Одштампајте ову страну
Недеља, КСНУМКС јануар КСНУМКС КСНУМКС: КСНУМКС

Увод и концепти

Оцените овај артикал
(КСНУМКС гласова)

Механистичка токсикологија је студија о томе како хемијски или физички агенси интерагују са живим организмима да изазову токсичност. Познавање механизма токсичности неке супстанце побољшава способност спречавања токсичности и дизајнирања пожељнијих хемикалија; представља основу за терапију прекомерног излагања и често омогућава даље разумевање основних биолошких процеса. За потребе овога Енциклопедија нагласак ће бити стављен на животиње да би се предвидела токсичност за људе. Различите области токсикологије укључују механистичку, дескриптивну, регулаторну, форензичку и еколошку токсикологију (Клаассен, Амдур и Доулл 1991). Све ово има користи од разумевања основних механизама токсичности.

Зашто разумети механизме токсичности?

Разумевање механизма којим супстанца изазива токсичност побољшава различите области токсикологије на различите начине. Механистичко разумевање помаже владином регулатору да успостави правно обавезујуће безбедне границе за излагање људи. Помаже токсиколозима у препоруци правца деловања у вези са чишћењем или санацијом контаминираних места и, заједно са физичким и хемијским својствима супстанце или смеше, може се користити за одабир степена потребне заштитне опреме. Механистичко знање је такође корисно у формирању основе за терапију и дизајн нових лекова за лечење људских болести. За форензичког токсиколога механизам токсичности често пружа увид у то како хемијски или физички агенс може изазвати смрт или онеспособљење.

Ако се разуме механизам токсичности, дескриптивна токсикологија постаје корисна у предвиђању токсичних ефеката сродних хемикалија. Важно је схватити, међутим, да недостатак механичких информација не спречава здравствене раднике да заштите људско здравље. Разборите одлуке засноване на студијама на животињама и људском искуству се користе за утврђивање безбедних нивоа изложености. Традиционално, маргина сигурности је утврђена коришћењем „нивоа без штетних ефеката“ или „најнижег нивоа штетних ефеката“ из студија на животињама (користећи дизајне са поновљеном изложеношћу) и дељењем тог нивоа са фактором 100 за професионалну изложеност или 1,000 за друга изложеност људи животне средине. Успех овог процеса је очигледан из неколико инцидената штетних ефеката на здравље који се приписују излагању хемикалијама код радника где су у прошлости постављене и поштоване одговарајуће границе изложености. Поред тога, људски животни век наставља да расте, као и квалитет живота. Свеукупно коришћење података о токсичности довело је до ефикасне регулаторне и добровољне контроле. Детаљно познавање токсичних механизама ће побољшати предвидљивост новијих модела ризика који се тренутно развијају и резултираће сталним побољшањем.

Разумевање механизама животне средине је сложено и претпоставља познавање поремећаја екосистема и хомеостазе (равнотеже). Иако се о томе не говори у овом чланку, боље разумевање токсичних механизама и њихових крајњих последица у екосистему би помогло научницима да донесу мудре одлуке у вези са руковањем комуналним и индустријским отпадом. Управљање отпадом је растућа област истраживања и биће веома важно у будућности.

Технике проучавања механизама токсичности

Већина механичких студија почиње дескриптивном токсиколошком студијом на животињама или клиничким опсервацијама код људи. У идеалном случају, студије на животињама укључују пажљиво понашање и клиничка посматрања, пажљиво биохемијско испитивање елемената крви и урина на знакове штетне функције главних биолошких система у телу и постморталну процену свих система органа микроскопским прегледом да би се проверило да ли постоје повреда (видети смернице ОЕЦД-а за испитивање; директиве ЕЦ о процени хемикалија; правила тестирања ЕПА САД; прописе о хемикалијама Јапана). Ово је аналогно темељном физичком прегледу људи који би се обавио у болници током периода од два до три дана, осим обдукције.

Разумевање механизама токсичности је уметност и наука посматрања, креативност у одабиру техника за тестирање различитих хипотеза и иновативна интеграција знакова и симптома у узрочно-последичној вези. Механистичке студије почињу са излагањем, прате временску дистрибуцију и судбину у телу (фармакокинетика) и мере резултујући токсични ефекат на неком нивоу система и на неком нивоу дозе. Различите супстанце могу деловати на различитим нивоима биолошког система изазивајући токсичност.

