Tuesday, 11 January 2011 20:25

Psychosocial Factors, Stress and Health

Rate this item
(8 votes)

In the language of engineering, stress is “a force which deforms bodies”. In biology and medicine, the term usually refers to a process in the body, to the body’s general plan for adapting to all the influences, changes, demands and strains to which it is exposed. This plan swings into action, for example, when a person is assaulted on the street, but also when someone is exposed to toxic substances or to extreme heat or cold. It is not just physical exposures which activate this plan however; mental and social ones do so as well. For instance, if we are insulted by our supervisor, reminded of an unpleasant experience, expected to achieve something of which we do not believe we are capable, or if, with or without cause, we worry about our job or marriage.

There is something common to all these cases in the way the body attempts to adapt. This common denominator—a kind of “revving up” or “stepping on the gas”—is stress. Stress is, then, a stereotype in the body’s responses to influences, demands or strains. Some level of stress is always to be found in the body, just as, to draw a rough parallel, a country maintains a certain state of military preparedness, even in peacetime. Occasionally this preparedness is intensified, sometimes with good cause and at other times without.

In this way the stress level affects the rate at which processes of wear and tear on the body take place. The more “gas” given, the higher the rate at which the body’s engine is driven, and hence the more quickly the “fuel” is used up and the “engine” wears out. Another metaphor also applies: if you burn a candle with a high flame, at both ends, it will give off brighter light but will also burn down more quickly. A certain amount of fuel is necessary otherwise the engine will stand still, the candle will go out; that is, the organism would be dead. Thus, the problem is not that the body has a stress response, but that the degree of stress—the rate of wear and tear—to which it is subject may be too great. This stress response varies from one minute to another even in one individual, the variation depending in part on the nature and state of the body and in part on the external influences and demands—the stressors—to which the body is exposed. (A stressor is thus something that produces stress.)

Sometimes it is difficult to determine whether stress in a particular situation is good or bad. Take, for instance, the exhausted athlete on the winner’s stand, or the newly appointed but stress-racked executive. Both have achieved their goals. In terms of pure accomplishment, one would have to say that their results were well worth the effort. In psychological terms, however, such a conclusion is more doubtful. A good deal of torment may have been necessary to get so far, involving long years of training or never-ending overtime, usually at the expense of family life. From the medical viewpoint such achievers may be considered to have burnt their candles at both ends. The result could be physiological; the athlete may rupture a muscle or two and the executive develop high blood pressure or have a heart attack.

Stress in relation to work

An example may clarify how stress reactions can arise at work and what they might lead to in terms of health and quality of life. Let us imagine the following situation for a hypothetical male worker. Based on economic and technical considerations, management has decided to break up a production process into very simple and primitive elements which are to be performed on an assembly line. Through this decision, a social structure is created and a process set into motion which can constitute the starting point in a stress- and disease-producing sequence of events. The new situation becomes a psychosocial stimulus for the worker, when he first perceives it. These perceptions may be further influenced by the fact that the worker may have previously received extensive training, and thus was consequently expecting a work assignment which required higher qualifications, not reduced skill levels. In addition, past experience of work on an assembly line was strongly negative (that is, earlier environmental experiences will influence the reaction to the new situation). Furthermore, the worker’s hereditary factors make him more prone to react to stressors with an increase in blood pressure. Because he is more irritable, perhaps his wife criticizes him for accepting his new assignment and bringing his problems home. As a result of all these factors, the worker reacts to the feelings of distress, perhaps with an increase in alcohol consumption or by experiencing undesirable physiological reactions, such as the elevation in blood pressure. The troubles at work and in the family continue, and his reactions, originally of a transient type, become sustained. Eventually, he may enter a chronic anxiety state or develop alcoholism or chronic hypertensive disease. These problems, in turn, increase his difficulties at work and with his family, and may also increase his physiological vulnerability. A vicious cycle may set in which may end in a stroke, a workplace accident or even suicide. This example illustrates the environmental programming involved in the way a worker reacts behaviourally, physiologically and socially, leading to increased vulnerability, impaired health and even death.

Psychosocial conditions in present working life

According to an important International Labour Organization (ILO) (1975) resolution, work should not only respect workers’ lives and health and leave them free time for rest and leisure, but also allow them to serve society and achieve self-fulfilment by developing their personal capabilities. These principles were also set down as early as 1963, in a report from the London Tavistock Institute (Document No. T813) which provided the following general guidelines for job design:

  1.  The job should be reasonably demanding in terms other than sheer endurance and provide at least a minimum of variety.
  2.  The worker should be able to learn on the job and go on learning.
  3.  The job should comprise some area of decision-making that the individual can call his or her own.
  4.  There should be some degree of social support and recognition in the workplace.
  5.  The worker should be able to relate what he or she does or produces to social life.
  6.  The worker should feel that the job leads to some sort of desirable future.

