Occupational health professionals have generally relied on the following hierarchy of control techniques to eliminate or minimize worker exposures: substitution, isolation, ventilation, work practices, personal protective clothing and equipment. Usually a combination of two or more of these techniques is applied. Although this article focuses primarily on the application of ventilation techniques, the other approaches are briefly discussed. They should not be ignored when attempting to control exposure to chemicals by ventilation.

The occupational health professional should always think of the concept of source-path-receiver. The primary focus should be on control at the source with control of the path the second focus. Control at the receiver should be considered the last choice. Whether it is during the start-up or design phases of a process or during the evaluation of an existing process, the procedure for control of exposure to air contaminants should start at the source and progress to the receiver. It is likely that all or most of these control strategies will need to be used.

Substitution

The principle of substitution is to eliminate or reduce the hazard by substituting non-toxic or less toxic materials or redesigning the process to eliminate escape of contaminants into the workplace. Ideally, substitute chemicals would be non-toxic or the process redesign would completely eliminate exposure. However, since this is not always possible the subsequent controls in the above hierarchy of controls are attempted.

Note that extreme care should be taken to assure that substitution does not result in a more hazardous condition. While this focus is on the toxicity hazard, the flammable and chemical reactivity of substitutes must also be considered when assessing this risk.

Isolation

The principle of isolation is to eliminate or reduce the hazard by separating the process emitting the contaminant from the worker. This is accomplished by completely enclosing the process or locating it a safe distance away from people. However, to accomplish this, the process may need to be operated and/or controlled remotely. Isolation is particularly useful for jobs requiring few workers and when control by other methods is difficult. Another approach is to perform hazardous operations on off shifts where fewer workers may be exposed. Sometimes the use of this technique does not eliminate exposure but reduces the number of people who are exposed.

Ventilation

Two types of exhaust ventilation are commonly employed to minimize airborne exposure levels of contaminants. The first is called general or dilution ventilation. The second is referred to as source control or local exhaust ventilation (LEV) and is discussed in more detail later in this article.

These two types of exhaust ventilation should not be confused with comfort ventilation, whose main purpose is to provide measured amounts of outdoor air for breathing and to maintain design temperature and humidity. Various types of ventilation are discussed elsewhere in this Encyclopaedia.

Work Practices

Work practices control encompasses the methods workers employ to perform operations and the extent to which they follow the correct procedures. Examples of this control procedure are given throughout this Encyclopaedia wherever general or specific processes are discussed. General concepts such as education and training, principles of management and social support systems include discussions of the importance of work practices in controlling exposures.

Personal Protective Equipment

Personal protective equipment (PPE) is considered the last line of defence for control of worker exposure. It encompasses the use of respiratory protection and protective clothing. It is frequently used in conjunction with other control practices, particularly to minimize the effects of unexpected releases or accidents. These issues are discussed in more detail in the chapter Personal protection.

Local Exhaust Ventilation

The most efficient and cost-effective form of contaminant control is LEV. This involves capture of the chemical contaminant at its source of generation. There are three types of LEV systems:

  1. enclosures
  2. exterior hoods
  3. receiving hoods.

Enclosures are the preferable type of hood. Enclosures primarily are designed to contain the materials generated within the enclosure. The more complete the enclosure the more completely the contaminant will be contained. Complete enclosures are those that have no openings. Examples of complete enclosures include glove boxes, abrasive blasting cabinets and toxic gas storage cabinets (see figure 1, figure 2 and figure 3). Partial enclosures have one or more sides open but the source is still inside the enclosure. Examples of partial enclosures are a spray paint booth (see figure 4) and a laboratory hood. Often it might appear that the design of enclosures is more art than science. The basic principle is to design a hood with the smallest opening possible. The volume of air required is usually based on the area of all openings and maintaining an airflow velocity into the opening of 0.25 to 1.0 m/s. The control velocity chosen will depend on the operation’s characteristics, including the temperature and the degree to which the contaminant is propelled or generated. For complex enclosures, extreme care must be taken to assure that the exhaust flow is evenly distributed throughout the enclosure, particularly if the openings are distributed. Many enclosure designs are evaluated experimentally and if demonstrated to be effective are included as design plates in the American Conference of Governmental Industrial Hygienists’ industrial ventilation manual (ACGIH 1992).

Figure 1. Complete enclosure: Glovebox

CHE045F2

Louis DiBernardinis

Figure 2. Complete enclosure: Toxic gas storage cabinet

CHE045F3

Louis DiBernardinis

Figure 3. Complete enclosure: Abrasive blasting cabinet

CHE045F4

Michael McCann

Figure 4. Partial enclosure: Spray paint booth

CHE045F5

Louis DiBernardinis

Often, total enclosure of the source is not possible, or is not necessary. In these cases, another form of local exhaust, an exterior or capture hood, can be used. An exterior hood prevents the release of toxic materials into the workplace by capturing or entraining them at or close to the source of generation, usually a work station or process operation. Considerably less air volume is usually required than for the partial enclosure. However, since the contaminant is generated outside the hood, it must be designed and used properly in order to be as effective as a partial enclosure. The most effective control is a complete enclosure.

To work effectively, the air inlet of an exterior hood must be of appropriate geometrical design and placed near the point of chemical release. The distance away will depend on the size and shape of the hood and the velocity of air needed at the generation source to capture the contaminant and bring it into the hood. Generally, the closer to the generation source, the better. Design face or slot velocities are typically in the range of 0.25 to 1.0 and 5.0 to 10.0 m/s, respectively. Many design guidelines exist for this class of exhaust hoods in Chapter 3 of the ACGIH manual (ACGIH 1992) or in Burgess, Ellenbecker and Treitman (1989). Two types of exterior hoods that find frequent application are “canopy” hoods and “slot” hoods.

Canopy hoods are used primarily for capture of gases, vapours and aerosols released in one direction with a velocity that can be used to aid capture. These are sometimes called “receiving” hoods. This type of hood is generally used when the process to be controlled is at elevated temperatures, to make use of the thermal updraft, or the emissions are directed upward by the process. Examples of operations that may be controlled in this manner include drying ovens, melting furnaces and autoclaves. Many equipment manufacturers recommend specific capture hood configurations that are suitable for their units. They should be consulted for advice. Design guidelines are also provided in the ACGIH manual, Chapter 3 (ACGIH 1992). For example, for an autoclave or oven where the distance between the hood and the hot source does not exceed approximately the diameter of the source or 1 m, whichever is smaller, the hood may be considered a low canopy hood. Under such conditions, the diameter or cross-section of the hot air column will be approximately the same as the source. The diameter or side dimensions of the hood therefore need only be 0.3 m larger than the source.

The total flow rate for a circular low canopy hood is

Qt=4.7 (Df)2.33 (Dt)0.42

where:

Qt =       total hood air flow in cubic feet per minute, ft3/min

Df =       diameter of hood, ft

Dt =       difference between temperature of the hood source, and the ambient, °F.

Similar relationships exist for rectangular hoods and high canopy hoods. An example of a canopy hood can be seen in figure 5.

Figure 5. Canopy hood: Oven exhaust

CHE045F6

Louis DiBernardinis

Slot hoods are used for control of operations that cannot be performed inside a containment hood or under a canopy hood. Typical operations include barrel filling, electroplating, welding and degreasing. Examples are shown in figure 6 and figure 7.

Figure 6. Exterior hood: Welding

CHE045F7

Michael McCann

Figure 7. Exterior hood: Barrel filling

CHE045F8

Louis DiBernardinis

The required flow can be calculated from a series of equations determined empirically by the size and shape of the hood and the distance of the hood from the source. For example, for a flanged slot hood, the flow is determined by

Q = 0.0743LVX

where:

Q =      total hood air flow, m3/min

L =       the length of the slot, m

V =       the velocity needed at the source to capture it, m/min

X =       distance from the source to the slot, m.

The velocity needed at the source is sometimes called “capture velocity” and is usually between 0.25 and 2.5 m/s. Guidelines for selecting an appropriate capture velocity are provided in the ACGIH manual. For areas with excessive cross-drafts or for high-toxicity materials, the upper end of the range should be selected. For particulates, higher capture velocities will be necessary.

Some hoods may be some combination of enclosure, exterior and receiving hoods. For example, the spray paint booth shown in figure 4 is a partial enclosure that is also a receiving hood. It is designed to provide efficient capture of particles generated by making use of the particle momentum created by the rotating grinding wheel in the direction of the hood.

Care must be used in selecting and designing local exhaust systems. Considerations should include (1) ability to enclose the operation, (2) source characteristics (i.e., point source vs. widespread source) and how the contaminant is generated, (3) capacity of existing ventilation systems, (4) space requirements and (5) toxicity and flammability of contaminants.

Once the hood is installed, a routine monitoring and maintenance programme for the systems shall be implemented to assure its effectiveness in preventing exposure to workers (OSHA 1993). Monitoring of the standard laboratory chemical hood has become standardized since the 1970s. However, there is no such standardized procedure for other forms of local exhaust; therefore, the user must devise his or her own procedure. The most effective would be a continuous flow monitor. This could be as simple as a magnetic or water pressure gauge measuring static pressure at the hood (ANSI/AIHA 1993). The required hood static pressure (cm of water) will be known from the design calculations, and flow measurements can be made at the time of installation to verify them. Whether or not a continuous flow monitor is present, there should be some periodic evaluation of the hood performance. This can be done with smoke at the hood to visualize capture and by measuring total flow in the system and comparing that to the design flow. For enclosures it is usually advantageous to measure face velocity through the openings.

Personnel must also be instructed in the correct use of these types of hoods, particularly where the distance from the source and the hood can be easily changed by the user.

If local exhaust systems are designed, installed and used correctly they can be an effective and economical means of controlling toxic exposures.

 

Back

Saturday, 19 February 2011 02:18

Pregnancy and US Work Recommendations

Changes in family life over recent decades have had dramatic effects on the relationship between work and pregnancy. These include the following:

    • Women, particularly those of childbearing age, continue to enter the labour force in considerable numbers.
    • A tendency has developed on the part of many of these women to defer starting their families until they are older, by which time they have often achieved positions of responsibility and become important members of the productive apparatus.
    • At the same time, there is an increasing number of teenage pregnancies, many of which are high-risk pregnancies.
    • Reflecting increasing rates of separation, of divorce and of choices of alternative lifestyles, as well as an increase in the number of families in which both parents must work, financial pressures are forcing many women to continue working for as long as possible during pregnancy.

    The impact of pregnancy-related absences and lost or impaired productivity, as well as concern over the health and well-being of both the mothers and their infants, have led employers to become more proactive in dealing with the problem of pregnancy and work. Where employers pay all or part of health insurance premiums, the prospect of avoiding the sometimes staggering costs of complicated pregnancies and neonatal problems is a potent incentive. Certain responses are dictated by laws and government regulations, for example, guarding against potential occupational and environmental hazards and providing maternity leave and other benefits. Others are voluntary: prenatal education and care programmers, modified work arrangements such as flex-time and other work schedule arrangements, dependant care and other benefits.

    Management of pregnancy

    Of primary importance to the pregnant woman—and to her employer—whether or not she continues working during her pregnancy, is access to a professional health management programme designed to identify and avert or minimize risks to the mother and her foetus, thus enabling her to remain on the job without concern. At each of the scheduled prenatal visits, the physician or midwife should evaluate medical information (childbearing and other medical history, current complaints, physical examinations and laboratory tests) and information about her job and work environment, and develop appropriate recommendations.

