Imprimir esta página
Domingo, janeiro 16 2011 18: 56

Relacionamentos de atividade de estrutura

Classifique este artigo
(0 votos)

A análise de relações de atividade de estrutura (SAR) é a utilização de informações sobre a estrutura molecular de produtos químicos para prever características importantes relacionadas à persistência, distribuição, captação e absorção e toxicidade. SAR é um método alternativo de identificação de produtos químicos potencialmente perigosos, que promete ajudar indústrias e governos a priorizar substâncias para avaliação posterior ou para tomada de decisões em estágio inicial para novos produtos químicos. A toxicologia é um empreendimento cada vez mais caro e com uso intensivo de recursos. As crescentes preocupações sobre o potencial de produtos químicos causarem efeitos adversos em populações humanas expostas levaram as agências reguladoras e de saúde a expandir o alcance e a sensibilidade dos testes para detectar perigos toxicológicos. Ao mesmo tempo, os encargos reais e percebidos da regulamentação sobre a indústria provocaram preocupações quanto à praticidade dos métodos de teste de toxicidade e análise de dados. Atualmente, a determinação da carcinogenicidade química depende de testes de vida de pelo menos duas espécies, ambos os sexos, em várias doses, com análise histopatológica cuidadosa de múltiplos órgãos, bem como detecção de alterações pré-neoplásicas em células e órgãos-alvo. Nos Estados Unidos, estima-se que o bioensaio do câncer custe mais de US$ 3 milhões (dólares de 1995).

Mesmo com recursos financeiros ilimitados, o ônus de testar os cerca de 70,000 produtos químicos existentes hoje no mundo excederia os recursos disponíveis de toxicologistas treinados. Séculos seriam necessários para concluir até mesmo uma avaliação de primeiro nível desses produtos químicos (NRC 1984). Em muitos países, as preocupações éticas sobre o uso de animais em testes de toxicidade aumentaram, trazendo pressões adicionais sobre o uso de métodos padrão de teste de toxicidade. A SAR tem sido amplamente utilizada na indústria farmacêutica para identificar moléculas com potencial para uso benéfico no tratamento (Hansch e Zhang 1993). Na política ambiental e de saúde ocupacional, o SAR é usado para prever a dispersão de compostos no ambiente físico-químico e para rastrear novos produtos químicos para avaliação adicional de toxicidade potencial. Sob a Lei de Controle de Substâncias Tóxicas dos EUA (TSCA), a EPA tem usado desde 1979 uma abordagem SAR como uma “primeira triagem” de novos produtos químicos no processo de notificação pré-fabricação (PMN); A Austrália usa uma abordagem semelhante como parte de seu procedimento de notificação de novos produtos químicos (NICNAS). Nos EUA, a análise SAR é uma base importante para determinar se há uma base razoável para concluir que a fabricação, processamento, distribuição, uso ou descarte da substância apresentará um risco não razoável de danos à saúde humana ou ao meio ambiente, conforme exigido pela Seção 5(f) do TSCA. Com base nessa descoberta, a EPA pode exigir testes reais da substância sob a Seção 6 da TSCA.

Justificativa para SAR

A justificativa científica para SAR é baseada na suposição de que a estrutura molecular de um produto químico irá prever aspectos importantes de seu comportamento em sistemas físico-químicos e biológicos (Hansch e Leo 1979).

Processo SAR

O processo de revisão SAR inclui a identificação da estrutura química, incluindo formulações empíricas, bem como o composto puro; identificação de substâncias estruturalmente análogas; pesquisar bancos de dados e literatura para obter informações sobre análogos estruturais; e análise de toxicidade e outros dados sobre análogos estruturais. Em alguns casos raros, informações apenas sobre a estrutura do composto podem ser suficientes para apoiar algumas análises de SAR, com base em mecanismos de toxicidade bem compreendidos. Vários bancos de dados sobre SAR foram compilados, bem como métodos baseados em computador para previsão de estruturas moleculares.

Com esta informação, os seguintes endpoints podem ser estimados com SAR:

  • parâmetros físico-químicos: ponto de ebulição, pressão de vapor, solubilidade em água, coeficiente de partição octanol/água
  • parâmetros de destino biológico/ambiental: biodegradação, sorção do solo, fotodegradação, farmacocinética
  • parâmetros de toxicidade: toxicidade para organismos aquáticos, absorção, toxicidade aguda para mamíferos (teste de limite ou LD50), irritação dérmica, pulmonar e ocular, sensibilização, toxicidade subcrônica, mutagenicidade.

