打印此頁
週日,一月16 2011:18 56

結構活動關係

評價這個項目
(0票)

結構活性關係 (SAR) 分析是利用有關化學品分子結構的信息來預測與持久性、分佈、攝取和吸收以及毒性相關的重要特性。 SAR 是一種識別潛在危險化學品的替代方法,它有望幫助行業和政府確定物質的優先順序,以便進一步評估或用於新化學品的早期決策。 毒理學是一項日益昂貴和資源密集型的工作。 人們越來越擔心化學品可能會對暴露的人群造成不利影響,這促使監管機構和衛生機構擴大測試範圍和靈敏度,以檢測毒理學危害。 與此同時,監管對行業的實際和感知負擔引起了人們對毒性測試方法和數據分析實用性的擔憂。 目前,化學致癌性的確定取決於對至少兩個物種(男女)在不同劑量下的壽命測試,對多個器官進行仔細的組織病理學分析,以及檢測細胞和靶器官的癌前變化。 在美國,癌症生物測定的成本估計超過 3 萬美元(1995 年美元)。

即使有無限的財政資源,測試當今世界生產的大約 70,000 種現有化學品的負擔也將超過訓練有素的毒理學家的可用資源。 即使是對這些化學品的一級評估也需要幾個世紀的時間才能完成 (NRC 1984)。 在許多國家,對在毒性試驗中使用動物的倫理問題有所增加,這給使用標準毒性試驗方法帶來了額外的壓力。 SAR 已廣泛用於製藥行業,以識別具有治療有益用途潛力的分子(Hansch 和 Zhang 1993)。 在環境和職業健康政策中,SAR 用於預測化合物在物理化學環境中的擴散,並篩選新化學品以進一步評估潛在毒性。 根據美國有毒物質控制法 (TSCA),EPA 自 1979 年以來一直使用 SAR 方法作為製造前通知 (PMN) 過程中新化學品的“第一篩選”; 澳大利亞使用類似的方法作為其新化學品通知 (NICNAS) 程序的一部分。 在美國,SAR 分析是確定是否有合理依據得出結論認為物質的製造、加工、分銷、使用或處置將對人類健康或環境造成不合理的傷害風險的重要依據,如第TSCA 的 5(f)。 基於這一發現,EPA 然後可以根據 TSCA 第 6 節要求對該物質進行實際測試。

搜尋與援救的理由

SAR 的科學原理基於這樣的假設,即化學物質的分子結構將預測其在物理化學和生物系統中行為的重要方面(Hansch 和 Leo 1979)。

搜救過程

SAR 審查過程包括鑑定化學結構,包括經驗配方和純化合物; 結構相似物質的鑑定; 在數據庫和文獻中搜索有關結構類似物的信息; 毒性分析和結構類似物的其他數據。 在極少數情況下,僅關於化合物結構的信息就足以支持某些基於充分理解的毒性機制的 SAR 分析。 已經編制了幾個關於 SAR 的數據庫,以及基於計算機的分子結構預測方法。

利用此信息,可以使用 SAR 估算以下端點:

  • 理化參數:沸點、蒸氣壓、水溶性、辛醇/水分配係數
  • 生物/環境歸宿參數:生物降解、土壤吸附、光降解、藥代動力學
  • 毒性參數:水生生物毒性、吸收、急性哺乳動物毒性(限度試驗或LD50)、皮膚、肺和眼睛刺激、致敏、亞慢性毒性、致突變性。

 

應該指出的是,對於致癌性、發育毒性、生殖毒性、神經毒性、免疫毒性或其他靶器官效應等重要的健康終點,不存在 SAR 方法。 這是由三個因素造成的:缺乏用於檢驗 SAR 假設的大型數據庫,缺乏對毒性作用的結構決定因素的了解,以及這些終點所涉及的靶細胞和機制的多樣性(參見“美國生殖毒物和神經毒劑的風險評估方法”)。 利用分配係數和溶解度的信息,利用 SAR 預測藥代動力學的一些有限嘗試(Johanson 和 Naslund 1988)。 已經進行了更廣泛的定量 SAR 來預測一系列化合物的 P450 依賴性代謝以及二噁英和 PCB 樣分子與細胞溶質“二噁英”受體的結合(Hansch 和 Zhang 1993)。

SAR 已被證明對上面列出的一些終點具有不同的可預測性,如表 1 所示。該表提供了預測活動與通過經驗測量或毒性測試獲得的實際結果的兩次比較的數據。 美國 EPA 專家進行的 SAR 在預測物理化學特性方面的表現比預測生物活性(包括生物降解)的表現更差。 對於毒性終點,SAR 在預測致突變性方面表現最好。 Ashby 和 Tennant (1991) 在一項更廣泛的研究中也發現,在他們對 NTP 化學品的分析中,短期遺傳毒性具有良好的可預測性。 考慮到目前對遺傳毒性分子機制(參見“遺傳毒理學”)和親電性在 DNA 結合中的作用的理解,這些發現並不令人驚訝。 相比之下,SAR 傾向於低估哺乳動物的全身和亞慢性毒性,而高估水生生物的急性毒性。

表 1. SAR 和測試數據的比較:OECD/NTP 分析

端點 協議 (%) 分歧 (%) 聯繫電話
沸點 50 50 30
蒸汽壓力 63 37 113
水溶性 68 32 133
分配係數 61 39 82
生物降解 93 7 107
魚類毒性 77 22 130
水溞毒性 67 33 127
急性哺乳動物毒性 (LD50 ) 80 201 142
皮膚過敏 82 18 144
眼睛刺激 78 22 144
皮膚過敏 84 16 144
亞慢性毒性 57 32 143
致突變性2 88 12 139
致突變性3 82-944 1-10 301
致癌性3 : 兩年生物測定 72-954 - 301

資料來源:來自經合組織的數據,個人通訊 C. Auer,美國環保署。 本分析僅使用可比較 SAR 預測和實際測試數據的那些端點。 NTP 數據來自 Ashby 和 Tennant 1991。

1 令人擔憂的是 SAR 未能預測 12% 的測試化學品的急性毒性。

2 OECD 數據,基於 Ames 測試與 SAR 的一致性

3 NTP 數據,基於基因毒性分析與幾類“結構性警報化學品”的 SAR 預測的比較。

4 一致性因班級而異; 一致性最高的是芳香氨基/硝基化合物; 最低的是“雜項”結構。

對於其他有毒終點,如上所述,SAR 的實用性較差。 由於缺乏複雜分子毒代動力學的 SAR,哺乳動物毒性預測變得複雜。 儘管如此,已經進行了一些嘗試來提出複雜哺乳動物毒性終點的 SAR 原則(例如,參見 Bernstein (1984) 對潛在雄性生殖毒物的 SAR 分析)。 在大多數情況下,數據庫太小而無法對基於結構的預測進行嚴格測試。

在這一點上可以得出結論,SAR 可能主要用於確定毒性測試資源投資的優先次序或引起對潛在危害的早期關注。 只有在致突變性的情況下,SAR 分析本身才有可能可靠地用於為其他決策提供信息。 對於任何終點,SAR 都不可能提供本章其他地方討論的風險評估目的所需的定量信息類型,並且 百科全書.

 

上一頁

更多內容 8585 上次修改時間為23九月2011 17:33