Излагање

Пут излагања у механичким студијама је обично исти као код излагања људи. Пут је важан јер могу постојати ефекти који се јављају локално на месту излагања поред системских ефеката након што се хемикалија апсорбује у крв и дистрибуира по целом телу. Једноставан, али убедљив пример локалног ефекта би била иритација и евентуална корозија коже након наношења јаких киселих или алкалних раствора дизајнираних за чишћење тврдих површина. Слично томе, иритација и ћелијска смрт се могу јавити у ћелијама које облажу нос и/или плућа након излагања иритантним парама или гасовима као што су оксиди азота или озона. (Обоје су састојци загађења ваздуха или смога). Након апсорпције хемикалије у крв кроз кожу, плућа или гастроинтестинални тракт, концентрацију у било ком органу или ткиву контролишу многи фактори који одређују фармакокинетику хемикалије у телу. Тело има способност активирања и детоксикације разних хемикалија као што је наведено у наставку.

Улога фармакокинетике у токсичности

Фармакокинетика описује временске односе за хемијску апсорпцију, дистрибуцију, метаболизам (биохемијске промене у телу) и елиминацију или излучивање из тела. У односу на механизме токсичности, ове фармакокинетичке варијабле могу бити веома важне и у неким случајевима одређују да ли ће се токсичност појавити или неће. На пример, ако се материјал не апсорбује у довољној количини, неће доћи до системске токсичности (унутар тела). Супротно томе, високо реактивна хемикалија која се брзо (секунде или минуте) детоксифицира помоћу дигестивних или јетрених ензима можда неће имати времена да изазове токсичност. Неке полицикличне халогенисане супстанце и смеше, као и одређени метали као што је олово, не би изазвали значајну токсичност ако би излучивање било брзо; али акумулација до довољно високих нивоа одређује њихову токсичност пошто излучивање није брзо (понекад се мери годинама). На срећу, већина хемикалија се не задржава тако дуго у телу. Акумулација безопасног материјала и даље не би изазвала токсичност. Брзина елиминације из тела и детоксикације се често назива полуживотом хемикалије, што је време да се 50% хемикалије излучи или промени у нетоксични облик.

Међутим, ако се хемикалија акумулира у одређеној ћелији или органу, то може бити разлог за даље испитивање њене потенцијалне токсичности у том органу. Недавно су развијени математички модели за екстраполацију фармакокинетичких варијабли са животиња на људе. Ови фармакокинетички модели су изузетно корисни у генерисању хипотеза и тестирању да ли експериментална животиња може бити добра репрезентација за људе. О овој теми написана су бројна поглавља и текстови (Гехринг ет ал. 1976; Реитз ет ал. 1987; Нолан ет ал. 1995). Поједностављени пример физиолошког модела је приказан на слици 1.

Слика 1. Поједностављени фармакокинетички модел

ТОКС210Ф1

Могу негативно утицати на различите нивое и системе

Токсичност се може описати на различитим биолошким нивоима. Повреда се може проценити на целој особи (или животињи), органском систему, ћелији или молекулу. Системи органа обухватају имунолошки, респираторни, кардиоваскуларни, бубрежни, ендокрини, дигестивни, мусколо-скелетни, крвни, репродуктивни и централни нервни систем. Неки кључни органи укључују јетру, бубреге, плућа, мозак, кожу, очи, срце, тестисе или јајнике и друге главне органе. На ћелијском/биохемијском нивоу, нежељени ефекти укључују ометање нормалне функције протеина, функције ендокриних рецептора, инхибицију метаболичке енергије или инхибицију или индукцију ксенобиотских (страних супстанци) ензима. Нежељени ефекти на молекуларном нивоу укључују промену нормалне функције ДНК-РНК транскрипције, специфичног везивања за цитоплазматске и нуклеарне рецепторе и гена или генских производа. На крају, дисфункција у главном органском систему је вероватно узрокована молекуларном променом у одређеној циљној ћелији унутар тог органа. Међутим, није увек могуће пратити механизам уназад до молекуларног порекла узрочности, нити је то неопходно. Интервенција и терапија се могу осмислити без потпуног разумевања молекуларне мете. Међутим, знање о специфичном механизму токсичности повећава предиктивну вредност и тачност екстраполације на друге хемикалије. Слика 2 је дијаграмски приказ различитих нивоа на којима се може открити интерференција нормалних физиолошких процеса. Стрелице показују да се последице по појединца могу одредити одозго надоле (изложеност, фармакокинетика токсичности система/органа) или одоздо према горе (молекуларна промена, ћелијски/биохемијски ефекат до токсичности система/органа).

