Одштампајте ову страну
Недеља, КСНУМКС јануар КСНУМКС КСНУМКС: КСНУМКС

Ћелијска повреда и ћелијска смрт

Оцените овај артикал
(КСНУМКС гласова)

Практично цела медицина је посвећена или спречавању ћелијске смрти, код болести као што су инфаркт миокарда, можданог удара, трауме и шока, или њеном изазивању, као у случају заразних болести и рака. Стога је неопходно разумети природу и механизме који су укључени. Ћелијска смрт је класификована као „случајна“, односно узрокована токсичним агенсима, исхемијом и тако даље, или „програмирана“, као што се дешава током ембриолошког развоја, укључујући формирање цифара и ресорпцију репа пуноглавца.

Повреда ћелије и ћелијска смрт су, стога, важни и у физиологији и у патофизиологији. Физиолошка смрт ћелија је изузетно важна током ембриогенезе и ембрионалног развоја. Проучавање ћелијске смрти током развоја довело је до важних и нових информација о укљученој молекуларној генетици, посебно кроз проучавање развоја бескичмењака. Код ових животиња, прецизна локација и значај ћелија које су предодређене за ћелијску смрт су пажљиво проучаване и, уз коришћење класичних техника мутагенезе, сада је идентификовано неколико укључених гена. Код одраслих органа, равнотежа између ћелијске смрти и пролиферације ћелије контролише величину органа. У неким органима, као што су кожа и црева, постоји непрекидан обрт ћелија. У кожи, на пример, ћелије се диференцирају како стигну до површине и коначно пролазе кроз терминалну диференцијацију и ћелијску смрт док кератинизација наставља са формирањем умрежених омотача.

Многе класе токсичних хемикалија су способне да изазову акутне повреде ћелија праћене смрћу. То укључује аноксију и исхемију и њихове хемијске аналоге као што је калијум цијанид; хемијски карциногени, који формирају електрофиле који се ковалентно везују за протеине у нуклеинским киселинама; оксидативне хемикалије, што доводи до стварања слободних радикала и повреде оксиданса; активација комплемента; и разне калцијум јонофоре. Ћелијска смрт је такође важна компонента хемијске канцерогенезе; многи потпуни хемијски карциногени, у канцерогеним дозама, производе акутну некрозу и упалу праћену регенерацијом и пренеоплазијом.

Дефиниције

Повреда ћелије

Повреда ћелије се дефинише као догађај или стимулус, као што је токсична хемикалија, која ремети нормалну хомеостазу ћелије, изазивајући тако низ догађаја (слика 1). Илустровани главни циљеви смртоносне повреде су инхибиција синтезе АТП-а, поремећај интегритета плазма мембране или повлачење есенцијалних фактора раста.

Слика 1. Повреда ћелије

ТОКС060Ф1

Смртоносне повреде доводе до смрти ћелије након променљивог временског периода, у зависности од температуре, типа ћелије и стимулуса; или могу бити сублеталне или хроничне – то јест, повреда доводи до измењеног хомеостатског стања које, иако абнормално, не доводи до смрти ћелије (Трамп и Арстила 1971; Трумп и Березески 1992; Трумп и Березески 1995; Трумп, Березески и Осорнио-Варгас 1981). У случају смртоносне повреде, постоји фаза пре времена смрти ћелије

током овог времена, ћелија ће се опоравити; међутим, након одређеног временског периода („тачка без повратка“ или тачка смрти ћелије), уклањање повреде не резултира опоравком, већ уместо тога ћелија пролази кроз деградацију и хидролизу, на крају достижући физичко-хемијску равнотежу са Животна средина. Ово је фаза позната као некроза. Током прелеталне фазе долази до неколико главних типова промена, у зависности од ћелије и врсте повреде. Они су познати као апоптоза и онкоза.

 

 

 

 

 

Апоптоза

Апоптоза је изведена из грчких речи или, што значи далеко од, и птосис, што значи пасти. Термин отпадајући од произилази из чињенице да се, током ове врсте прелеталне промене, ћелије смањују и подлежу изразитом мехурићу на периферији. Мехурићи се затим одвајају и испливавају. Апоптоза се јавља у различитим типовима ћелија након различитих врста токсичних повреда (Виллие, Керр и Цуррие 1980). Посебно је изражен у лимфоцитима, где је преовлађујући механизам за промет клонова лимфоцита. Добијени фрагменти резултирају базофилним телима која се виде унутар макрофага у лимфним чворовима. У другим органима, апоптоза се обично јавља у појединачним ћелијама које се брзо уклањају пре и после смрти фагоцитозом фрагмената од стране суседних паренхимских ћелија или макрофага. Апоптоза која се јавља у појединачним ћелијама са накнадном фагоцитозом обично не доводи до упале. Пре смрти, апоптотичке ћелије показују веома густ цитосол са нормалним или кондензованим митохондријама. Ендоплазматски ретикулум (ЕР) је нормалан или само благо проширен. Нуклеарни хроматин је изразито скупљен дуж нуклеарног омотача и око нуклеола. Нуклеарна контура је такође неправилна и долази до нуклеарне фрагментације. Кондензација хроматина је повезана са фрагментацијом ДНК која се, у многим случајевима, дешава између нуклеозома, дајући карактеристичан изглед лествице на електрофорези.