    It is important that health professionals not rely on the simple job descriptions pertaining to their patients’ work, as these are often inaccurate and misleading. The job information should include details concerning physical activity, chemical and other exposures and emotional stress, most of which can be provided by the woman herself. In some instances, however, input from a supervisor, often relayed by the safety department or the employee health service (where there is one), may be needed to provide a more complete picture of hazardous or trying work activities and the possibility of controlling their potential for harm. This can also serve as a check on patients who inadvertently or deliberately mislead their physicians; they may exaggerate the risks or, if they feel it is important to continue working, may understate them.

    Recommendations for Work

    Recommendations regarding work during pregnancy fall into three categories:

     

    The woman may continue to work without changes in her activities or the environment. This is applicable in most instances. After extensive deliberation, the Task Force on the Disability of pregnancy comprising obstetrical health professionals, occupational physicians and nurses, and women’s representatives assembled by ACOG (the American College of Obstetricians and Gynecologists) and NIOSH (the National Institute for Occupational Safety and Health) concluded that “the normal woman with an uncomplicated pregnancy who is in a job that presents no greater hazards than those encountered in normal daily life in the community, may continue to work without interruption until the onset of labor and may resume working several weeks after an uncomplicated delivery” (Isenman and Warshaw, 1977).

     

    The woman may continue to work, but only with certain modifications in the work environment or her work activities. These modifications would be either “desirable” or “essential” (in the latter case, she should stop work if they cannot be made).

     

    The woman should not work. It is the physician’s or midwife’s judgement that any work would probably be detrimental to her health or to that of the developing foetus.

    The recommendations should not only detail the needed job modifications but should also stipulate the length of time they should be in effect and indicate the date for the next professional examination.

    Non-medical Considerations

    The recommendations suggested above are based entirely on considerations of the health of the mother and her foetus in relation to job requirements. They do not take into account the burden of such off-the-job activities as commuting to and from the workplace, housework and care of other children and family members; these may sometimes be even more demanding than those of the job. When modification or restriction of activities is called for, one should consider the question whether it should be implemented on the job, in the home or both.

    In addition, recommendations for or against continuing work may form the basis of a variety of non-medical considerations, for example, eligibility for benefits, paid versus unpaid leave or guaranteed job retention. A critical issue is whether the woman is considered disabled. Some employers categorically consider all pregnant workers to be disabled and strive to eliminate them from the workforce, even though many are able to continue to work. Other employers assume that all pregnant employees tend to magnify any disability in order to be eligible for all available benefits. And some even challenge the notion that a pregnancy, whether or not it is disabling, is a matter for them to be concerned about at all. Thus, disability is a complex concept which, although fundamentally based on medical findings, involves legal and social considerations.

    Pregnancy and Disability

    In many jurisdictions, it is important to distinguish between the disability of pregnancy and pregnancy as a period in life that calls for special benefits and dispensations. The disability of pregnancy falls into three categories:

    1. Disability following delivery. From a purely medical standpoint, recovery following the termination of pregnancy through an uncomplicated delivery lasts only a few weeks, but conventionally it extends to six or eight weeks because that is when most obstetricians customarily schedule their first postnatal check-up. However, from a practical and sociological point of view, a longer leave is considered by many to be desirable in order to enhance family bonding, to facilitate breast-feeding, and so on.
    2. Disability resulting from medical complications. Medical complications such as eclamsia, threatened abortion, cardiovascular or renal problems and so on, will dictate periods of reduced activity or even hospitalization that will last as long as the medical condition persists or until the woman has recovered from both the medical problem and the pregnancy.
    3. Disability reflecting the necessity of avoiding exposure to toxicity hazards or abnormal physical stress. Because of the greater sensitivity of the foetus to many environmental hazards, the pregnant woman may be considered disabled even though her own health might not be in danger of being compromised.

     

    Conclusion

    The challenge of balancing family responsibilities and work outside the home is not new to women. What may be new is a modern society that values the health and well-being of women and their offspring while confronting women with the dual challenges of achieving personal fulfillment through employment and coping with the economic pressures of maintaining an acceptable standard of living. The increasing number of single parents and of married couples both of whom must work suggest that work-family issues cannot be ignored. Many employed women who become pregnant simply must continue to work.

    Whose responsibility is it to meet the needs of these individuals? Some would argue that it is purely a personal problem to be dealt with entirely by the individual or the family. Others consider it a societal responsibility and would enact laws and provide financial and other benefits on a community-wide basis.

    How much should be loaded on the employer? This depends largely on the nature, the location and often the size of the organization. The employer is driven by two sets of considerations: those imposed by laws and regulations (and sometimes by the need to meet demands won by organized labour) and those dictated by social responsibility and the practical necessity of maintaining optimal productivity. In the last analysis, it hinges on lacing a high value on human resources and acknowledging the interdependence of work responsibilities and family commitments and their sometimes counterbalancing effects on health and productivity.

     

    Back

    Saturday, 19 February 2011 02:17

    Maternity Protection in Legislation

    During pregnancy, exposure to certain health and safety hazards of the job or the working environment may have adverse effects on the health of a woman worker and her unborn child. Before and after giving birth, she also needs a reasonable amount of time off from her job to recuperate, breast-feed and bond with her child. Many women want and need to be able to return to work after childbirth; this is increasingly recognized as a basic right in a world where the participation of women in the labour force is continuously increasing and approaching that of men in many countries. As most women need to support themselves and their families, continuity of income during maternity leave is vital.

    Over time, governments have enacted a range of legislative measures to protect women workers during pregnancy and at childbirth. A feature of more recent measures is the prohibition of discrimination in employment on the grounds of pregnancy. Another trend is to provide the right for mothers and fathers to share leave entitlements after the birth so that either may care for the child. Collective bargaining in many countries contributes to the more effective application of such measures and often improves upon them. Employers also lay an important role in furthering maternity protection through the terms of individual contracts of employment and enterprise policies.

    The Limits of Protection

    Laws providing maternity protection for working women are usually restricted to the formal sector, which may represent a small proportion of economic activity. These do not apply to women working in unregistered economic activities in the informal sector, who in many countries represent the majority of working women. While there is a trend worldwide to improve and extend maternity protection, how to protect the large segment of the population living and working outside the formal economy remains a major challenge.

    In most countries, labour legislation provides maternity protection for women employed in industrial and non-industrial enterprises in the private and often also the public sector. Homeworkers, domestic employees, own-account workers and workers in enterprises employing only family members are frequently excluded. Since many women work in small firms, the relatively frequent exclusion of undertakings which employ less than a certain number of workers (e.g., five permanent workers in the Republic of Korea) is of concern.

    Many women workers in precarious employment, such as temporary workers, or casual workers in Ireland, are excluded from the scope of labour legislation in a number of countries. Depending on the number of hours they work, part-time workers may also be excluded. Other groups of women may be excluded, such as women managers (e.g., Singapore, Switzerland), women whose earnings exceed a certain maximum (e.g., Mauritius) or women who are paid by results (e.g., the Philippines). In rare cases, unmarried women (e.g., teachers in Trinidad and Tobago) do not qualify for maternity leave. However, in Australia (federal), where parental leave is available to employees and their spouses, the term “spouse” is defined to include a de facto spouse. Where age limits are set (e.g., in Israel, women below the age of 18) they usually do not exclude very many women as they are normally fixed below or above the prime child-bearing ages.

    Public servants are often covered by special rules, which may provide for more favourable conditions than those applicable to the private sector. For example, maternity leave may be longer, cash benefits may correspond to the full salary instead of a percentage of it, parental leave is more likely to be available, or the right to reinstatement may be more clearly established. In a significant number of countries, conditions in the public service can act as an agent of progress since collective bargaining agreements in the private sector are often negotiated along the lines of public service maternity protection rules.

    Similar to labour legislation, social security laws may limit their application to certain sectors or categories of workers. While this legislation is often more restrictive than the corresponding labour laws in a country, it may provide access to maternity cash benefits to groups not covered by labour laws, such as self-employed women or women who work with their self-employed husbands. In many developing countries, owing to a lack of resources, social security legislation may only apply to a limited number of sectors.

    Over the decades, however, the coverage of legislation has been extended to more economic sectors and categories of workers. Yet, while an employee may be covered by a law, the enjoyment of certain benefits, in particular maternity leave and cash benefits, may depend on certain eligibility requirements. Thus, while most countries protect maternity, working women do not enjoy a universal right to such protection.

    Maternity Leave

    Time off work for childbirth can vary from a few weeks to several months, often divided into two parts, before and after the birth. A period of employment prohibition may be stipulated for a part or the whole of the entitlement to ensure that women have sufficient rest. Maternity leave is commonly extended in case of illness, preterm or late birth, and multiple births, or shortened in case of miscarriage, stillbirth or infant death.

    Normal duration

    Under the ILO’s Maternity protection Convention, 1919 (No. 3), “a woman shall not be permitted to work during the six weeks following her confinement; [and] shall have the right to leave her work if she produces a medical certificate stating that her confinement will probably take lace within six weeks”. The Maternity protection Convention (Revised), 1952 (No. 103), confirms the 12-week leave, including an employment prohibition for six weeks after the birth, but does not prescribe the use of the remaining six weeks. The Maternity protection Recommendation, 1952 (No. 95), suggests a 14-week leave. The Maternity protection Recommendation, 2000 (No. 191) suggests a 18-week leave [Edited, 2011]. Most of the countries surveyed meet the 12-week standard, and at least one-third grant longer periods.

    A number of countries afford a possibility of choice in the distribution of maternity leave. In some, the law does not prescribe the distribution of maternity leave (e.g., Thailand), and women are entitled to start the leave as early or as late as they wish. In another group of countries, the law indicates the number of days to be taken after confinement; the balance can be taken either before or after the birth.

    Other countries do not allow flexibility: the law provides for two periods of leave, before and after confinement. These periods may be equal, especially where the total leave is relatively short. Where the total leave entitlement exceeds 12 weeks, the prenatal period is often shorter than the postnatal period (e.g., in Germany six weeks before and eight weeks after the birth).

    In a relatively small number of countries (e.g., Benin, Chile, Italy), the employment of women is prohibited during the whole period of maternity leave. In others, a period of compulsory leave is prescribed, often after confinement (e.g., Barbados, Ireland, India, Morocco). The most common requirement is a six-week compulsory period after birth. Over the past decade, the number of countries providing for some compulsory leave before the birth has increased. On the other hand, in some countries (e.g., Canada) there is no period of compulsory leave, as it is felt that the leave is a right that should be freely exercised, and that time off should be organized to suit the individual woman’s needs and preferences.

    Eligibility for maternity leave

    The legislation of most countries recognizes the right of women to maternity leave by stating the amount of leave to which women are entitled; a woman needs only to be employed at the time of going on leave to be eligible for the leave. In a number of countries, however, the law requires women to have been employed for a minimum period prior to the date on which they absent themselves. This period ranges from 13 weeks in Ontario or Ireland to two years in Zambia.

    In several countries, women must have worked a certain number of hours in the week or month to be entitled to maternity leave or benefits. When such thresholds are high (as in Malta, 35 hours per week), they can result in excluding a large number of women, who form the majority of part-time workers. In a number of countries, however, thresholds have been lowered recently (e.g., in Ireland, from 16 to eight hours per week).