Слика 2. Репрезентација механизама токсичности

ТОКС210Ф2

Примери механизама токсичности

Механизми токсичности могу бити једноставни или веома сложени. Често постоји разлика између врсте токсичности, механизма токсичности и нивоа ефекта, у зависности од тога да ли су штетни ефекти последица појединачне, акутне високе дозе (попут случајног тровања) или ниже дозе. поновљено излагање (од професионалне изложености или изложености околини). Класично, у сврху тестирања, акутна, појединачна висока доза се даје директном интубацијом у стомак глодара или излагањем атмосфери гаса или паре у трајању од два до четири сата, шта год највише личи на излагање људи. Животиње се посматрају током периода од две недеље након излагања, а затим се прегледају главни спољни и унутрашњи органи на повреде. Тестирање поновљених доза се креће од месеци до година. За врсте глодара, две године се сматрају хроничном (доживотном) студијом која је довољна за процену токсичности и канцерогености, док би се за нељудске примате две године сматрале субхроничном (мање од животног века) студијом за процену токсичности поновљених доза. Након излагања, врши се комплетан преглед свих ткива, органа и течности како би се утврдили нежељени ефекти.

Механизми акутне токсичности

Следећи примери су специфични за високе дозе, акутне ефекте који могу довести до смрти или тешке онеспособљености. Међутим, у неким случајевима, интервенција ће довести до пролазних и потпуно реверзибилних ефеката. Доза или тежина изложености ће одредити резултат.

Једноставни асфиксанти. Механизам токсичности за инертне гасове и неке друге нереактивне супстанце је недостатак кисеоника (аноксија). Ове хемикалије, које узрокују недостатак кисеоника у централном нервном систему (ЦНС), називају се једноставни асфиксанти. Ако особа уђе у затворени простор који садржи азот без довољно кисеоника, долази до тренутног исцрпљивања кисеоника у мозгу и доводи до несвести и коначне смрти ако се особа брзо не уклони. У екстремним случајевима (близу нулте вредности кисеоника) може доћи до несвести за неколико секунди. Спасавање зависи од брзог уклањања у окружење богато кисеоником. Преживљавање са иреверзибилним оштећењем мозга може настати од одложеног спасавања, због одумирања неурона, који не могу да се регенеришу.

Хемијска средства за гушење. Угљенмоноксид (ЦО) се такмичи са кисеоником за везивање за хемоглобин (у црвеним крвним зрнцима) и стога лишава ткива кисеоника за енергетски метаболизам; може доћи до ћелијске смрти. Интервенција обухвата уклањање са извора ЦО и третман кисеоником. Директна употреба кисеоника заснива се на токсичном деловању ЦО. Још један снажан хемијски гушилац је цијанид. Јон цијанида омета ћелијски метаболизам и коришћење кисеоника за енергију. Третман натријум нитритом изазива промену хемоглобина у црвеним крвним зрнцима у метхемоглобин. Метхемоглобин има већи афинитет везивања за јон цијанида него ћелијска мета цијанида. Сходно томе, метхемоглобин везује цијанид и држи цијанид подаље од циљних ћелија. Ово чини основу за антидоталну терапију.

Депресиви централног нервног система (ЦНС).. Акутну токсичност карактерише седација или губитак свести за низ материјала као што су растварачи који нису реактивни или који се трансформишу у реактивне интермедијере. Претпоставља се да је седација/анестезија последица интеракције растварача са мембранама ћелија у ЦНС-у, што нарушава њихову способност да преносе електричне и хемијске сигнале. Иако седација може изгледати као благи облик токсичности и била је основа за развој раних анестетика, „доза и даље ствара отров”. Ако се довољна доза даје гутањем или удисањем, животиња може угинути услед застоја дисања. Ако не дође до смрти од анестетика, ова врста токсичности је обично лако реверзибилна када се субјект уклони из околине или се хемикалија редистрибуира или елиминише из тела.

