione della tossicità genetica siano in continua evoluzione e varino da paese a paese, i più comuni includono test per (1) mutazione genica in batteri e/o cellule di mammifero in coltura e (2) mutazione cromosomica in cellule di mammifero in coltura e/o midollo osseo all'interno di topi viventi. Alcuni dei test all'interno di questa seconda categoria possono anche rilevare l'aneuploidia. Sebbene questi test non rilevino mutazioni nelle cellule germinali, vengono utilizzati principalmente a causa del costo aggiuntivo e della complessità dell'esecuzione dei test delle cellule germinali. Tuttavia, i test delle cellule germinali nei topi vengono utilizzati quando si desiderano informazioni sugli effetti delle cellule germinali.

Studi sistematici su un periodo di 25 anni (1970-1995), in particolare presso il National Toxicology Program degli Stati Uniti nella Carolina del Nord, hanno portato all'uso di un numero discreto di test per rilevare l'attività mutagena degli agenti. Il fondamento logico per valutare l'utilità dei saggi si basava sulla loro capacità di rilevare agenti che causano il cancro nei roditori e che si sospetta causino il cancro nell'uomo (cioè agenti cancerogeni). Questo perché gli studi degli ultimi decenni hanno indicato che le cellule tumorali contengono mutazioni in alcuni geni e che molti agenti cancerogeni sono anche mutageni. Pertanto, le cellule tumorali sono viste come contenenti mutazioni delle cellule somatiche e la cancerogenesi è vista come un tipo di mutagenesi delle cellule somatiche.

I test di tossicità genetica utilizzati più comunemente oggi sono stati selezionati non solo per il loro ampio database, il costo relativamente basso e la facilità di esecuzione, ma perché hanno dimostrato di rilevare molti roditori e, presumibilmente, agenti cancerogeni per l'uomo. Di conseguenza, i test di tossicità genetica vengono utilizzati per prevedere la potenziale cancerogenicità degli agenti.

Un importante sviluppo concettuale e pratico nel campo della tossicologia genetica è stato il riconoscimento che molti cancerogeni sono stati modificati dagli enzimi all'interno del corpo, creando forme alterate (metaboliti) che erano spesso la forma cancerogena e mutagena definitiva della sostanza chimica madre. Per duplicare questo metabolismo in una capsula di Petri, Heinrich Malling ha dimostrato che l'inclusione di un preparato di fegato di roditore conteneva molti degli enzimi necessari per eseguire questa conversione o attivazione metabolica. Pertanto, molti test di tossicità genetica eseguiti in piastre o provette (in vitro) impiegano l'aggiunta di preparazioni enzimatiche simili. Le preparazioni semplici sono chiamate mix S9 e le preparazioni purificate sono chiamate microsomi. Alcune cellule batteriche e di mammifero sono state ora geneticamente modificate per contenere alcuni dei geni di roditori o umani che producono questi enzimi, riducendo la necessità di aggiungere mix S9 o microsomi.

Saggi e tecniche di tossicologia genetica

I principali sistemi batterici utilizzati per lo screening della tossicità genetica sono il saggio di mutagenicità Salmonella (Ames) e, in misura molto minore, il ceppo WP2 di Escherichia coli. Gli studi della metà degli anni '1980 hanno indicato che l'uso di soli due ceppi del sistema Salmonella (TA98 e TA100) era sufficiente per rilevare circa il 90% dei mutageni conosciuti di Salmonella. Pertanto, questi due ceppi vengono utilizzati per la maggior parte degli scopi di screening; tuttavia, sono disponibili vari altri ceppi per test più approfonditi.

Questi saggi vengono eseguiti in vari modi, ma due procedure generali sono i saggi di incorporazione su piastra e di sospensione liquida. Nel saggio di incorporazione su piastra, le cellule, la sostanza chimica in esame e (se desiderato) l'S9 vengono aggiunti insieme in un agar liquefatto e versati sulla superficie di una piastra di agar petri. L'agar superiore si indurisce in pochi minuti e le piastre vengono incubate per due o tre giorni, dopodiché le cellule mutanti sono cresciute per formare gruppi di cellule visivamente rilevabili chiamate colonie, che vengono poi contate. Il terreno di agar contiene agenti selettivi o è composto da ingredienti tali che cresceranno solo le cellule appena mutate. Il test di incubazione con liquido è simile, tranne per il fatto che le cellule, l'agente del test e l'S9 vengono incubati insieme in un liquido che non contiene agar liquefatto, quindi le cellule vengono lavate via dall'agente del test e dall'S9 e seminate sull'agar.