 

The Organization for Economic Cooperation and Development (OECD), however, draws a less hopeful picture of the reality of working life, pointing out that:

  • Work has been accepted as a duty and a necessity for most adults.
  • Work and workplaces have been designed almost exclusively with reference to criteria of efficiency and cost.
  • Technological and capital resources have been accepted as the imperative determinants of the optimum nature of jobs and work systems.
  • Changes have been motivated largely by aspirations to unlimited economic growth.
  • The judgement of the optimum designs of jobs and choice of work objectives has resided almost wholly with managers and technologists, with only a slight intrusion from collective bargaining and protective legislation.
  • Other societal institutions have taken on forms that serve to sustain this type of work system.

 

 In the short run, benefits of the developments which have proceeded according to this OECD list have brought more productivity at lesser cost, as well as an increase in wealth. However, the long-term disadvantages of such developments are often more worker dissatisfaction, alienation and possibly ill health which, when considering society in general, in turn, may affect the economic sphere, although the economic costs of these effects have only recently been taken into consideration (Cooper, Luikkonen and Cartwright 1996; Levi and Lunde-Jensen 1996).

We also tend to forget that, biologically, humankind has not changed much during the last 100,000 years, whereas the environment—and in particular the work environment—has changed dramatically, particularly during the past century and decades. This change has been partly for the better; however, some of these “improvements” have been accompanied by unexpected side effects. For example, data collected by the National Swedish Central Bureau of Statistics during the 1980s showed that:

  • 11% of all Swedish employees are continuously exposed to deafening noise.
  • 15% have work which makes them very dirty (oil, paint, etc.).
  • 17% have inconvenient working hours, i.e., not only daytime work but also early or late night work, shift work or other irregular working hours.
  • 9% have gross working hours exceeding 11 per day (this concept includes hours of work, breaks, travelling time, overtime, etc.; in other words, that part of the day which is set aside for work).
  • 11% have work that is considered both “hectic” and “monotonous”.
  • 34% consider their work “mentally exacting”.
  • 40% consider themselves “without influence on the arrangement of time for breaks”.
  • 45% consider themselves without “opportunities to learn new things” at their work.
  • 26% have an instrumental attitude to their work. They consider “their work to yield nothing except the pay—i.e. no feeling of personal satisfaction”. Work is regarded purely as an instrument for acquiring an income.


In its major study of conditions of work in the 12 member States of the European Union at that time (1991/92), the European Foundation (Paoli 1992) found that 30% of the workforce regarded their work to risk their health, 23 million to have night work more than 25% of total hours worked, each third to report highly repetitive, monotonous work, each fifth male and each sixth female to work under “continuous time pressure”, and each fourth worker to carry heavy loads or to work in a twisted or painful position more than 50% of his or her working time.

Main psychosocial stressors at work

As already indicated, stress is caused by a bad “person- environment fit”, objectively, subjectively, or both, at work or elsewhere and in an interaction with genetic factors. It is like a badly fitting shoe: environmental demands are not matched to individual ability, or environmental opportunities do not measure up to individual needs and expectations. For example, the individual is able to perform a certain amount of work, but much more is required, or on the other hand no work at all is offered. Another example would be that the worker needs to be part of a social network, to experience a sense of belonging, a sense that life has meaning, but there may be no opportunity to meet these needs in the existing environment and the “fit” becomes bad.

Any fit will depend on the “shoe” as well as on the “foot”, on situational factors as well as on individual and group characteristics. The most important situational factors that give rise to “misfit” can be categorized as follows:

Quantitative overload. Too much to do, time pressure and repetitive work-flow. This is to a great extent the typical feature of mass production technology and routinized office work.

Qualitative underload. Too narrow and one-sided job content, lack of stimulus variation, no demands on creativity or problem- solving, or low opportunities for social interaction. These jobs seem to become more common with suboptimally designed automation and increased use of computers in both offices and manufacturing even though there may be instances of the opposite.

Role conflicts. Everybody occupies several roles concurrently. We are the superiors of some people and the subordinates of others. We are children, parents, marital partners, friends and members of clubs or trade unions. Conflicts easily arise among our various roles and are often stress evoking, as when, for instance, demands at work clash with those from a sick parent or child or when a supervisor is divided between loyalty to superiors and to fellow workers and subordinates.