Ефекти коже. Штетни ефекти на кожу могу варирати од иритације до корозије, у зависности од супстанце на коју се сусреће. Јаке киселине и алкални раствори су некомпатибилни са живим ткивом и корозивни су, изазивајући хемијске опекотине и могуће ожиљке. Ожиљци настају услед смрти дермалних, дубоких ћелија коже одговорних за регенерацију. Ниже концентрације могу само изазвати иритацију првог слоја коже.

Још један специфичан токсични механизам коже је хемијска сензибилизација. На пример, сензибилизација се јавља када се 2,4-динитрохлоробензен веже са природним протеинима у кожи и имуни систем препознаје измењени комплекс везан за протеине као страни материјал. Реагујући на ову страну материју, имуни систем активира посебне ћелије да елиминишу страну супстанцу ослобађањем медијатора (цитокина) који изазивају осип или дерматитис (погледајте „Имунотоксикологију“). Ово је иста реакција имуног система када дође до излагања отровном бршљану. Имунолошка сензибилизација је веома специфична за одређену хемикалију и потребна је најмање два излагања пре него што се изазове одговор. Прво излагање сензибилизира (подешава ћелије да препознају хемикалију), а накнадно излагање покреће одговор имуног система. Уклањање контакта и симптоматска терапија антиинфламаторним кремама које садрже стероиде обично су ефикасне у лечењу сензибилизованих појединаца. У озбиљним или рефракторним случајевима, системски делујући имуносупресив попут преднизона користи се у комбинацији са локалним лечењем.

Сензибилизација плућа. Толуен диизоцијанат (ТДИ) изазива имуни одговор на сензибилизацију, али циљно место су плућа. Прекомерно излагање ТДИ код осетљивих особа изазива едем плућа (нагомилавање течности), бронхијално стезање и оштећење дисања. Ово је озбиљно стање и захтева уклањање појединца из потенцијалног накнадног излагања. Лечење је првенствено симптоматско. Сензибилизација коже и плућа прати одговор на дозу. Прекорачење нивоа одређеног за професионалну изложеност може изазвати штетне ефекте.

Ефекти ока. Повреда ока се креће од црвенила спољашњег слоја (црвенило у базену) преко формирања катаракте на рожњачи до оштећења шаренице (обојени део ока). Тестови иритације очију се спроводе када се верује да неће доћи до озбиљне повреде. Многи механизми који изазивају корозију коже такође могу изазвати повреду очију. Материјали корозивни за кожу, попут јаких киселина (пХ мањи од 2) и алкалија (пХ већи од 11.5), нису тестирани у очима животиња јер ће већина изазвати корозију и слепило због механизма сличног оном који изазива корозију коже . Поред тога, површински активни агенси попут детерџената и сурфактаната могу изазвати повреде ока у распону од иритације до корозије. Група материјала која захтева опрез су позитивно наелектрисани (катјонски) сурфактанти, који могу изазвати опекотине, трајно замућење рожњаче и васкуларизацију (формирање крвних судова). Друга хемикалија, динитрофенол, има специфичан ефекат стварања катаракте. Чини се да је ово повезано са концентрацијом ове хемикалије у оку, што је пример фармакокинетичке дистрибуционе специфичности.

Иако је горенаведена листа далеко од исцрпне, она је дизајнирана да пружи читаоцу уважавање различитих механизама акутне токсичности.

Механизми субхроничне и хроничне токсичности

Када се дају као појединачна висока доза, неке хемикалије немају исти механизам токсичности као када се дају више пута као нижа, али и даље токсична доза. Када се даје једна велика доза, увек постоји могућност да се прекорачи способност особе да детоксикује или излучи хемикалију, а то може довести до другачијег токсичног одговора него када се дају мање дозе које се понављају. Алкохол је добар пример. Високе дозе алкохола доводе до примарних ефеката на централни нервни систем, док мање дозе које се понављају доводе до повреде јетре.