    A small number of countries limit the number of times a woman may request maternity leave over a given period (for example two years), or restrict eligibility to a certain number of pregnancies, either with the same employer or throughout the woman’s life (e.g., Egypt, Malaysia). In Zimbabwe, for example, women are eligible for maternity leave once in every 24 months and for a maximum of three times during the period that they work for the same employer. In other countries, the women who have more than the prescribed number of children are eligible for maternity leave, but not for cash benefits (e.g., Thailand), or are eligible for a shorter period of leave with benefits (e.g., Sri Lanka: 12 weeks for the first two children, six weeks for the third and subsequent children). The number of countries that limit eligibility for maternity leave or benefits to a certain number of pregnancies, children or surviving children (between two and four) appears to be growing, although it is by no means certain that the duration of maternity leave is a decisive factor in motivating decisions about family size.

    Advance notice to the employer

    In most countries, the only requirement for women to be entitled to maternity leave is the presentation of a medical certificate. Elsewhere, women are also required to give their employer notice of their intention to take maternity leave. The period of notice ranges from as soon as the pregnancy is known (e.g., Germany) to one week before going on leave (e.g., Belgium). Failure to meet the notice requirement may lose women their right to maternity leave. Thus, in Ireland, information regarding the timing of maternity leave is to be supplied as soon as reasonably practicable, but not later than four weeks before the commencement of the leave. An employee loses her entitlement to maternity leave if she fails to satisfy this requirement. In Canada (federal), the notice requirement is waived where there is a valid reason why the notice cannot be given; at provincial level, the notice period ranges from four months to two weeks. If the notice period is not complied with, a woman worker is still entitled to the normal maternity leave in Manitoba; she is entitled to shorter periods (usually six weeks as opposed to 17 or 18) in most other provinces. In other countries, the law does not clarify the consequences of failing to give notice.

    Cash Benefits

    Most women cannot afford to forfeit their income during maternity leave; if they had to, many would not use all their leave. Since the birth of healthy children benefits the whole nation, as a matter of equity, employers should not bear the full cost of their workers’ absences. Since 1919, ILO standards have held that during maternity leave, women should receive cash benefits, and that these should be paid out of public funds or through a system of insurance. Convention No. 103 requires that contributions due under a compulsory social insurance scheme be paid based on the total number of men and women employed by the undertakings concerned, without distinction based on sex. Although in a few countries, maternity benefits represent only a relatively small percentage of wages, the level of two-thirds called for in Convention No. 103 is reached in several and exceeded in many others. In more than half of the countries surveyed, maternity benefits constitute 100% of insured wages or of full wages.

    Many social security laws may provide a specific maternity benefit, thus recognizing maternity as a contingency in its own right. Others provide that during maternity leave, a worker will be entitled to sickness or unemployment benefits. Treating maternity as a disability or the leave as a period of unemployment could be considered unequal treatment since, in general, such benefits are only available during a certain period, and women who use them in connection with maternity may find they do not have enough left to cover actual sickness or unemployment periods later. Indeed, when the 1992 European Council Directive was drafted, a proposal that during maternity leave women would receive sickness benefits was strongly challenged; it was argued that in terms of equal treatment between men and women, maternity needed to be recognized as independent grounds for obtaining benefits. As a compromise, the maternity allowance was defined as guaranteeing an income at least equivalent to what the worker concerned would receive in the event of sickness.

    In nearly 80 of the countries surveyed, benefits are paid by national social security schemes, and in over 40, these are at the expense of the employer. In about 15 countries, the responsibility for financing maternity benefits is shared between social security and the employer. Where benefits are financed jointly by social security and the employer, each may be required to pay half (e.g., Costa Rica), although other percentages may be found (e.g., Honduras: two-thirds by social security and one-third by the employer). Another type of contribution may be required of employers: when the amount of maternity benefit paid by social security is based on a statutory insurable income and represents a low percentage of a woman’s full wage, the law sometimes provides that the employer will pay the balance between the woman’s salary and the maternity benefit paid by the social security fund (e.g., in Burkina Faso). Voluntary additional payment by the employer is a feature of many collective agreements, and also of individual employment contracts. The involvement of employers in the payment of cash maternity benefits may be a realistic solution to the problem posed by the lack of other funds.

    Protection of the Health of Pregnant and Nursing Women

    In line with the requirements of the Maternity protection Recommendation, 1952 (No. 95), many countries provide for various measures to protect the health of pregnant women and their children, seeking to minimize fatigue by the reorganization of working time or to protect women against dangerous or unhealthy work.

    In a few countries (e.g., the Netherlands, Panama), the law specifies an obligation of the employer to organize work so that it does not affect the outcome of the pregnancy. This approach, which is in line with modern occupational health and safety practice, permits matching the needs of individual women with the corresponding preventive measures, and is therefore most satisfactory. Much more generally, protection is sought through prohibiting or limiting work which may be harmful to the health of the mother or child. Such a prohibition may be worded in general terms or may apply to certain types of hazardous work. However, in Mexico, the prohibition of employing women in unhealthy or dangerous work does not apply if the necessary health protection measures have, in the opinion of the competent authority, been taken; nor does it apply to women in managerial positions or those who possess a university degree or technical diploma, or the necessary knowledge and experience to carry on the work.

    In many countries, the law provides that pregnant women and nursing mothers may not be allowed to do work that is “beyond their strength”, which “involves hazards”, “is dangerous to their health or that of their child”, or “requires a physical effort unsuited to their condition”. The application of such a general prohibition, however, can present problems: how, and by whom, shall it be determined that a job is beyond a person’s strength? By the worker concerned, the employer, the labour inspector, the occupational health physician, the woman’s own doctor? Differences in appreciation might lead to a woman being kept away from work which she could in fact do, while another might not be removed from work which is too taxing.

    Other countries list, sometimes in great detail, the type of work that is prohibited to pregnant women and nursing mothers (e.g., Austria, Germany). The handling of loads is frequently regulated. Legislation in some countries specifically prohibits exposure to certain chemicals (e.g., benzene), biological agents, lead and radiation. Underground work is prohibited in Japan during pregnancy and one year after confinement. In Germany, piece-rate work and work on an assembly line with a fixed pace are prohibited. In a few countries, pregnant workers may not be assigned to work outside their permanent place of residence (e.g., Ghana, after the fourth month). In Austria, smoking is not permitted in places where pregnant women are working.

    In a number of countries (e.g., Angola, Bulgaria, Haiti, Germany), the employer is required to transfer the worker to suitable work. Often, the worker must retain her former salary even if the salary of the post to which she is transferred is lower. In the Lao people’s Democratic Republic, the woman keeps her former salary during a three-month period, and is then paid at the rate corresponding to the job she is actually performing. In the Russian Federation, where a suitable post is to be given to a woman who can no longer perform her work, she retains her salary during the period in which a new post is found. In certain cases (e.g., Romania), the difference between the two salaries is paid by social security, an arrangement which is to be referred, since the cost of maternity protection should not, as far as feasible, be borne by individual employers.

    Transfer may also be available from work that is not dangerous in itself but which a medical practitioner has certified to be harmful to a particular woman’s state of health (e.g., France). In other countries, a transfer is possible at the request of the worker concerned (e.g., Canada, Switzerland). Where the law enables the employer to suggest a transfer, if there is a disagreement between the employer and the worker, an occupational physician will determine whether there is any medical need for changing jobs and whether the worker is fit to take up the job that has been suggested to her.

    A few countries clarify the fact that the transfer is temporary and that the worker must be reassigned to her former job when she returns from maternity leave or at a specified time thereafter (e.g., France). Where a transfer is not possible, some countries provide that the worker will be granted sick leave (e.g., Seychelles) or, as was discussed above, that maternity leave will start early (e.g., Iceland).

    Non-discrimination

    Measures are taken in a growing number of countries to ensure that women do not suffer discrimination on account of pregnancy. Their aim is to ensure that pregnant women are considered for employment and treated during employment on an equal basis with men and with other women, and in particular are not demoted, do not lose seniority or are not denied promotion solely on the grounds of pregnancy. It is now more and more common for national legislation to prohibit discrimination on account of sex. Such a prohibition could be and indeed has been in many cases interpreted by the courts as a prohibition to discriminate on account of pregnancy. The European Court of Justice has followed this approach. In a 1989 judgement, the Court ruled that an employer who dismisses or refuses to recruit a woman because she is pregnant is in breach of Directive 76/207/EEC of the European Council on equal treatment. This judgement was important in clarifying the fact that sex discrimination exists when employment decisions are made on the basis of pregnancy even though the law does not specifically cite pregnancy as prohibited grounds for discrimination. It is customary in sex equality cases to compare the treatment given to a woman with the treatment given to a hypothetical man. The Court ruled that such comparison was not called for in the case of a pregnant woman, since pregnancy was unique to women. Where unfavourable treatment is made on grounds of pregnancy, there is by definition discrimination on grounds of sex. This is consistent with the position of the ILO Committee of Exerts on the Application of Conventions and Recommendations concerning the scope of the Discrimination (Employment and Occupation) Convention, 1958 (No. 111), which notes the discriminatory nature of distinctions on the basis of pregnancy, confinement and related medical conditions (ILO 1988).

    A number of countries provide for an explicit prohibition of discrimination on the grounds of pregnancy (e.g., Australia, Italy, US, Venezuela). Other countries define discrimination on grounds of sex to include discrimination on grounds of pregnancy or absence on maternity leave (e.g., Finland). In the US, protection is further ensured through treating pregnancy as a disability: in undertakings with more than 15 workers, discrimination is prohibited against pregnant women, women at childbirth and women who are affected by related medical conditions; and policies and practices in connection with pregnancy and related matters must be applied on the same terms and conditions as applied to other disabilities.

    In several countries, the law contains precise requirements which illustrate instances of discrimination on the grounds of pregnancy. For example, in the Russian Federation, an employer may not refuse to hire a woman because she is pregnant; if a pregnant woman is not hired, the employer must state in writing the reasons for not recruiting her. In France, it is unlawful for an employer to take pregnancy into account in refusing to employ a woman, in terminating her contract during a period of probation or in ordering her transfer. It is also unlawful for the employer to seek to determine whether an applicant is pregnant, or to cause such information to be sought. Similarly, women cannot be required to reveal the fact that they are pregnant, whether they apply for a job or are employed in one, except when they request to benefit from any law or regulation governing the protection of pregnant women.

    Transfers unilaterally and arbitrarily imposed on a pregnant woman can constitute discrimination. In Bolivia, as in other countries in the region, a woman is protected against involuntary transfer during pregnancy and up to a year after the birth of her child.

    The issue of combining the right of working women to health protection during pregnancy and their right not to suffer discrimination poses a special difficulty at the time of recruitment. Should a pregnant applicant reveal her condition, especially one who applies for a position involving work which is prohibited to pregnant women? In a 1988 judgement, the Federal Labour Court of Germany held that a pregnant woman applying for a job involving exclusively night work, which is prohibited to pregnant women under German legislation, should inform a potential employer of her condition. The judgement was overruled by the European Court of Justice as being contrary to the 1976 EC Directive on equal treatment. The Court found that the Directive precluded an employment contract from being held to be void on account of the statutory prohibition of night work, or from being avoided by the employer on account of a mistake on his or her part as to an essential personal characteristic of the woman at the time of the conclusion of the contract. The employee’s inability, due to pregnancy, to perform the work for which she was being recruited was temporary since the contract was not concluded with a fixed term. It would therefore be contrary to the objective of the Directive to hold it invalid or void because of such an inability.

    Employment Security

    Many women have lost their jobs because of a pregnancy. Nowadays, although the extent of protection varies, employment security is a significant component of maternity protection policies.

    International labour standards address the issue in two different ways. The maternity protection Conventions prohibit dismissal during maternity leave and any extension thereof, or at such time as a notice of dismissal would expire during the leave under the terms of Convention No. 3, Article 4 and Convention No. 103, Article 6. Dismissal on grounds that might be regarded as legitimate is not considered to be permitted during this period (ILO 1965). In the event that a woman has been dismissed before going on maternity leave, the notice should be suspended for the time she is absent and continue after her return. The Maternity protection Recommendation, 1952 (No. 95), calls for the protection of a pregnant woman’s employment from the date the employer is informed of the pregnancy until one month after her return from maternity leave. It identifies cases of serious fault by the employed woman, the shutting down of the undertaking and the expiry of a fixed-term contract as legitimate grounds for dismissal during the protected period. The Termination of Employment Convention, 1982 (No. 158; Article 5(d)–(e)), does not prohibit dismissal, but provides that pregnancy or absence from work on maternity leave shall not constitute valid reasons for termination of employment.

    At the level of the European Union, the 1992 Directive prohibits dismissal from the beginning of pregnancy until the end of the maternity leave, save in exceptional cases not connected with the worker’s condition.

    Usually, countries provide for two sets of rules regarding dismissal. Dismissal with notice applies in such cases as the closure of the enterprise, redundancy and where, for a variety of reasons, the worker is unable to perform the work for which he or she has been recruited or fails to perform such work to the employer’s satisfaction. Dismissal without notice is used to terminate the services of a worker who is guilty of gross negligence, serious misconduct or other grave instances of behaviour, usually comprehensively listed in the legislation.

    Where dismissal with notice is concerned, it is clear that employers could arbitrarily decide that pregnancy is incompatible with a worker’s tasks and dismiss her on grounds of pregnancy. Those who wish to avoid their obligations to pregnant women, or even simply do not like to have pregnant women around the workplace, could find a pretext to dismiss workers during pregnancy even if, in view of the existence of non-discrimination rules, they would refrain from using pregnancy as grounds for dismissal. Many people agree that it is legitimate to protect workers against such discriminatory decisions: the prohibition of dismissal with notice on grounds of pregnancy or during pregnancy and maternity leave is often viewed as a measure of equity and is in force in many countries.

    The ILO Committee of Exerts on the Application of Conventions and Recommendations considers that protection against dismissal does not preclude an employer from terminating an employment relationship because he or she has detected a serious fault on the part of a woman employee: rather, when there are reasons such as this to justify dismissal, the employer is obliged to extend the legal period of notice by any period required to complete the period of protection under the Conventions. This is the situation, for example, in Belgium, where an employer who has legal grounds for dismissing a woman cannot do so while she is on maternity leave, but can serve notice so that it expires after the woman returns from leave.

    The protection of pregnant women against dismissal in case of closure of the undertaking or economic retrenchment poses a similar problem. It is indeed a burden for a firm which ceases operation to continue to pay the salary of a person who is not working for them any more, even for a short period. However, recruitment prospects are often bleaker for women who are pregnant than for women who are not, or for men, and pregnant women particularly need the emotional and financial security of continuing to be employed. Where women may not be dismissed during pregnancy, they can put off looking for a job until after the birth. In fact, where legislation provides for the order in which various categories of workers to be retrenched are to be dismissed, pregnant women are among those to be dismissed last or next to last (e.g., Ethiopia).

    Leave and Benefits for Fathers and Parents

    Going beyond the protection of the health and employment status of pregnant and nursing women, many countries provide for paternity leave (a short period of leave at or about the time of birth). Other forms of leave are linked to the needs of children. One type is adoption leave, and another is leave to facilitate child-rearing. Many countries foresee the latter type of leave, but use different approaches. One group provides for time off for the mother of very young children (optional maternity leave), while another provides additional leave for both parents (parental education leave). The view that both the father and mother need to be available to care for young children is also reflected in integrated parental leave systems, which provide a long period of leave available to both parents.

     

    Back

    Environmental hazards pose a special risk for infants and young children. Children are not “little adults”, either in the way they absorb and eliminate chemicals or in their response to toxic exposures. Neonatal exposures may have a greater impact because the body surface area is disproportionately large and metabolic capacity (or the ability to eliminate chemicals) is relatively underdeveloped. At the same time, the potential toxic effects are greater, because the brain, the lungs and the immune system are still developing during the early years of life.

    Opportunities for exposure exist at home, in day care facilities and on playgrounds:

    • Young children can absorb environmental agents from the air (by inhalation) or through the skin.
    • Ingestion is a major route of exposure, especially when children begin to exhibit hand-to-mouth activity.
    • Substances on the hair, clothes or hands of the parents can be transferred to the young child.
    • Breast milk is another potential source of exposure for infants, although the potential benefits of nursing far outweigh the potential toxic effects of chemicals in breast milk.

    For a number of the health effects discussed in connection with neonatal exposures, it is difficult to distinguish prenatal from postnatal events. Exposures taking lace before birth (through the placenta) can continue to be manifest in early childhood. Both lead and environmental tobacco smoke have been associated with deficits in cognitive development and lung function both before and after birth. In this review, we have attempted to focus on postnatal exposures and their effects on the health of very young children.

    Lead and Other Heavy Metals

    Among the heavy metals, lead (b) is the most important elemental exposure for humans in both environmental and occupational circumstances. Significant occupational exposures occur in battery manufacture, smelters, soldering, welding, construction and paint removal. parents employed in these industries have long been known to bring dust home on their clothes that can be absorbed by their children. The primary route of absorption by children is through ingestion of lead-contaminated paint chips, dust and water. Respiratory absorption is efficient, and inhalation becomes a significant exposure pathway if an aerosol of lead or alkyl lead is resent (Clement International Corporation 1991).

    Lead poisoning can damage virtually every organ system, but current levels of exposure have been associated chiefly with neurological and developmental changes in children. In addition, renal and haematological disease have been observed among both adults and children intensely exposed to lead. Cardiovascular disease as well as reproductive dysfunction are known sequelae of lead exposure among adults. Subclinical renal, cardiovascular and reproductive effects are suspected to arise from lower, chronic lead exposure, and limited data support this idea. Animal data support human findings (Sager and Girard 1994).

    In terms of measurable dose, neurological effects range from IQ deficits at low exposures (blood lead = 10 μg/dl) to enceha-loathy (80 μg/dl). Levels of concern in children in 1985 were 25 μg/dl, which was lowered to 10 μg/dl in 1993.

    Neonatal exposure, as it resulted from dust brought home by working parents, was described as “fouling the nest” by Chisholm in 1978. Since that time, preventive measures, such as showering and changing clothing before leaving the workplace, have reduced the take-home dust burden. However, occupationally derived lead is still an important potential source of neonatal exposure today. A survey of children in Denmark found that blood lead was approximately twice as high among children of exposed workers than in homes with only non-occupational exposures (Grandjean and Bach 1986). Exposure of children to occupationally derived lead has been documented among electric cable splicers (Rinehart and Yanagisawa 1993) and capacitor manufacturing workers (Kaye, Novotny and Tucker 1987).

    Non-occupational sources of environmental lead exposure continue to be a serious hazard to young children. Since the gradual ban of tetraethyl lead as a fuel additive in the United States (in 1978), average blood lead levels in children have declined from 13 to 3 μg/dl (Pirkle et al. 1994). paint chips and paint dust are now the principal cause of childhood lead poisoning in the United States (Roer 1991). For example in one report, younger children (neonates aged less than 11 months) with excessive lead in their blood were at greatest risk of exposure through dust and water while older children (aged 24 months) were at risk more from ingestion of paint chips (ica) (Shannon and Graef 1992). Lead abatement through paint removal has been successful in protecting children from exposure to dust and paint chips (Farfel, Chisholm and Rohde 1994). Ironically, workers engaged in this enterprise have been shown to carry lead dust home on their clothes. In addition, it has been noted that the continuing exposure of young children to lead disproportionately affects economically disadvantaged children (Brody et al. 1994; Goldman and Carra 1994). art of this inequity arises from the poor condition of housing; as early as 1982, it was shown that the extent of deterioration of housing was directly related to blood lead levels in children (Clement International Corporation 1991).

    Another potential source of occupationally derived exposure for the neonate is lead in breast milk. Higher levels of lead in breast milk have been linked to both occupational and environmental sources (Ryu, Ziegler and Fomon 1978; Dabeka et al. 1986). The concentrations of lead in milk are small relative to blood (approximately 1/5 to 1/2) (Wolff 1993), but the large volume of breast milk ingested by an infant can add milligram quantities to the body burden. In comparison, there is normally less than 0.03 mg b in the circulating blood of an infant and the usual intake is less than 20 mg per day (Clement International Corporation 1991). Indeed, absorption from breast milk is reflected in the blood lead level of infants (Rabinowitz, Leviton and Needleman 1985; Ryu et al. 1983; Ziegler et al. 1978). It should be noted that normal lead levels in breast milk are not excessive, and lactation contributes an amount similar to that from other sources of infant nutrition. By comparison, a small paint chi could contain more than 10 mg (10,000 mg) of lead.

    Developmental decrements in children have been linked with both prenatal and postnatal exposures to lead. prenatal exposure is thought to be responsible for lead-related deficits in mental and behavioural development that have been found in children until the age of two to four years (Landrigan and Cambell 1991; Bellinger et al. 1987). The effects of postnatal lead exposure, such as that experienced by the neonate from occupational sources, may be detected in children from ages two to six and even later. Among these are problem behaviour and lower intelligence (Bellinger et al. 1994). These effects are not confined only to high exposures; they have been observed at relatively low levels, e.g., where blood lead levels are in the range of 10 mg/dl (Needleman and Bellinger 1984).

    Mercury (Hg) exposure from the environment may occur as inorganic and organic (mainly methyl) forms. Recent occupational exposures to mercury have been found among workers in thermometer manufacture and in repair of high-voltage equipment containing mercury. Other occupations with potential exposures include painting, dentistry, plumbing and chlorine manufacture (Agency for Toxic Substance and Disease Registry 1992).

    prenatal and postnatal mercury poisoning has been well documented among children. Children are more susceptible to effects of methylmercury than adults. This is largely because the developing human central nervous system is so “remarkably sensitive” to methylmercury, an effect also seen at low levels in animals (Clarkson, Nordberg and Sager 1985). Methylmercury exposures in children arise chiefly from ingestion of contaminated fish or from breast milk, while elemental mercury is derived from occupational exposures. Household exposure incidental to occupational exposure has been noted (Zirschky and Wetherell 1987). Accidental exposures in the home have been reported in recent years in domestic industries (Meeks, Keith and Tanner 1990; Rowens et al. 1991) and in an accidental sill of metallic mercury (Florentine and Sanfilio 1991). Elemental mercury exposure occurs mainly by inhalation, while alkyl mercury can be absorbed by ingestion, inhalation or dermal contact.

    In the best-studied episode of poisoning, sensory and motor dysfunction and mental retardation were found following very high exposures to methylmercury either in utero or from breast milk (Bakir et al. 1973). Maternal exposures resulted from ingestion of methylmercury that had been used as a fungicide on grain.

    pesticides and Related Chemicals

    Several hundred million tons of pesticides are produced worldwide each year. Herbicides, fungicides and insecticides are employed mainly in agriculture by developed countries to improve crop yield and quality. Wood preservatives are a much smaller, but still a major, art of the market. Home and garden use represents a relatively minor proportion of total consumption, but from the point of view of neonatal toxicity, domestic poisonings are perhaps the most numerous. Occupational exposure is also a potential source of indirect exposure to infants if a parent is involved in work that uses pesticides. Exposure to pesticides is possible through dermal absorption, inhalation and ingestion. More than 50 pesticides have been declared carcinogenic in animals (McConnell 1986).