Lack of control over one’s own situation. When someone else decides what to do, when and how; for example, in relation to work pace and working methods, when the worker has no influence, no control, no say. Or when there is uncertainty or lack of any obvious structure in the work situation.

Lack of social support at home and from your boss or fellow workers.

Physical stressors. Such factors can influence the worker both physically and chemically, for example, direct effects on the brain of organic solvents. Secondary psychosocial effects can also originate from the distress caused by, say, odours, glare, noise, extremes of air temperature or humidity and so on. These effects can also be due to the worker’s awareness, suspicion or fear that he is exposed to life-threatening chemical hazards or to accident risks.

Finally, real life conditions at work and outside work usually imply a combination of many exposures. These might become superimposed on each other in an additive or synergistic way. The straw which breaks the camel’s back may therefore be a rather trivial environmental factor, but one that comes on top of a very considerable, pre-existing environmental load.

Some of the specific stressors in industry merit special discussion, namely those characteristic of:

  • mass production technology
  • highly automated work processes
  • shift work


Mass production technology. Over the past century work has become fragmented in many workplaces, changing from a well defined job activity with a distinct and recognized end-product, into numerous narrow and highly specified subunits which bear little apparent relation to the end-product. The growing size of many factory units has tended to result in a long chain of command between management and the individual workers, accentuating remoteness between the two groups. The worker also becomes remote from the consumer, since rapid elaborations for marketing, distribution and selling interpose many steps between the producer and the consumer.

Mass production, thus, normally involves not just a pronounced fragmentation of the work process but also a decrease in worker control of the process. This is partly because work organization, work content and work pace are determined by the machine system. All these factors usually result in monotony, social isolation, lack of freedom and time pressure, with possible long-term effects on health and well-being.

Mass production, moreover, favours the introduction of piece rates. In this regard, it can be assumed that the desire—or necessity—to earn more can, for a time, induce the individual to work harder than is good for the organism and to ignore mental and physical “warnings”, such as a feeling of tiredness, nervous problems and functional disturbances in various organs or organ systems. Another possible effect is that the employee, bent on raising output and earnings, infringes safety regulations thereby increasing the risk of occupational disease and of accidents to oneself and others (e.g., lorry drivers on piece rates).

Highly automated work processes. In automated work the repetitive, manual elements are taken over by machines, and the workers are left with mainly supervisory, monitoring and controlling functions. This kind of work is generally rather skilled, not regulated in detail and the worker is free to move about. Accordingly, the introduction of automation eliminates many of the disadvantages of the mass-production technology. However, this holds true mainly for those stages of automation where the operator is indeed assisted by the computer and maintains some control over its services. If, however, operator skills and knowledge are gradually taken over by the computer—a likely development if decision making is left to economists and technologists—a new impoverishment of work may result, with a re-introduction of monotony, social isolation and lack of control.

Monitoring a process usually calls for sustained attention and readiness to act throughout a monotonous term of duty, a requirement that does not match the brain’s need for a reasonably varied flow of stimuli in order to maintain optimal alertness. It is well documented that the ability to detect critical signals declines rapidly even during the first half-hour in a monotonous environment. This may add to the strain inherent in the awareness that temporary inattention and even a slight error could have extensive economic and other disastrous consequences.

Other critical aspects of process control are associated with very special demands on mental skill. The operators are concerned with symbols, abstract signals on instrument arrays and are not in touch with the actual product of their work.

Shift work. In the case of shift work, rhythmical biological changes do not necessarily coincide with corresponding environmental demands. Here, the organism may “step on the gas” and activation occurs at a time when the worker needs to sleep (for example, during the day after a night shift), and deactivation correspondingly occurs at night, when the worker may need to work and be alert.

A further complication arises because workers usually live in a social environment which is not designed for the needs of shift workers. Last but not least, shift workers must often adapt to regular or irregular changes in environmental demands, as in the case of rotating shifts.

In summary, the psychosocial demands of the modern workplace are often at variance with the workers’ needs and capabilities, leading to stress and ill health. This discussion provides only a snapshot of psychosocial stressors at work, and how these unhealthy conditions can arise in today’s workplace. In the sections that follow, psychosocial stressors are analysed in greater detail with respect to their sources in modern work systems and technologies, and with respect to their assessment and control.


Back

Read 18988 times Last modified on Wednesday, 01 June 2011 10:59

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents