打印此頁
週日,一月16 2011:18 49

遺傳毒性評估

評價這個項目
(1投票)

遺傳毒性評估是評估藥物在遺傳物質 (DNA) 中誘導三種一般類型變化(突變)中任何一種的能力:基因、染色體和基因組。 在人類等生物體中,基因由 DNA 組成,DNA 由稱為核苷酸鹼基的單個單元組成。 這些基因排列在稱為染色體的離散物理結構中。 遺傳毒性會對人類健康造成重大且不可逆轉的影響。 基因毒性損傷是誘發癌症的關鍵步驟,也可能與誘發出生缺陷和胎兒死亡有關。 上述三類突變可以發生在生物體(例如人類)所擁有的兩種組織中的任何一種中:精子或卵子(生殖細胞)和剩餘組織(體細胞)。

測量基因突變的分析是檢測基因內核苷酸的​​取代、添加或缺失的分析。 測量染色體突變的分析是檢測涉及一條或多條染色體的斷裂或染色體重排的分析。 測量基因組突變的分析是檢測染色體數量變化的分析,這種情況稱為非整倍性。 自 Herman Muller 於 1927 年開發出第一個檢測基因毒性(誘變)試劑的測定方法以來,遺傳毒性評估發生了很大變化。 從那時起,已經開發了 200 多種檢測 DNA 突變的方法; 然而,如今用於遺傳毒性評估的檢測方法不到十種。 本文回顧了這些測定,描述了它們測量的內容,並探討了這些測定在毒性評估中的作用。

開發前的癌症危害識別 遺傳毒理學領域

遺傳毒理學已成為整體風險評估過程中不可或缺的一部分,並且近年來作為致癌活動的可靠預測指標而聲名鵲起。 然而,在遺傳毒理學發展之前(1970 年之前),其他方法已經並且仍在用於識別對人類的潛在癌症危害。 目前用於識別人類癌症風險的方法主要有六大類:流行病學研究、長期體內生物測定、中期體內生物測定、短期體內和體外生物測定、人工智能(構效)、和基於機制的推理。

表 1 給出了這些方法的優點和缺點。

表 1. 當前識別人類癌症風險的方法的優缺點

  優點 弊端
流行病學研究 (1) 人類是疾病的最終指標;
(2) 評估敏感或易感人群;
(3) 職業暴露隊列; (4)環境哨兵警報
(1) 一般具有追溯性(死亡證明、回憶偏差等); (2) 不敏感、成本高、冗長; (3) 有時無法獲得或難以獲得可靠的暴露數據; (四)組合、多重、複合暴露; 缺乏適當的對照組; (4) 未進行人體實驗的; (5) 癌症檢測,而非預防
長期體內生物測定 (一)前瞻性和回顧性(驗證)評價; (1) 與已確定的人類致癌物具有極好的相關性; (2) 已知的暴露水平和條件; (3) 確定化學毒性和致癌作用; (五)取得成果較快; (4) 化學類別之間的定性比較; (5) 與人類密切相關的綜合互動生物系統 (1) 很少被複製,資源密集型; (三)適合進行此類實驗的設施有限; (3)物種外推辯論; (4) 所使用的暴露水平通常遠遠超過人類所經歷的水平; (5) 單一化學品接觸並不模仿人類接觸,通常是同時接觸多種化學品
中短期體內和體外生物測定 (1) 比其他檢測更快速、更便宜; (2) 易於復制的大樣本;
(3) 測量有生物學意義的終點(突變等); (4) 可用作篩選試驗以選擇用於長期生物測定的化學品
(1) 體外不能完全預測體內; (2) 通常是生物體或器官特異性的; (3) 效力無法與整個動物或人類相比
化學結構-生物活性關聯 (1) 相對容易、快速且便宜; (2) 對某些化學類別(例如亞硝胺和聯苯胺染料)可靠; (3) 從生物學數據發展而來,但不依賴於額外的生物學實驗 (1) 不是“生物的”; (2) 制定規則的許多例外情況; (3) 回顧性的,很少(但正在成為)前瞻性的
基於機制的推斷 (1) 對某些類別的化學品而言相當準確; (2) 允許改進假設; (3) 可以將風險評估定向到敏感人群 (1) 化學致癌機制不明確、多種且可能是化學或類別特異性的; (2) 可能無法突出一般機制的例外情況

 