    Organochlorine pesticides include aromatic compounds, such as DDT (bis(4-chlorohenyl)-1,1,1-trichloroethane), and cyclodienes, such as dieldrin. DDT came into use in the early 1940s as an effective means to eliminate mosquitoes carrying malaria, an application that is still widely employed today in developing countries. Lindane is an organochlorine used widely to control body lice and in agriculture, especially in developing countries. olychlorinated bihenyls (CBs), another fat-soluble organochlorine mixture used since the 1940s, pose a potential health risk to young children exposed through breast milk and other contaminated foods. Both lindane and CBs are discussed separately in this chapter. olybrominated bihenyls (BBs) also have been detected in breast milk, almost exclusively in Michigan. Here, a fire-retardant inadvertently mixed into livestock feed in 1973-74 became widely dispersed across the state through dairy and meat products.

    Chlordane has been used as a pesticide and as a termiticide in houses, where it is effective for decades, no doubt because of its persistence. Exposure to this chemical can be from dietary and direct respiratory or dermal absorption. Levels in human milk in Japan could be related both to diet and to how recently homes had been treated. Women living in homes treated more than two years earlier had chlordane levels in milk three times those of women living in untreated homes (Taguchi and Yakushiji 1988).

    Diet is the main source of persistent organochlorines, but smoking, air and water may also contribute to exposure. This class of pesticides, also termed halogenated hydrocarbons, is quite persistent in the environment, since these are lipophilic, resistant to metabolism or biodegradation and exhibit low volatility. Several hundreds of m have been found in human and animal fat among those with highest exposures. Because of their reproductive toxicity in wildlife and their tendency to bioaccumulate, organochlorines have been largely banned or restricted in developed countries.

    At very high doses, neurotoxicity has been observed with organochlorines, but potential long-term health effects are of more concern among humans. Although chronic health effects have not been widely documented, heatotoxicity, cancer and reproductive dysfunction have been found in experimental animals and in wildlife. Health concerns arise mainly from observations in animal studies of carcinogenesis and of profound changes in the liver and the immune system.

    Organohoshates and carbamates are less persistent than the organochlorines and are the most widely used class of insecticides internationally. pesticides of this class are degraded relatively quickly in the environment and in the body. A number of the organohoshates and carbamates exhibit high acute neurotoxicity and in certain cases chronic neurotoxicity as well. Dermatitis is also a widely reported symptom of pesticide exposure.

    The petroleum-based products used to apply some pesticides are also of potential concern. Chronic effects including haematooietic and other childhood cancers have been associated with parental or residential exposures to pesticides, but the epidemiological data are quite limited. Nevertheless, based on the data from animal studies, exposures to pesticides should be avoided.

    For the newborn, a wide spectrum of exposure possibilities and toxic effects have been reported. Among children who required hospitalization for acute poisoning, most had inadvertently ingested pesticide products, while a significant number had been exposed while laying on sprayed carets (Casey, Thomson and Vale 1994; Zwiener and Ginsburg 1988). Contamination of workers’ clothing by pesticide dust or liquid has long been recognized. Therefore, this route provides ample opportunity for home exposures unless workers take proper hygienic precautions after work. For example, an entire family had elevated levels of chlordecone (Keone) in their blood, attributed to home laundering of a worker’s clothes (Grandjean and Bach 1986). Household exposure to TCDD (dioxin) has been documented by the occurrence of chloracne in the son and wife of two workers exposed in the aftermath of an explosion (Jensen, Sneddon and Walker 1972).

    Most of the possible exposures to infants arise from pesticide applications within and around the home (Lewis, Fortmann and Camann 1994). Dust in home carets has been found to be extensively contaminated with numerous pesticides (Fenske et al. 1994). Much of reported home contamination has been attributed to flea extermination or to lawn and garden application of pesticides (Davis, Bronson and Garcia 1992). Infant absorption of chloryrifos after treatment of homes for fleas has been predicted to exceed safe levels. Indeed, indoor air levels following such fumigation procedures do not always rapidly diminish to safe levels.

    Breast milk is a potential source of pesticide exposure for the neonate. Human milk contamination with pesticides, especially the organochlorines, has been known for decades. Occupational and environmental exposures can lead to significant pesticide contamination of breast milk (D’Ercole et al. 1976; McConnell 1986). Organochlorines, which in the past have been resent in breast milk at excessive levels, are declining in developed countries, paralleling the decline in adipose concentrations that has occurred after restriction of these compounds. Therefore, DDT contamination of human milk is now highest in developing countries. There is little evidence of organohoshates in breast milk. This may be attributable to properties of water solubility and raid metabolism of these compounds in the body.

    Ingestion of water contaminated with pesticides is also a potential health risk for the neonate. This problem is most renounced where infant formula must be reared using water. Otherwise, commercial infant formulae are relatively free of contaminants (National Research Council 1993). Food contamination with pesticides may also lead to infant exposure. Contamination of commercial milk, fruits and vegetables with pesticides exists at very low levels even in developed countries where regulation and monitoring are most vigorous (The Referee 1994). Although milk comprises most of the infant diet, fruits (especially ales) and vegetables (especially carrots) are also consumed in a significant amount by young children and therefore represent a possible source of pesticide exposure.

    In the industrialized countries, including the United States and western Europe, most of the organochlorine pesticides, including DDT, chlordane, dieldrin and lindane, have been either banned, suspended or restricted since the 1970s (Maxcy Rosenau-Last 1994). pesticides still used for agricultural and non-agricultural purposes are regulated in terms of their levels in foods, water and pharmaceutical products. As a result of this regulation, the levels of pesticides in adipose tissue and human milk have significantly declined over the past four decades. However, the organochlorines are still widely used in developing countries, where, for example, lindane and DDT are among the most frequently employed pesticides for agricultural use and for malaria control (Awumbila and Bokuma 1994).

    Lindane

    Lindane is the γ-isomer and active ingredient of the technical grade of benzene hexachloride (BHC). BHC, also known as hexachlorocyclohexane (HCH), contains 40 to 90% of other isomers— α, β and δ. This organochlorine has been used as an agricultural and non-agricultural pesticide throughout the world since 1949. Occupational exposures may occur during the manufacture, formulation and application of BHC. Lindane as a pharmaceutical reparation in creams, lotions and shampoos is also widely used to treat scabies and body lice. Because these skin conditions commonly occur among infants and children, medical treatment can lead to absorption of BHC by infants through the skin. Neonatal exposure can also occur by inhalation of vapour or dust that may be brought home by a parent or that may linger after home use. Dietary intake is also a possible means of exposure to infants since BHC has been detected in human milk, dairy products and other foods, as have many organochlorine insecticides. Exposure through breast milk was more prevalent in the United States prior to the ban on the commercial production of lindane. According to the IARC (International Agency for Research on Cancer 1987), it is possible that hexachlorocyclohexane is carcinogenic to humans. However, evidence for adverse health outcomes among infants has been reported chiefly as effects on the neurological and haematooietic systems.

    Household exposure to lindane has been described in the wife of a pesticide formulator, demonstrating the potential for similar neonatal exposures. The wife had 5 ng/ml of γ-BHC in her blood, a concentration lower than that of her husband (table 1) (Starr et al. 1974). presumably, γ-BHC was brought into the home on the body and/or clothes of the worker. Levels of γ-BHC in the woman and her husband were higher than those reported in children treated with lotion containing 0.3 to 1.0% BHC.

    BHC in breast milk exists mainly as the β-isomer (Smith 1991). The half-life of the γ-isomer in the human body is approximately one day, while the β-isomer accumulates.

    Table 1. Potential sources and levels of exposure to newborns

      Source of exposure g-BHC in blood
    (ng/ml; ppb)
    Occupational exposures Low exposures
    High exposures
    5
    36
    Adult male Attempted suicide 1300
    Child Acute poisoning 100-800
    Children 1% BHC lotion (average) 13
    Case report of home exposure1 Husband
    Wife
    17
    5
    Unexposed populations since1980 Yugoslavia
    Africa
    Brazil
    India
    52
    72
    92
    752

    1Starr et al. (1974); other data from Smith (1991).
    2Largely b-isomer.

    Dermal absorption of lindane from pharmaceutical products is a function of the amount applied to the skin and duration of exposure. Compared with adults, infants and young children appear to be more susceptible to the toxic effects of lindane (Clement International Corporation 1992). One reason may be that dermal absorption is enhanced by increased permeability of the infant’s skin and a large surface-to-volume ratio. Levels in the neonate may persist longer because the metabolism of BHC is less efficient in infants and young children. In addition, exposure in neonates may be increased by licking or mouthing treated areas (Kramer et al. 1990). A hot shower or bath before dermal application of medical products may facilitate dermal absorption, thereby exacerbating toxicity.

    In a number of reported cases of accidental lindane poisoning, overt toxic effects have been described, some in young children. In one case, a two-month-old infant died after multiple exposures to 1% lindane lotion, including a full-body application following a hot bath (Davies et al. 1983).

    Lindane production and use is restricted in most developed countries. Lindane is still used extensively in other countries for agricultural purposes, as noted in a study of pesticide use on farms in Ghana, where lindane accounted for 35 and 85% of pesticide use for farmers and herdsmen, respectively (Awumbila and Bokuma 1994).

    olychlorinated bihenyls

    olychlorinated bihenyls were used from the mid-1940s until the late 1970s as insulating fluids in electrical capacitors and transformers. Residues are still resent in the environment because of pollution, which is due largely to improper disposal or accidental sills. Some equipment still in use or stored remains a potential source of contamination. An incident has been reported in which children had detectable levels of CBs in their blood following exposure while laying with capacitors (Wolff and Schecter 1991). Exposure in the wife of an exposed worker has also been reported (Fishbein and Wolff 1987).

    In two studies of environmental exposures, re- and postnatal exposure to CBs has been associated with small but significant effects in children. In one study, slightly impaired motor development was detected among children whose mothers had immediate postnatal breast milk CB levels in the upper 95th percentile of the study group (Rogan et al. 1986). In the other, sensory deficits (as well as smaller gestational size) were seen among children with blood levels in approximately the to 25% (Jacobson et al. 1985; Fein et al. 1984). These exposure levels were in the upper range for the studies (above 3 m in mother’s milk (fat basis) and above 3 ng/ml in children’s blood), yet these are not excessively high. Common occupational exposures result in levels ten to 100 times higher (Wolff 1985). In both studies, effects were attributed to prenatal exposure. Such results however sound a cautionary note for unduly exposing neonates to such chemicals both pre- and postnatally.

    Solvents

    Solvents are a group of volatile or semi-volatile liquids that are used mainly to dissolve other substances. Exposure to solvents can occur in manufacturing processes, for example hexane exposure during distillation of petroleum products. For most persons, exposures to solvents will arise while these are being used on the job or in the home. Common industrial applications include dry cleaning, degreasing, painting and paint removal, and printing. Within the home, direct contact with solvents is possible during use of products such as metal cleaners, dry cleaning products, paint thinners or sprays.

    The major routes of exposure for solvents in both adults and infants are through respiratory and dermal absorption. Ingestion of breast milk is one means of neonatal exposure to solvents derived from the parent’s work. Because of the brief half-life of most solvents, their duration in breast milk will be similarly short. However, following maternal exposure, some solvents will be resent in breast milk at least for a short time (at least one half-life). Solvents that have been detected in breast milk include tetrachloroethylene, carbon disulhide and halothane (an anaesthetic). A detailed review of potential infant exposure to tetrachloroethylene (TCE) has concluded that levels in breast milk can easily exceed recommended health risk guidelines (Schreiber 1993). Excess risk was highest for infants whose mothers might be exposed in the workplace (58 to 600 per million persons). For the highest non-occupational exposures, excess risks of 36 to 220 per 10 million persons were estimated; such exposures can exist in homes directly above dry-cleaners. It was further estimated that milk concentrations of TCE would return to “normal” (re-exposure) levels four to eight weeks after cessation of exposure.

    Non-occupational exposures are possible for the infant in the home where solvents or solvent-based products are used. Indoor air has very low, but consistently detectable, levels of solvents like tetrachloroethylene. Water may also contain volatile organic compounds of the same type.

    Mineral Dusts and Fibres: Asbestos, Fibreglass, Rock Wool, Zeolites, Talc

    Mineral dust and fibre exposure in the workplace causes respiratory disease, including lung cancer, among workers. Dust exposure is a potential problem for the newborn if a parent carries articles into the home on the clothes or body. With asbestos, fibres from the workplace have been found in the home environment, and resulting exposures of family members have been termed bystander or family exposures. Documentation of familial asbestos disease has been possible because of the occurrence of a signal tumour, mesothelioma, that is primarily associated with asbestos exposure. Mesothelioma is a cancer of the leura or eritoneum (linings of lung and abdomen, respectively) that occurs following a long latency period, typically 30 to 40 years after the first asbestos exposure. The aetiology of this disease appears to be related only to the length of time after initial exposure, not to intensity or duration, nor to age at first exposure (Nicholson 1986; Otte, Sigsgaard and Kjaerulff 1990). Respiratory abnormalities have also been attributed to bystander asbestos exposure (Grandjean and Bach 1986). Extensive animal experiments support the human observations.

    Most cases of familial mesothelioma have been reported among wives of exposed miners, millers, manufacturers and insulators. However, a number of childhood exposures have also been associated with disease. Quite a few of these children had initial contact that occurred at an early age (Dawson et al. 1992; Anderson et al. 1976; Roggli and Longo 1991). For example, in one investigation of 24 familial contacts with mesothelioma who lived in a crocidolite asbestos mining town, seven cases were identified whose ages were 29 to 39 years at diagnosis or death and whose initial exposure had occurred at less than one year of age (n=5) or at three years (n=2) (Hansen et al. 1993).

    Exposure to asbestos is clearly causative for mesothelioma, but an epigenetic mechanism has been further pro[osed to account for unusual clustering of cases within certain families. Thus, the occurrence of mesothelioma among 64 persons in 27 families suggests a genetic trait that may render certain individuals more sensitive to the asbestos insult leading to this disease (Dawson et al. 1992; Bianchi, Brollo and Zuch 1993). However, it also has been suggested that exposure alone may provide an adequate explanation for the reported familial aggregation (Alderson 1986).

    Other inorganic dusts associated with occupational disease include fibreglass, zeolites and talc. Both asbestos and fibreglass have been widely used as insulating materials. pulmonary fibrosis and cancer are associated with asbestos and much less clearly with fibreglass. Mesothelioma has been reported in areas of Turkey with indigenous exposures to natural zeolites. Exposures to asbestos may also arise from non-occupational sources. Diaers (“naies”) constructed from asbestos fibre were implicated as a source of childhood asbestos exposure (Li, Dreyfus and Antman 1989); however, parental clothing was not excluded as a source of asbestos contact in this report. Asbestos also has been found in cigarettes, hairdryers, floor tiles and some types of talcum powder. Its use has been eliminated in many countries. However, an important consideration for children is residual asbestos insulation in schools, which has been widely investigated as a potential public health problem.

    Environmental Tobacco Smoke

    Environmental tobacco smoke (ETS) is a combination of exhaled smoke and smoke emitted from the smoldering cigarette. Although ETS is not itself a source of occupational exposure that may affect the neonate, it is reviewed here because of its potential to cause adverse health effects and because it provides a good example of other aerosol exposures. Exposure of a non-smoker to ETS is often described as passive or involuntary smoking. prenatal exposure to ETS is clearly associated with deficits or impairments in foetal growth. It is difficult to distinguish postnatal outcomes from effects of ETS in the prenatal period, since parental smoking is rarely confined to one time or the other. However, there is evidence to support a relationship of postnatal exposure to ETS with respiratory illness and impaired lung function. The similarity of these findings to experiences among adults strengthens the association.

    ETS has been well characterized and extensively studied in terms of human exposure and health effects. ETS is a human carcinogen (US Environmental protection Agency 1992). ETS exposure can be assessed by measuring levels of nicotine, a component of tobacco, and cotinine, its major metabolite, in biological fluids including saliva, blood and urine. Nicotine and cotinine have also been detected in breast milk. Cotinine has also been found in the blood and urine of infants who were exposed to ETS only by breast-feeding (Charlton 1994; National Research Council 1986).

    Exposure of the neonate to ETS has been clearly established to result from paternal and maternal smoking in the home environment. Maternal smoking provides the most significant source. For example, in several studies urinary cotinine in children has been shown to correlate with the number of cigarettes smoked by the mother per day (Marbury, Hammon and Haley 1993). The major routes of ETS exposure for the neonate are respiratory and dietary (through breast milk). Day care centers represent another potential exposure situation; many child care facilities do not have a no-smoking policy (Sockrider and Coultras 1994).

    Hospitalization for respiratory illness occurs more often among newborns whose parents smoke. In addition, the duration of hospital visits is longer among infants exposed to ETS. In terms of causation, ETS exposure has not been associated with specific respiratory diseases. There is evidence, however, that passive smoking increases the severity of re-existing illnesses such as bronchitis and asthma (Charlton 1994; Chilmonczyk et al. 1993; Rylander et al. 1993). Children and infants exposed to ETS also have higher frequencies of respiratory infections. In addition, smoking parents with respiratory illnesses can transmit airborne infections to infants by coughing.

    Children exposed to ETS postnatally show small deficits in lung function which appear to be independent of prenatal exposures (Frischer et al. 1992). Although the ETS-related changes are small (0.5% decrement per year of forced expiratory volume), and while these effects are not clinically significant, they suggest changes in the cells of the developing lung that may portend later risk. parental smoking has also been associated with increased risk of otitis media, or middle ear effusion, in children from infancy to age nine. This condition is a common cause of deafness among children which can cause delays in educational progress. Associated risk is supported by studies attributing one-third of all cases of otitis media to parental smoking (Charlton 1994).

    Radiation Exposures

    Ionizing radiation exposure is an established health hazard which is generally the result of intense exposure, either accidental or for medical purposes. It can be damaging to highly proliferative cells, and can therefore be very harmful to the developing foetus or neonate. Radiation exposures that result from diagnostic x rays are generally very low level, and considered to be safe. A potential household source of exposure to ionizing radiation is radon, which exists in certain geographic areas in rock formations.

    prenatal and postnatal effects of radiation include mental retardation, lower intelligence, growth retardation, congenital malformations and cancer. Exposure to high doses of ionizing radiation is also associated with increased prevalence of cancer. Incidence for this exposure is dependent upon dose and age. In fact, the highest relative risk observed for breast cancer (~9) is among women who were exposed to ionizing radiation at a young age.

    Recently, attention has focused on the possible effects of non-ionizing radiation, or electromagnetic fields (EMF). The basis of a relationship between EMF exposure and cancer is not yet known, and the epidemiological evidence is still unclear. However, in several international studies an association has been reported between EMF and leukaemia and male breast cancer.

    Childhood exposure to excessive sunlight has been associated with skin cancer and melanoma (Marks 1988).

    Childhood Cancer

    Although specific substances have not been identified, parental occupational exposures have been linked to childhood cancer. The latency period for developing childhood leukaemia can be two to 10 years following the onset of exposure, indicating that exposures in utero or in the early postnatal period may be implicated in the cause of this disease. Exposure to a number of organochlorine pesticides (BHC, DDT, chlordane) has been tentatively associated with leukaemia, although these data have not been confirmed in more detailed studies. Moreover, elevated risk of cancer and leukaemia has been reported for children whose parents engage in work that involves pesticides, chemicals and fumes (O’Leary et al. 1991). Similarly, risk of Ewing’s bone sarcoma in children was associated with parental occupations in agriculture or exposure to herbicides and pesticides (Holly et al. 1992).

    Summary

    Many nations attempt to regulate safe levels of toxic chemicals in ambient air and food products and in the workplace. Nevertheless, opportunities for exposure abound, and children are particularly susceptible to both absorption and to effects of toxic chemicals. It has been noted that “many of the 40,000 child lives lost in the developing world every day are a consequence of environmental abuses reflected in unsafe water supplies, disease, and malnutrition” (Schaefer 1994). Many environmental exposures are avoidable. Therefore, prevention of environmental diseases takes high priority as a defence against adverse health effects among children.

     

    Back

    Saturday, 19 February 2011 02:14

    Preterm Delivery and Work

    The reconciliation of work and maternity is an important public health issue in industrialized countries, where more than 50% of women of child-bearing age work outside the home. Working women, unions, employers, politicians and clinicians are all searching for ways of preventing work-induced unfavourable reproductive outcomes. Women want to continue working while pregnant, and may even consider their physician’s advice about lifestyle modifications during pregnancy to be overprotective and unnecessarily restrictive.

    physiological Consequences of pregnancy

    At this point, it would be useful to review a few of the physiological consequences of pregnancy that may interfere with work.

    A pregnant woman undergoes profound changes which allow her to adapt to the needs of the foetus. Most of these changes involve the modification of physiological functions that are sensitive to changes of posture or physical activity—the circulatory system, the respiratory system and water balance. As a result, physically active pregnant women may experience unique physiological and physiopathological reactions.

    The main physiological, anatomical, and functional modifications undergone by pregnant women are (Mamelle et al. 1982):

    1. An increase in peripheral oxygen demand, leading to modification of the respiratory and circulatory systems. Tidal volume begins to increase in the third month and may amount to 40% of re-pregnancy values by the end of the pregnancy. The resultant increase in gas exchange may increase the hazard of the inhalation of toxic volatiles, while hyperventilation related to increased tidal volume may cause shortness of breath on exertion.
    2. Cardiac output increases from the very beginning of pregnancy, as a result of an increase in blood volume. This reduces the heart’s ability to adapt to exertion and also increases venous pressure in the lower limbs, rendering standing for long periods difficult.
    3. Anatomical modifications during pregnancy, including exaggeration of dorsolumbar lordosis, enlargement of the polygon of support and increases in abdominal volume, affect static activities.
    4. A variety of other functional modifications occur during pregnancy. Nausea and vomiting result in fatigue; daytime sleepiness results in inattention; mood changes and feelings of anxiety may lead to interpersonal conflicts.
    5. Finally, it is interesting to note that the daily energy requirements during pregnancy are equivalent to the requirements of two to four hours of work.

     

    Because of these profound changes, occupational exposures may have special consequences in pregnant women and may result in unfavourable pregnancy outcomes.

    Epidemiological Studies of Working Conditions and preterm Delivery

    Although there are many possible unfavourable pregnancy outcomes, we review here the data on preterm delivery, defined as the birth of a child before the 37th week of gestation. preterm birth is associated with low birth weight and with significant complications for the newborn. It remains a major public health concern and is an ongoing reoccupation among obstetricians.

    When we began research in this field in the mid-1980s, there was relatively strong legislative protection of pregnant women’s health in France, with prenatal maternity leave mandated to start six weeks prior to the due date. Although the preterm delivery rate has fallen from 10 to 7% since then, it appeared to have levelled off. Because medical prevention had apparently reached the limit of its powers, we investigated risk factors likely to be amenable to social intervention. Our hypotheses were as follows:

      • Is working per se a risk factor for preterm birth?
      • Are certain occupations associated with an increased risk of preterm delivery?
      • Do certain working conditions constitute a hazard to the pregnant woman and foetus?
      • Are there social preventive measures which could help reduce the risk of preterm birth?

             

            Our first study, conducted in 1977–78 in two hospital maternity wards, examined 3,400 women, of whom 1,900 worked during pregnancy and 1,500 remained at home (Mamelle, Laumon and Lazar 1984). The women were interviewed immediately after delivery and asked to describe their home and work lifestyle during pregnancy as accurately as possible.

            We obtained the following results:

            Work per se

            The mere fact of working outside the home cannot be considered to be a risk factor for preterm delivery, since women remaining at home exhibited a higher prematurely rate than did women who worked outside the home (7.2 versus 5.8%).

            Working conditions

            An excessively long work week appears to be a risk factor, since there was a regular increase in preterm delivery rate with the number of work hours. Retail-sector workers, medical social workers, specialized workers and service personnel were at higher risk of preterm delivery than were office workers, teachers, management, skilled workers or supervisors. The prematurely rates in the two groups were 8.3 and 3.8% respectively.

            Table 1. Identified sources of occupational fatigue

            Occupational fatigue index “HIGH” index if:
            Posture Standing for more than 3 hours per day
            Work on machines Work on industrial conveyor belts; independent work on industrial machines with strenuous effort
            Physical load Continuous or periodical physical effort; carrying loads of more than 10kg
            Mental load Routine work; varied tasks requiring little attention without stimulation
            Environment Significant noise level; cold temperature; very wet atmosphere; handling of chemical substances

            Source: Mamelle, Laumon and Lazar 1984.

            Task analysis allowed identification of five sources of occupation fatigue: posture, work with industrial machines, physical workload, mental workload and the work environment. Each of these sources of occupational fatigue constitutes a risk factor for preterm delivery (see tables 1 and 2).

            Table 2. Relative risks (RR) and fatigue indices for preterm delivery

            Index Low index % High index % RR Statistical significance
            Posture 4.5 7.2 1.6 Significant
            Work on machines 5.6 8.8 1.6 Significant
            Physical load 4.1 7.5 1.8 Highly significant
            Mental load 4.0 7.8 2.0 Highly significant
            Environment 4.9 9.4 1.9 Highly significant

            Source: Mamelle, Laumon and Lazar 1984.

            Exposure to multiple sources of fatigue may result in unfavourable pregnancy outcomes, as evidenced by the significant increase of the rate of preterm delivery with an increased number of sources of fatigue (table 3). Thus, 20% of women had concomitant exposure to at least three sources of fatigue, and experienced a preterm delivery rate twice as high as other women. Occupational fatigue and excessively long work weeks exert cumulative effects, such that women who experience intense fatigue during long work weeks exhibit an even higher prematurely rate. preterm delivery rates increase further if the woman also has a medical risk factor. The detection of occupational fatigue is therefore even more important than the detection of medical risk factors.

            Table 3. Relative risk of prematurity according to number of occupational fatigue indices

            Number of high
            fatigue indices
            Proportion of
            exposed women %
            Estimated
            relative risk
            0 24 1.0
            1 28 2.2
            2 25 2.4
            3 15 4.1
            4-5 8 4.8

            Source: Mamelle, Laumon and Lazar 1984

            European and North American studies have confirmed our results, and our fatigue scale has been shown to be reproducible in other surveys and countries.

            In a case-control follow-u study conducted in France a few years later in the same maternity wards (Mamelle and Munoz 1987) , only two of the five previously defined indices of fatigue were significantly related to preterm delivery. It should however be noted that women had a greater opportunity to sit down and were withdrawn from physically demanding tasks as a result of preventive measures implemented in the workplaces during this period. The fatigue scale nevertheless remained a predictor of preterm delivery in this second study.

            In a study in Montreal, Quebec (McDonald et al. 1988), 22,000 pregnant women were interviewed retrospectively about their working conditions. Long work weeks, alternating shift work and carrying heavy loads were all shown to exert significant effects. The other factors studied did not appear to be related to preterm delivery, although there appears to be a significant association between preterm delivery and a fatigue scale based on the total number of sources of fatigue.

            With the exception of work with industrial machines, no significant association between working conditions and preterm delivery was found in a French retrospective study of a representative sample of 5,000 pregnant women (Saurel-Cubizolles and Kaminski 1987). However, a fatigue scale inspired by our own was found to be significantly associated with preterm delivery.

            In the United States, Homer, Beredford and James (1990), in a historical cohort study, confirmed the association between physical workload and an increased risk of preterm delivery. Teitelman and co-workers (1990), in a prospective study of 1,200 pregnant women, whose work was classified as sedentary, active or standing, on the basis of job description, demonstrated an association between work in a standing position and preterm delivery.

            Barbara Luke and co-workers (in press) conducted a retrospective study of US nurses who worked during pregnancy. Using our occupational risk scale, she obtained similar results to ours, that is, an association between preterm delivery and long work weeks, standing work, heavy workload and unfavourable work environment. In addition, the risk of preterm delivery was significantly higher among women with concomitant exposure to three or four sources of fatigue. It should be noted that this study included over half of all nurses in the United States.

            Contradictory results have however been reported. These may be due to small sample sizes (Berkowitz 1981), different definitions of prematurely (Launer et al. 1990) and classification of working conditions on the basis of job description rather than actual workstation analysis (Klebanoff, Shiono and Carey 1990). In some cases, workstations have been characterized on a theoretical basis only—by the occupational physician, for example, rather than by the women themselves (peoples-Shes et al. 1991). We feel that it is important to take subjective fatigue—that is, fatigue as it is described and experienced by women—into account in the studies.

            Finally, it is possible that the negative results are related to the implementation of preventive measures. This was the case in the prospective study of Ahlborg, Bodin and Hogstedt (1990), in which 3,900 active Swedish women completed a self-administered questionnaire at their first prenatal visit. The only reported risk factor for preterm delivery was carrying loads weighing more than 12 kg more often than 50 times per week, and even then the relative risk of 1.7 was not significant. Ahlborg himself points out that preventive measures in the form of aid maternity leave and the right to perform less tiring work during the two months receding their due date had been implemented for pregnant women engaged in tiring work. Maternity leaves were five times as frequent among women who described their work as tiring and involving the carrying of heavy loads. Ahlborg concludes that the risk of preterm delivery may have been minimized by these preventive measures.

            preventive Interventions: French Examples

            Are the results of aetiological studies convincing enough for preventive interventions to be applied and evaluated? The first question which must be answered is whether there is a public health justification for the application of social preventive measures designed to reduce the rate of preterm delivery.

            Using data from our previous studies, we have estimated the proportion of preterm births caused by occupational factors. Assuming a rate of preterm delivery of 10% in populations exposed to intense fatigue and a rate of 4.5% in non-exposed populations, we estimate that 21% of premature births are caused by occupational factors. Reducing occupational fatigue could therefore result in the elimination of one-fifth of all preterm births in French working women. This is ample justification for the implementation of social preventive measures.

            What preventive measures can be applied? The results of all the studies lead to the conclusion that working hours can be reduced, fatigue can be lessened through workstation modification, work breaks can be allowed and prenatal leave can be lengthened. Three cost-equivalent alternatives are available:

              • reducing the work week to 30 hours starting from the 20th week of gestation
              • prescribing a work break of one week each month starting in the 20th week of gestation
              • beginning prenatal leave at the 28th week of gestation.

                   

                  It is relevant to recall here that French legislation provides the following preventive measures for pregnant women:

                    • guaranteed employment after childbirth
                    • reduction of the workday by 30 to 60 minutes, applied through collective agreements
                    • workstation modification in cases of incompatibility with pregnancy
                    • work breaks during pregnancy, prescribed by attending physicians
                    • prenatal maternity leave six weeks prior to the due date, with a further two weeks available in case of complications
                    • postnatal maternity leave of ten weeks.

                               

                              A one-year prospective observational study of 23,000 women employed in 50 companies in the Rhône-Ales region of France (Bertucat, Mamelle and Munoz 1987) examined the effect of tiring work conditions on preterm delivery. Over the period of the study, 1,150 babies were born to the study population. We analysed the modifications of working conditions to accommodate pregnancy and the relation of these modifications to preterm delivery (Mamelle, Bertucat and Munoz 1989), and observed that:

                                • Workstation modification was reformed for only 8% of women.
                                • 33% of women worked their normal shifts, with the others having their workday reduced by 30 to 60 minutes.
                                • 50% of women took at least one work break, apart from their prenatal maternity leave; fatigue was the cause in one-third of cases.
                                • 90% of women stopped working before their legal maternity leave began and obtained at least the two weeks leave allowed for in the case of complications of pregnancy; fatigue was the cause in half the cases.
                                • In all, given the legal prenatal leave period of six weeks prior to the due date (with an additional two weeks available in some cases), the real duration of prenatal maternity leave was 12 weeks in this population of women subjected to tiring work conditions.

                                         

                                        Do these modifications of work have any effect on the outcome of pregnancy? Workstation modification and the slight reduction of the workday (30 to 60 min) were both associated with non-significant reductions of the risk of preterm delivery. We believe that further reductions of the work week would have a greater effect (table 4).

                                        Table 4. Relative risks of prematurity associated with modifications in working conditions

                                        Modifications
                                        in working
                                        conditions
                                        Number of women Preterm
                                        birth rates
                                        (%)
                                        Relative risk
                                        (95% confidence intervals)
                                        Change in work situation
                                        No
                                        Yes
                                        1,062
                                        87
                                        6.2
                                        3.4
                                        0.5 (0.2-1.6)
                                        Reduction of weekly working hours
                                        No
                                        Yes
                                        388
                                        761
                                        7.7
                                        5.1
                                        0.7 (0.4-1.1)
                                        Episodes of sick leave1
                                        No
                                        Yes
                                        357
                                        421
                                        8.0
                                        3.1
                                        0.4 (0.2-0.7)
                                        Increase of antenatal maternity leave1
                                        None or only additional 2 weeks
                                        Yes
                                        487

                                        291
                                        4.3

                                        7.2
                                        1.7 (0.9-3.0)

                                        1 In a reduced sample of 778 women with no previous or present obstetric pathology.

                                        Source: Mamelle, Bertucat and Munoz 1989.

                                         

                                        To analyse the relation between prenatal leave, work breaks and preterm delivery, it is necessary to discriminate between preventive and curative work breaks. This requires restriction of the analysis to women with uncomplicated pregnancies. Our analysis of this subgroup revealed a reduction of the preterm delivery rate among women who took work breaks during their pregnancy, but not in those who took prolonged prenatal leave (Table 9).