 

Deve-se observar que não existem métodos SAR para parâmetros de saúde importantes como carcinogenicidade, toxicidade para o desenvolvimento, toxicidade reprodutiva, neurotoxicidade, imunotoxicidade ou outros efeitos em órgãos-alvo. Isso se deve a três fatores: a falta de um grande banco de dados para testar as hipóteses de SAR, a falta de conhecimento dos determinantes estruturais da ação tóxica e a multiplicidade de células-alvo e mecanismos envolvidos nesses parâmetros (consulte “The United States abordagem para avaliação de risco de tóxicos reprodutivos e agentes neurotóxicos”). Algumas tentativas limitadas de utilizar o SAR para prever a farmacocinética usando informações sobre coeficientes de partição e solubilidade (Johanson e Naslund 1988). SAR quantitativo mais extenso foi feito para prever o metabolismo dependente de P450 de uma variedade de compostos e a ligação de moléculas semelhantes a dioxina e PCB ao receptor citosólico de “dioxina” (Hansch e Zhang 1993).

A SAR mostrou ter previsibilidade variável para alguns dos parâmetros listados acima, conforme mostrado na tabela 1. Esta tabela apresenta dados de duas comparações de atividade prevista com resultados reais obtidos por medição empírica ou teste de toxicidade. O SAR conduzido por especialistas da EPA dos EUA teve um desempenho pior para prever propriedades físico-químicas do que para prever atividades biológicas, incluindo biodegradação. Para endpoints de toxicidade, o SAR teve o melhor desempenho para prever a mutagenicidade. Ashby e Tennant (1991), em um estudo mais extenso, também encontraram boa previsibilidade de genotoxicidade de curto prazo em sua análise de produtos químicos NTP. Essas descobertas não são surpreendentes, dada a compreensão atual dos mecanismos moleculares de genotoxicidade (consulte “Toxicologia genética”) e o papel da eletrofilicidade na ligação do DNA. Em contraste, a SAR tendeu a subestimar a toxicidade sistêmica e subcrônica em mamíferos e superestimar a toxicidade aguda para organismos aquáticos.

Tabela 1. Comparação de SAR e dados de teste: análises OCDE/NTP

Ponto final Acordo (%) Discordância (%) Sessão
Ponto de ebulição 50 50 30
Pressão de vapor 63 37 113
Solubilidade em água 68 32 133
Coeficiente de partição 61 39 82
Biodegradação 93 7 107
Toxicidade dos peixes 77 22 130
Toxicidade Daphnia 67 33 127
Toxicidade aguda em mamíferos (LD50 ) 80 201 142
Irritação na pele 82 18 144
Irritação ocular 78 22 144
Sensibilização da pele 84 16 144
Toxicidade subcrônica 57 32 143
Mutagenicidade2 88 12 139
Mutagenicidade3 82-944 1-10 301
Carcinogenicidade3 : Bioensaio de dois anos 72-954 - 301

Fonte: Dados da OCDE, comunicação pessoal C. Auer, US EPA. Somente os endpoints para os quais previsões de SAR comparáveis ​​e dados de teste reais estavam disponíveis foram usados ​​nesta análise. Os dados NTP são de Ashby e Tennant 1991.

1 Preocupante foi a falha do SAR em prever a toxicidade aguda em 12% dos produtos químicos testados.

2 Dados da OCDE, com base na concordância do teste Ames com SAR

3 Dados de NTP, baseados em ensaios de genetox em comparação com previsões de SAR para várias classes de “produtos químicos de alerta estrutural”.

4 A concordância varia com a classe; maior concordância foi com compostos amino/nitro aromáticos; mais baixo com estruturas “miscelâneas”.

Para outros endpoints tóxicos, conforme observado acima, o SAR tem utilidade menos demonstrável. As previsões de toxicidade em mamíferos são complicadas pela falta de SAR para toxicocinética de moléculas complexas. No entanto, algumas tentativas foram feitas para propor princípios SAR para parâmetros complexos de toxicidade em mamíferos (por exemplo, ver Bernstein (1984) para uma análise SAR de potenciais tóxicos reprodutivos masculinos). Na maioria dos casos, o banco de dados é muito pequeno para permitir testes rigorosos de previsões baseadas em estrutura.

Neste ponto, pode-se concluir que o SAR pode ser útil principalmente para priorizar o investimento em recursos de teste de toxicidade ou para levantar preocupações iniciais sobre perigo potencial. Somente no caso de mutagenicidade é provável que a análise SAR por si só possa ser utilizada com confiabilidade para informar outras decisões. Para nenhum parâmetro, é provável que o SAR possa fornecer o tipo de informação quantitativa necessária para fins de avaliação de risco, conforme discutido em outra parte deste capítulo e enciclopédia.

 

Voltar

Leia 8520 vezes Última modificação na sexta-feira, 23 setembro 2011 17: 33