遺傳毒理學分析的基本原理和概念基礎

儘管用於遺傳毒性評估的測定的確切類型和數量在不斷發展並且因國家/地區而異,但最常見的包括 (1) 細菌和/或培養的哺乳動物細胞中的基因突變和 (2) 染色體突變的測定在活小鼠體內培養的哺乳動物細胞和/或骨髓。 第二類中的一些分析也可以檢測非整倍性。 儘管這些檢測無法檢測生殖細胞中的突變,但之所以使用它們,主要是因為進行生殖細胞檢測的額外成本和復雜性。 儘管如此,當需要有關生殖細胞效應的信息時,還是會使用小鼠生殖細胞試驗。

超過 25 年期間(1970-1995)的系統研究,特別是在北卡羅來納州的美國國家毒理學計劃,已經導致使用離散數量的測定來檢測試劑的誘變活性。 評估測定有用性的基本原理是基於它們檢測在囓齒動物中引起癌症和懷疑在人類中引起癌症的物質(即致癌物)的能力。 這是因為過去幾十年的研究表明,癌細胞含有某些基因的突變,而且許多致癌物也是誘變劑。 因此,癌細胞被視為含有體細胞突變,致癌作用被視為一種體細胞突變。

之所以選擇當今最常用的遺傳毒性檢測方法,不僅是因為它們的數據庫龐大、成本相對較低且易於操作,而且還因為它們已被證明可以檢測許多囓齒動物和推測的人類致​​癌物。 因此,遺傳毒性測定可用於預測藥物的潛在致癌性。

遺傳毒理學領域的一個重要概念和實踐發展是認識到許多致癌物在體內被酶修飾,產生改變的形式(代謝物),這些形式通常是母體化學物質的最終致癌和致突變形式。 為了在培養皿中復制這種新陳代謝,Heinrich Malling 表明,從囓齒動物肝臟中提取的製劑中含有許多進行這種新陳代謝轉化或激活所必需的酶。 因此,許多在培養皿或試管(體外)中進行的遺傳毒性測定都採用添加類似的酶製劑。 簡單的製劑稱為 S9 混合物,純化的製劑稱為微粒體。 一些細菌和哺乳動物細胞現已經過基因工程改造,以包含一些來自囓齒動物或人類的產生這些酶的基因,從而減少了添加 S9 混合物或微粒體的需要。

遺傳毒理學分析和技術

用於遺傳毒性篩選的主要細菌系統是沙門氏菌 (Ames) 致突變性測定,在較小程度上,菌株 WP2 大腸埃希氏菌. 1980 年代中期的研究表明,僅使用沙門氏菌系統的兩種菌株(TA98 和 TA100)就足以檢測大約 90% 的已知沙門氏菌誘變劑。 因此,這兩種菌株用於大多數篩選目的; 然而,其他各種菌株可用於更廣泛的測試。

這些化驗以多種方式進行,但兩種通用程序是板摻入和液體懸浮液化驗。 在平板摻入測定中,將細胞、測試化學品和(如果需要)S9 一起添加到液化瓊脂中,然後倒在瓊脂培養皿的表面上。 頂部瓊脂在幾分鐘內變硬,培養板孵育兩到三天,之後突變細胞生長形成肉眼可檢測的細胞簇,稱為菌落,然後對其進行計數。 瓊脂培養基含有選擇劑或由只有新突變細胞才能生長的成分組成。 液體孵育試驗類似,只是將細胞、測試劑和 S9 在不含液化瓊脂的液體中一起孵育,然後將細胞從測試劑和 S9 中去除並接種到瓊脂上。

培養的哺乳動物細胞中的突變主要在以下兩個基因之一中檢測到: 高鐵tk. 與細菌檢測類似,哺乳動物細胞系(從囓齒動物或人類細胞發育而來)在塑料培養皿或試管中暴露於測試劑,然後被接種到含有僅允許突變細胞生長的選擇劑的培養基的培養皿中. 用於此目的的檢測包括 CHO/HPRT、TK6 和小鼠淋巴瘤 L5178Y/TK+ / - 化驗。 其他包含各種 DNA 修復突變以及一些參與新陳代謝的人類基因的細胞係也被使用。 這些系統允許恢復基因內的突變(基因突變)以及涉及基因側翼染色體區域的突變(染色體突變)。 然而,後一種類型的突變在更大程度上被 tk 基因係統比 高鐵 由於基因係統的位置 tk 基因。

類似於細菌致突變性的液體孵育測定,哺乳動物細胞致突變性測定通常涉及在存在測試劑和 S9 的情況下將細胞暴露在培養皿或試管中數小時。 然後清洗細胞,再培養幾天,讓正常(野生型)基因產物被降解,新的突變基因產物得以表達和積累,然後將它們接種到含有選擇劑的培養基中,該選擇劑允許只有突變細胞才能生長。 與細菌檢測一樣,突變細胞長成肉眼可檢測的菌落,然後進行計數。

染色體突變主要通過細胞遺傳學分析來識別,其中包括將培養皿中的囓齒動物和/或囓齒動物或人類細胞暴露於測試化學品,允許發生一個或多個細胞分裂,染色染色體,然後通過顯微鏡目視檢查染色體檢測染色體結構或數量的改變。 儘管可以檢查各種終點,但監管機構目前認為最有意義的兩個終點是染色體畸變和稱為微核的子類別。

需要大量的培訓和專業知識才能對細胞中是否存在染色體畸變進行評分,這使得該過程在時間和金錢方面都非常昂貴。 相比之下,微核幾乎不需要培訓,並且可以自動檢測。 微核在細胞內顯示為與包含染色體的細胞核不同的小點。 微核是由染色體斷裂或非整倍體引起的。 由於與染色體畸變相比,微核評分更容易,而且最近的研究表明,在活小鼠骨髓中誘導染色體畸變的藥物通常會在該組織中誘導微核,因此微核現在通常被測量為一種能力的指標。誘導染色體突變的試劑。

儘管與上述其他檢測相比,生殖細胞檢測的使用頻率要低得多,但它們對於確定一種藥物是否對生殖細胞構成風險是不可或缺的,其中的突變可能會對後代的健康產生影響。 最常用的生殖細胞檢測是在小鼠中進行的,涉及的系統檢測 (1) 染色體之間的可遺傳易位(交換)(可遺傳易位檢測),(2) 基因或涉及特定基因(可見或生化特定位點)的染色體突變化驗),和(3)影響生存能力的突變(顯性致死試驗)。 與體細胞分析一樣,生殖細胞分析的工作假設是這些分析中呈陽性的試劑被認為是潛在的人類生殖細胞誘變劑。

現狀與未來展望

最近的研究表明,只需要三條信息就可以檢測出一組 90 種囓齒動物致癌物(即,假定的人類致癌物和體細胞誘變劑)中的大約 41%。 這些包括 (1) 試劑的化學結構知識,特別是如果它包含親電子部分(參見結構-活性關係部分); (2) 沙門氏菌致突變性資料; (3) 來自囓齒類動物(小鼠和大鼠)的 90 天慢性毒性試驗的數據。 事實上,基本上所有 IARC 宣布的人類致癌物都可以僅使用沙門氏菌試驗和小鼠骨髓微核試驗檢測為誘變劑。 大多數人類致癌物對大鼠和小鼠均具有致癌性(跨物種致癌物),並且大多數跨物種致癌物在沙門氏菌中具有致突變性和/或誘導微核,這一發現進一步支持使用這些致突變性試驗檢測潛在的人類致癌物在小鼠骨髓中。

隨著 DNA 技術的進步、人類基因組計劃以及對突變在癌症中作用的認識的加深,正在開發新的遺傳毒性測定法,這些測定法可能會納入標準篩選程序。 其中包括使用轉基因細胞和囓齒動物。 轉基因係統是將來自另一個物種的基因引入細胞或生物體的系統。 例如,轉基因小鼠現在處於實驗用途,允許檢測動物任何器官或組織的突變,基於將細菌基因引入小鼠。 現在可以獲得細菌細胞,如沙門氏菌和哺乳動物細胞(包括人類細胞系),它們含有參與致癌/誘變劑代謝的基因,如 P450 基因。 對轉基因囓齒類動物或天然基因(如 高鐵,或者現在可以執行沙門氏菌中的目標基因,以便確定由化學物質引起的突變的確切性質,從而提供對化學物質作用機制的深入了解,並允許與假定暴露於該物質的人類的突變進行比較.

細胞遺傳學的分子進步現在允許對染色體突變進行更詳細的評估。 這些包括使用附著(雜交)到特定基因的探針(小片段 DNA)。 染色體上基因的重排可以通過探針位置的改變來揭示,這些探針是熒光的,很容易被可視化為染色體上的彩色扇區。 用於 DNA 斷裂的單細胞凝膠電泳測定(通常稱為“彗星”測定)允許檢測單個細胞內的 DNA 斷裂,並可能成為與細胞遺傳學技術結合用於檢測染色體損傷的極其有用的工具。

經過多年的使用和系統開發的大型數據庫的生成,現在可以在短時間內(幾週)用相對較少的成本進行幾次檢測就可以完成遺傳毒性評估。 產生的數據可用於預測試劑成為囓齒動物的能力,並推測為人類致癌物/體細胞誘變劑。 這種能力可以限制誘變劑和致癌劑進入環境,並開發替代的非誘變劑。 未來的研究應該會產生比目前的檢測方法具有更高預測性的更好方法。

 

上一頁

更多內容 9038 上次修改時間為23九月2011 16:42