Инхибиција антихолинестеразе. Већина органофосфатних пестицида, на пример, има малу токсичност за сисаре док се метаболички не активирају, првенствено у јетри. Примарни механизам деловања органофосфата је инхибиција ацетилхолинестеразе (АЦхЕ) у мозгу и периферном нервном систему. АЦхЕ је нормални ензим који прекида стимулацију неуротрансмитера ацетилхолина. Лагана инхибиција АЦхЕ током дужег периода није повезана са нежељеним ефектима. При високим нивоима изложености, немогућност да се прекине ова неуронска стимулација доводи до прекомерне стимулације холинергичког нервног система. Холинергична прекомерна стимулација на крају доводи до низа симптома, укључујући респираторни застој, праћен смрћу ако се не лечи. Примарни третман је примена атропина, који блокира ефекте ацетилхолина, и примена пралидоксим хлорида, који реактивира инхибирани АЦхЕ. Стога се и узрок и третман токсичности органофосфата разматрају разумевањем биохемијске основе токсичности.

Метаболичка активација. Многе хемикалије, укључујући угљен-тетрахлорид, хлороформ, ацетиламинофлуорен, нитрозамине и паракват се метаболички активирају до слободних радикала или других реактивних интермедијера који инхибирају и ометају нормалну ћелијску функцију. При високим нивоима изложености ово доводи до смрти ћелије (погледајте „Повреда ћелије и ћелијска смрт“). Док специфичне интеракције и ћелијски циљеви остају непознати, системи органа који имају способност да активирају ове хемикалије, као што су јетра, бубрези и плућа, су потенцијалне мете за повреде. Конкретно, одређене ћелије унутар органа имају већи или мањи капацитет да активирају или детоксикују ове интермедијере, а овај капацитет одређује интрацелуларну осетљивост унутар органа. Метаболизам је један од разлога зашто је разумевање фармакокинетике, која описује ове врсте трансформација и дистрибуцију и елиминацију ових интермедијера, важно за препознавање механизма деловања ових хемикалија.

Механизми рака. Рак је мноштво болести, и док се разумевање одређених врста рака убрзано повећава због многих молекуларно биолошких техника које су развијене од 1980. године, има још много тога да се научи. Међутим, јасно је да је развој рака процес у више фаза, а критични гени су кључни за различите врсте рака. Промене у ДНК (соматске мутације) у великом броју ових критичних гена могу изазвати повећану осетљивост или канцерогене лезије (погледајте „Генетичка токсикологија”). Изложеност природним хемикалијама (у куваној храни попут говедине и рибе) или синтетичким хемикалијама (као што је бензидин, који се користи као боја) или физичким агенсима (ултраљубичасто светло од сунца, радон из земље, гама зрачење из медицинских процедура или индустријских активности) су све доприносе мутацијама соматских гена. Међутим, постоје природне и синтетичке супстанце (као што су антиоксиданти) и процеси поправке ДНК који штите и одржавају хомеостазу. Јасно је да је генетика важан фактор у настанку рака, пошто синдроми генетских болести као што је пигментна ксеродерма, где постоји недостатак нормалне поправке ДНК, драматично повећавају осетљивост на рак коже услед излагања ултраљубичастом зрачењу сунца.

Репродуктивни механизми. Слично као код рака, познати су многи механизми репродуктивне и/или развојне токсичности, али много тога треба научити. Познато је да ће одређени вируси (као што је рубеола), бактеријске инфекције и лекови (као што су талидомид и витамин А) негативно утицати на развој. Недавно, рад Кхере (1991), који је прегледао Царнеи (1994), показује добре доказе да се абнормални развојни ефекти у тестовима на животињама са етилен гликолом могу приписати метаболичким метаболитима код мајке. Ово се дешава када се етилен гликол метаболише у киселе метаболите укључујући гликолну и оксалну киселину. Чини се да су накнадни ефекти на плаценту и фетус последица овог процеса метаболичке токсичности.

Zakljucak

Намера овог чланка је да пружи перспективу о неколико познатих механизама токсичности и потреби за будућом студијом. Важно је схватити да механичко знање није апсолутно неопходно за заштиту здравља људи или животне средине. Ово знање ће побољшати способност стручњака да боље предвиди и управља токсичношћу. Стварне технике које се користе у разјашњавању било ког посебног механизма зависе од колективног знања научника и размишљања оних који доносе одлуке у вези са људским здрављем.

 

Назад

Читати 11107 пута Последња измена у уторак, 26. јула 2022. 19:33