У апоптози, повећана [Ца2+]i може стимулисати К+ ефлукс који доводи до смањења ћелија, што вероватно захтева АТП. Повреде које потпуно инхибирају синтезу АТП-а, стога, вероватније ће довести до апоптозе. Константно повећање од [Ца2+]i има низ штетних ефеката укључујући активацију протеаза, ендонуклеаза и фосфолипаза. Активација ендонуклеазе доводи до прекида једноструких и двоструких ланаца ДНК који, заузврат, стимулишу повећане нивое п53 и поли-АДП рибозилацију, као и нуклеарних протеина који су неопходни за поправку ДНК. Активација протеаза модификује бројне супстрате укључујући актин и сродне протеине што доводи до формирања мехурића. Други важан супстрат је поли(АДП-рибоза) полимераза (ПАРП), која инхибира поправку ДНК. Повећана [ца2+]i је такође повезан са активацијом бројних протеин киназа, као што су МАП киназа, калмодулин киназа и друге. Такве киназе су укључене у активацију фактора транскрипције који иницирају транскрипцију непосредно раних гена, на пример, ц-фос, ц-јун и ц-миц, и у активацији фосфолипазе А2 што резултира пермеабилизацијом плазма мембране и интрацелуларних мембрана као што је унутрашња мембрана митохондрија.

Онкоза

Онкоза, изведена од грчке речи онкос, да отекне, назван је тако јер у овој врсти прелеталне промене ћелија почиње да отиче скоро одмах након повреде (Мајно и Јорис 1995). Разлог за отицање је повећање катјона у води унутар ћелије. Главни одговорни катјон је натријум, који је нормално регулисан за одржавање запремине ћелије. Међутим, у одсуству АТП-а или ако је На-АТПаза плазмалеме инхибирана, контрола запремине се губи због интрацелуларног протеина, а натријум у води наставља да расте. Међу раним догађајима у онкози су, дакле, повећани [На+]i што доводи до ћелијског отока и повећања [Ца2+]i који настају или услед прилива из екстрацелуларног простора или ослобађања из интрацелуларних складишта. То доводи до отицања цитосола, отицања ендоплазматског ретикулума и Голгијевог апарата и формирања водених мехурића око површине ћелије. Митохондрије су у почетку подвргнуте кондензацији, али касније и оне показују отицање велике амплитуде због оштећења унутрашње митохондријалне мембране. У овој врсти прелеталне промене, хроматин се подвргава кондензацији и на крају деградацији; међутим, не види се карактеристична лествица апоптозе.

Некроза

Некроза се односи на низ промена које се јављају након смрти ћелије када се ћелија претвара у остатке који се обично уклањају инфламаторним одговором. Могу се разликовати две врсте: онкотска некроза и апоптотичка некроза. Онкотична некроза се обично јавља у великим зонама, на пример, у инфаркту миокарда или регионално у органу након хемијске токсичности, као што је проксимални тубул бубрега након примене ХгЦл2. Укључене су широке зоне органа и некротичне ћелије брзо подстичу инфламаторну реакцију, прво акутну, а затим хроничну. У случају да организам преживи, у многим органима некроза је праћена уклањањем мртвих ћелија и регенерацијом, на пример, у јетри или бубрезима након хемијске токсичности. Насупрот томе, апоптотичка некроза се обично јавља на бази једне ћелије и некротични остаци се формирају унутар фагоцита макрофага или суседних паренхимских ћелија. Најраније карактеристике некротичних ћелија укључују прекиде у континуитету плазма мембране и појаву густине флокулента, што представља денатурисане протеине унутар митохондријалног матрикса. Код неких облика повреда који у почетку не ометају акумулацију калцијума у ​​митохондријима, депозити калцијум фосфата се могу видети унутар митохондрија. Други мембрански системи се слично фрагментирају, као што су ЕР, лизозоми и Голгијев апарат. На крају, нуклеарни хроматин се подвргава лизи, што је резултат напада лизозомалних хидролазе. Након смрти ћелије, лизозомалне хидролазе играју важну улогу у чишћењу остатака катепсина, нуклеолаза и липаза, јер оне имају оптимални кисели пХ и могу да преживе низак пХ некротичних ћелија док су други ћелијски ензими денатурисани и инактивирани.

Механизми

Почетни стимулус

У случају смртоносних повреда, најчешће почетне интеракције које доводе до повреде које доводе до смрти ћелије су сметње у енергетском метаболизму, као што су аноксија, исхемија или инхибитори дисања, и гликолиза као што су калијум цијанид, угљен моноксид, јодоацетат и ускоро. Као што је горе поменуто, високе дозе једињења која инхибирају енергетски метаболизам обично доводе до онкозе. Други уобичајени тип почетне повреде која резултира акутном смрћу ћелије је модификација функције плазма мембране (Трумп и Арстила 1971; Трумп, Березески и Осорнио-Варгас 1981). То може бити или директно оштећење и пермеабилизација, као у случају трауме или активације Ц5б-Ц9 комплекса комплемента, механичко оштећење ћелијске мембране или инхибиција натријум-калијума (На+-K+) пумпа са гликозидима као што је оуабаин. Калцијум јонофори као што су јономицин или А23187, који брзо носе [Ца2+] низ градијент у ћелију, такође изазивају акутну смртоносну повреду. У неким случајевима, образац прелеталне промене је апоптоза; код других је онкоза.

Сигнални путеви

Код многих врста повреда, митохондријално дисање и оксидативна фосфорилација су брзо погођени. У неким ћелијама, ово стимулише анаеробну гликолизу, која је способна да одржи АТП, али код многих повреда то је инхибирано. Недостатак АТП-а доводи до неуспеха да се активирају бројни важни хомеостатски процеси, посебно контрола интрацелуларне хомеостазе јона (Трумп и Березески 1992; Трумп, Березески и Осорнио-Варгас 1981). Ово доводи до брзог повећања [Ца2+]i, и повећана [На+] и [Цл-] резултира отицањем ћелија. Повећава [ца2+]i резултирају активацијом низа других сигналних механизама о којима се говори у наставку, укључујући низ киназа, што може резултирати повећаном тренутном раном транскрипцијом гена. Повећана [ца2+]i такође модификује функцију цитоскелета, делом резултирајући формирањем мехурића и активацијом ендонуклеаза, протеаза и фосфолипаза. Чини се да они изазивају многе од важних ефеката о којима је горе дискутовано, као што су оштећење мембране кроз активацију протеазе и липазе, директна деградација ДНК од активације ендонуклеазе и активација киназа као што су МАП киназа и калмодулин киназа, које делују као фактори транскрипције.

Кроз опсежан рад на развоју код бескичмењака Ц. елеганс Дросопхила, као и људске и животињске ћелије, идентификован је низ гена за смрт. Утврђено је да неки од ових гена бескичмењака имају пандане сисара. На пример, ген цед-3, који је неопходан за програмирану ћелијску смрт Ц. елеганс, има активност протеазе и јаку хомологију са ензимом који конвертује интерлеукин сисара (ИЦЕ). Блиско сродни ген који се зове апопаин или прИЦЕ недавно је идентификован са још ближом хомологијом (Ницхолсон ет ал. 1995). Ин Дросопхила, чини се да је ген жетеоца укључен у сигнал који води до програмиране ћелијске смрти. Остали гени за смрт укључују протеин Фас мембране и важан ген супресор тумора, п53, који је широко очуван. п53 се индукује на нивоу протеина након оштећења ДНК и када је фосфорилисан делује као фактор транскрипције за друге гене као што су гадд45 и ваф-1, који су укључени у сигнализацију смрти ћелије. Чини се да су и други непосредни рани гени као што су ц-фос, ц-јун и ц-миц укључени у неке системе.

У исто време, постоје гени против смрти који изгледа да се супротстављају генима за смрт. Први од њих који је идентификован био је цед-9 из Ц. елеганс, који је хомологан бцл-2 код људи. Ови гени делују на још непознат начин да спрече убијање ћелија било генетским или хемијским токсинима. Неки недавни докази указују да бцл-2 може деловати као антиоксиданс. Тренутно се улаже много напора да се развије разумевање укључених гена и да се развију начини за активирање или инхибицију ових гена, у зависности од ситуације.

 

Назад

Читати 12287 пута Последња измена у уторак, 26. јула 2022. 19:28