Le mutazioni nelle cellule di mammifero in coltura vengono rilevate principalmente in uno dei due geni: hprt ed tk. Analogamente ai saggi batterici, le linee cellulari di mammifero (sviluppate da roditori o cellule umane) vengono esposte all'agente di prova in piastre o provette di coltura di plastica e quindi vengono seminate in piastre di coltura che contengono terreno con un agente selettivo che consente solo alle cellule mutanti di crescere . I saggi utilizzati a questo scopo includono il CHO/HPRT, il TK6 e il linfoma di topo L5178Y/TK+/- saggi. Vengono utilizzate anche altre linee cellulari contenenti varie mutazioni di riparazione del DNA e contenenti alcuni geni umani coinvolti nel metabolismo. Questi sistemi consentono il recupero di mutazioni all'interno del gene (mutazione genica) così come mutazioni che coinvolgono regioni del cromosoma che fiancheggiano il gene (mutazione cromosomica). Tuttavia, quest'ultimo tipo di mutazione viene recuperato in misura molto maggiore dal tk sistemi genici che dal hprt sistemi genici a causa della posizione del tk scomodo.

Analogamente al saggio di incubazione in liquido per la mutagenicità batterica, i saggi di mutagenicità su cellule di mammifero comportano generalmente l'esposizione delle cellule in piastre o provette di coltura in presenza dell'agente in esame e S9 per diverse ore. Le cellule vengono quindi lavate, coltivate per diversi giorni per consentire la degradazione dei prodotti genici normali (wild-type) e l'espressione e l'accumulo dei nuovi prodotti genici mutanti, quindi vengono seminate in un terreno contenente un agente selettivo che consente solo le cellule mutanti a crescere. Come i test batterici, le cellule mutanti crescono in colonie visivamente rilevabili che vengono poi contate.

La mutazione cromosomica è identificata principalmente mediante analisi citogenetiche, che comportano l'esposizione di roditori e/o cellule di roditori o umane in piastre di coltura a una sostanza chimica in esame, consentendo il verificarsi di una o più divisioni cellulari, la colorazione dei cromosomi e quindi l'esame visivo dei cromosomi attraverso un microscopio per rilevare alterazioni nella struttura o nel numero di cromosomi. Sebbene sia possibile esaminare una varietà di endpoint, i due attualmente accettati dalle agenzie di regolamentazione come i più significativi sono le aberrazioni cromosomiche e una sottocategoria chiamata micronuclei.

Sono necessarie una notevole formazione ed esperienza per valutare le cellule per la presenza di aberrazioni cromosomiche, rendendo questa procedura costosa in termini di tempo e denaro. Al contrario, i micronuclei richiedono poco addestramento e il loro rilevamento può essere automatizzato. I micronuclei appaiono come piccoli punti all'interno della cellula che sono distinti dal nucleo, che contiene i cromosomi. I micronuclei derivano dalla rottura del cromosoma o dall'aneuploidia. A causa della facilità di scoring dei micronuclei rispetto alle aberrazioni cromosomiche, e poiché studi recenti indicano che gli agenti che inducono aberrazioni cromosomiche nel midollo osseo di topi viventi generalmente inducono micronuclei in questo tessuto, i micronuclei sono ora comunemente misurati come un'indicazione della capacità di un agente per indurre la mutazione cromosomica.

Sebbene i test sulle cellule germinali siano utilizzati molto meno frequentemente rispetto agli altri test sopra descritti, sono indispensabili per determinare se un agente rappresenta un rischio per le cellule germinali, le cui mutazioni possono portare a effetti sulla salute nelle generazioni successive. I test delle cellule germinali più comunemente usati sono nei topi e coinvolgono sistemi che rilevano (1) traslocazioni ereditabili (scambi) tra i cromosomi (test di traslocazione ereditaria), (2) mutazioni geniche o cromosomiche che coinvolgono geni specifici (specifico visibile o biochimico-locus saggi) e (3) mutazioni che influenzano la vitalità (dosaggio letale dominante). Come per i saggi sulle cellule somatiche, il presupposto di lavoro con i saggi sulle cellule germinali è che si presume che gli agenti positivi in ​​questi saggi siano potenziali mutageni delle cellule germinali umane.

Stato attuale e prospettive future

Studi recenti hanno indicato che erano necessarie solo tre informazioni per rilevare circa il 90% di un insieme di 41 cancerogeni per roditori (cioè presunti cancerogeni per l'uomo e mutageni delle cellule somatiche). Questi includevano (1) la conoscenza della struttura chimica dell'agente, specialmente se contiene frazioni elettrofile (vedere la sezione sulle relazioni struttura-attività); (2) dati sulla mutagenicità della Salmonella; e (3) dati da un test di tossicità cronica di 90 giorni nei roditori (topi e ratti). In effetti, essenzialmente tutti gli agenti cancerogeni per l'uomo dichiarati dalla IARC sono rilevabili come mutageni utilizzando solo il test Salmonella e il test del micronucleo del midollo osseo di topo. L'uso di questi test di mutagenicità per rilevare potenziali agenti cancerogeni per l'uomo è ulteriormente supportato dalla scoperta che la maggior parte degli agenti cancerogeni per l'uomo è cancerogena sia nei ratti che nei topi (cancerogeni transspecie) e che la maggior parte degli agenti cancerogeni transspecie è mutagena nella Salmonella e/o induce micronuclei nel midollo osseo del topo.

Con i progressi nella tecnologia del DNA, il progetto sul genoma umano e una migliore comprensione del ruolo della mutazione nel cancro, si stanno sviluppando nuovi test di genotossicità che saranno probabilmente incorporati nelle procedure di screening standard. Tra questi c'è l'uso di cellule transgeniche e di roditori. I sistemi transgenici sono quelli in cui un gene di un'altra specie è stato introdotto in una cellula o in un organismo. Ad esempio, i topi transgenici sono ora in uso sperimentale che consentono il rilevamento della mutazione in qualsiasi organo o tessuto dell'animale, sulla base dell'introduzione di un gene batterico nel topo. Sono ora disponibili cellule batteriche, come Salmonella, e cellule di mammifero (comprese linee cellulari umane) che contengono geni coinvolti nel metabolismo di agenti cancerogeni/mutageni, come i geni P450. Analisi molecolare delle effettive mutazioni indotte nel transgene all'interno di roditori transgenici o all'interno di geni nativi come hprt, oppure è ora possibile analizzare i geni bersaglio all'interno della Salmonella, in modo da poter determinare l'esatta natura delle mutazioni indotte dalle sostanze chimiche, fornendo informazioni sul meccanismo d'azione della sostanza chimica e consentendo confronti con le mutazioni negli esseri umani presumibilmente esposti all'agente .

I progressi molecolari nella citogenetica ora consentono una valutazione più dettagliata delle mutazioni cromosomiche. Questi includono l'uso di sonde (piccoli pezzi di DNA) che si attaccano (ibridano) a geni specifici. I riarrangiamenti dei geni sul cromosoma possono quindi essere rivelati dalla posizione alterata delle sonde, che sono fluorescenti e facilmente visualizzabili come settori colorati sui cromosomi. Il test di elettroforesi su gel a singola cellula per la rottura del DNA (comunemente chiamato test "cometa") consente il rilevamento di rotture del DNA all'interno di singole cellule e può diventare uno strumento estremamente utile in combinazione con tecniche citogenetiche per rilevare il danno cromosomico.

Dopo molti anni di utilizzo e la generazione di un database ampio e sviluppato in modo sistematico, la valutazione della tossicità genetica può ora essere eseguita con pochi test a costi relativamente ridotti in un breve periodo di tempo (poche settimane). I dati prodotti possono essere utilizzati per prevedere la capacità di un agente di essere un roditore e, presumibilmente, cancerogeno per l'uomo/mutageno di cellule somatiche. Tale capacità consente di limitare l'introduzione nell'ambiente di agenti mutageni e cancerogeni e di sviluppare agenti alternativi non mutageni. Gli studi futuri dovrebbero portare a metodi ancora migliori con una maggiore predittività rispetto ai test attuali.

 

Di ritorno

Leggi 9006 volte Ultima modifica il Venerdì, Settembre 23 2011 16: 42