                                        This observational study demonstrated that women who work in tiring conditions take more work breaks during their pregnancies than do other women, and that these breaks, particularly when motivated by intense fatigue, are associated with reductions of the risk of preterm delivery (Mamelle, Bertucat and Munoz 1989).

                                        Choice of preventive Strategies in France

                                        As epidemiologists, we would like to see these observations verified by experimental preventive studies. We must however ask ourselves which is more reasonable: to wait for such studies or to recommend social measures aimed at preventing preterm delivery now?

                                        The French Government recently decided to include a “work and pregnancy guide”, identical to our fatigue scale, in each pregnant woman’s medical record. Women can thus calculate their fatigue score for themselves. If work conditions are arduous, they may ask the occupational physician or the person responsible for occupational safety in their company to implement modifications aimed at alleviating their workload. Should this be refused, they can ask their attending physician to prescribe rest weeks during their pregnancy, and even to prolong their prenatal maternity leave.

                                        The challenge is now to identify preventive strategies that are well adapted to legislation and social conditions in every country. This requires a health economics approach to the evaluation and comparison of preventive strategies. Before any preventive measure can be considered generally applicable, many factors have to be taken into consideration. These include effectiveness, of course, but also low cost to the social security system, resultant job creation, women’s references and the acceptability to employers and unions.

                                        This type of problem can be resolved using multicriteria methods such as the Electra method. These methods allow both the classification of preventive strategies on the basis of each of a series of criteria, and the weighting of the criteria on the basis of political considerations. Special importance can thus be given to low cost to the social security system or to the ability of women to choose, for example (Mamelle et al. 1986). While the strategies recommended by these methods vary depending on the decision makers and political options, effectiveness is always maintained from the public health standpoint.

                                         

                                        Back

                                        Paid employment among women is growing worldwide. For example, almost 70% of women in the United States are employed outside the home during their predominant childbearing years (ages 20 to 34). Furthermore, since the 1940s there has been an almost linear trend in synthetic organic chemical production, creating a more hazardous environment for the pregnant worker and her offspring.

                                        Ultimately, a couple’s reproductive success depends on a delicate physiochemical balance within and between the father, the mother and the foetus. Metabolic changes occurring during a pregnancy can increase exposure to hazardous toxicants for both worker and concetus. These metabolic changes include increased pulmonary absorption, increased cardiac output, delayed gastric emptying, increased intestinal motility and increased body fat. As shown in figure 1, exposure of the concetus can produce varying effects depending on the phase of development—early or late embryogenesis or the foetal period.

                                        Figure 1. Consequences of maternal exposure to toxicants on the offspring.

                                        REP030F1

                                        Transport time of a fertilized ovum before implantation is between two and six days. During this early stage the embryo may be exposed to chemical compounds that penetrate into the uterine fluids. Absorption of xenophobic compounds may be accompanied by degenerative changes, alteration in the blastocystic protein profile or failure to implant. Insult during this period is likely to lead to a spontaneous abortion. Based on experimental data, it is thought that the embryo is fairly resistant to teratogenic insult at this early stage because the cells have not initiated the complex sequence of chemical differentiation.

                                        The period of later embryogenesis is characterized by differentiation, mobilization and organization of cells and tissue into organ rudiments. Early pathogenesis may induce cell death, failed cellular interaction, reduced biosynthesis, impaired morphogenic movement, mechanical disruption, adhesions or oedema (Paul 1993). The mediating factors that determine susceptibility include route and level of exposure, pattern of exposure and foetal and maternal genotype. Extrinsic factors such as nutritional deficiencies, or the additive, synergistic or antagonistic effects associated with multiple exposures may further impact the response. Untoward responses during late embryogenesis may culminate in spontaneous abortion, gross structural defects, foetal loss, growth retardation or developmental abnormalities.

                                        The foetal period extends from embryogenesis to birth and is defined as beginning at 54 to 60 gestational days, with the concetus having a crown-rum length of 33 mm. The distinction between the embryonic and foetal period is somewhat arbitrary. The foetal period is characterized developmentally by growth, histogenesis and functional maturation. Toxicity may be manifested by a reduction in cell size and number. The brain is still sensitive to injury; myelination is incomplete until after birth. Growth retardation, functional defects, disruption in the pregnancy, behavioural effects, translacental carcinogenesis or death may result from toxicity during the foetal period. This article discusses the biological, sociological and epidemiological effects of maternal environmental/occupational exposures.

                                        Embryonic/Foetal Loss

                                        The developmental stages of the zygote, defined in days from ovulation (DOV), proceed from the blastocyst stage at days 15 to 20 (one to six DOV), with implantation occurring on day 20 or 21 (six or seven DOV), to the embryonic period from days 21 to 62 (seven to 48 DOV), and the foetal period from day 63 (49+ DOV) until the designated period of viability, ranging from 140 to 195 days. Estimates of the probability of pregnancy termination at one of these stages depend on both the definition of foetal loss and the method used to measure the event. Considerable variability in the definition of early versus late foetal loss exists, ranging from the end of week 20 to week 28. The definitions of foetal and infant death recommended by the World Health Organization (1977) are listed in table 1. In the United States the gestational age setting the lower limit for stillbirths is now widely accepted to be 20 weeks.

                                        Table 1. Definition of foetal loss and infant death

                                        Spontaneous abortion ≤500 g or 20-22 weeks or 25 cm length
                                        Stillbirth 500 g (1000 g International) nonviable
                                        Early neonatal death Death of a live-born infant ≤7 days (168 hours)
                                        Late neonatal death 7 days to ≤28 days

                                        Source: World Health Organization 1977.

                                        Because the majority of early aborted foetuses have chromosomal anomalies, it has been suggested that for research purposes a finer distinction should be made—between early foetal loss, before 12 weeks’ gestation, and later foetal loss (Källén 1988). In examining late foetal losses it also may be appropriate to include early neonatal deaths, as the cause may be similar. WHO defines early neonatal death as the death of an infant aged seven days or younger and late neonatal death as occurring between seven and 29 days. In studies conducted in developing countries, it is important to distinguish between prepartum and intrapartum deaths. Because of problematic deliveries, intrapartum deaths account for a large portion of stillbirths in less developed countries.

                                        In a review by Kline, Stein and Susser (1989) of nine retrospective or cross-sectional studies, the foetal loss rates before 20 weeks’ gestation ranged from 5.5 to 12.6%. When the definition was expanded to include losses u to 28 weeks’ gestation, the foetal loss rate varied between 6.2 and 19.6%. The rates of foetal loss among clinically recognized pregnancies in four prospective studies, however, had a relatively narrow range of 11.7 to 14.6% for the gestational period u to 28 weeks. This lower rate, seen in prospective versus retrospective or cross-sectional designs, may be attributable to differences in underlying definitions, misreporting of induced abortions as spontaneous or misclassification of delayed or heavy menses as foetal loss.

                                        When occult abortions or early “chemical” losses identified by an elevated level of human chorionic gonadotrohins (hCG) are included, the total spontaneous abortion rate jumps dramatically. In a study using hCG methods, the incidence of post-implantation subclinical loss of fertilized ova was 22% (Wilcox et al. 1988). In these studies urinary hCG was measured with immunoradiometric assay using a detection antibody. The assay originally used by Wilcox employed a now extinct high affinity, polyclonal rabbit antibody. More recent studies have used an inexhaustible monoclonal antibody that requires less than 5 ml of urine for replicate samples. The limiting factor for use of these assays in occupational field studies is not only the cost and resources needed to coordinate collection, storage and analysis of urine samples but the large population needed. In a study of early pregnancy loss in women workers exposed to video display terminals (VDTs), approximately 7,000 women were screened in order to acquire a usable population of 700 women. This need for ten times the population size in order to achieve an adequate sample stems from reduction in the available number of women because of ineligibility due to age, sterility and the enrollment exclusively of women who are using either no contraceptives or relatively ineffective forms of contraception.

                                        More conventional occupational studies have used recorded or questionnaire data to identify spontaneous abortions. Recorded data sources include vital statistics and hospital, private practitioner and outpatient clinic records. Use of record systems identifies only a subset of all foetal losses, principally those that occur after the start of prenatal care, typically after two to three missed periods. Questionnaire data are collected by mail or in personal or telephone interviews. By interviewing women to obtain reproductive histories, more complete documentation of all recognized losses is possible. Questions that are usually included in reproductive histories include all pregnancy outcomes; prenatal care; family history of adverse pregnancy outcomes; marital history; nutritional status; re-pregnancy weight; height; weight gain; use of cigarettes, alcohol and prescription and nonprescription drugs; health status of the mother during and prior to a pregnancy; and exposures at home and in the workplace to physical and chemical agents such as vibration, radiation, metals, solvents and pesticides. Interview data on spontaneous abortions can be a valid source of information, particularly if the analysis includes those of eight weeks’ gestation or later and those that occurred within the last 10 years.

                                        The principal physical, genetic, social and environmental factors associated with spontaneous abortion are summarized in  table 2. To ensure that the observed exposure-effect relationship is not due to a confounding relationship with another risk factor, it is important to identify the risk factors that may be associated with the outcome of interest. Conditions associated with foetal loss include syphilis, rubella, genital Mycolasma infections, herpes simplex, uterine infections and general hyperpyrexia. One of the most important risk factors for clinically recognized spontaneous abortion is a history of pregnancy ending in foetal loss. Higher gravidity is associated with increased risk, but this may not be independent of a history of spontaneous abortion. There are conflicting interpretations of gravidity as a risk factor because of its association with maternal age, reproductive history and heterogeneity of women at different gravidity ranks. Rates of spontaneous abortion are higher for women younger than 16 and older than 36 years. After adjusting for gravidity and a history of pregnancy loss, women older than 40 were shown to have twice the risk of foetal loss of younger women. The increased risk for older women has been associated with an increase in chromosomal anomalies, particularly trisomy. possiblemale-mediated effects associated with foetal loss have been recently reviewed (Savitz, Sonnerfeld and Olshaw 1994). A stronger relationship was shown with paternal exposure to mercury and anaesthetic gases, as well as a suggestive but inconsistent relationship with exposure to lead, rubber manufacturing, selected solvents and some pesticides.

                                        Table 2. Factors associated with small for gestational age and foetal loss

                                        Small for gestational age
                                        Physical-genetic Environmental-social
                                        Preterm delivery
                                        Multiple births
                                        Malformed foetus
                                        Hypertension
                                        Placental or cord anomaly
                                        Maternal medical history
                                        History of adverse pregnancy outcomes
                                        Race
                                        Chromosome anomalies
                                        Sex
                                        Maternal height, weight, weight gain
                                        Paternal height
                                        Parity
                                        Length of gestation
                                        Short interval between pregnancies
                                        Malnutrition
                                        Low income/poor education
                                        Maternal smoking
                                        Maternal alcohol consumption
                                        Occupational exposure
                                        Psychosocial stress
                                        Altitude
                                        History of infections
                                        Marijuana use
                                        Foetal loss
                                        Physical-genetic Environmental-social
                                        Higher gravidity
                                        Maternal age
                                        Birth order
                                        Race
                                        Repeat spontaneous abortion
                                        Insulin dependent diabetes
                                        Uterine disorders
                                        Twinning
                                        Immunological factor
                                        Hormonal factors
                                        Socio-economic status
                                        Smoking history
                                        Prescribed and recreational drugs
                                        Alcohol use
                                        Poor nutrition
                                        Infections/maternal fever
                                        Spermicides
                                        Employment factors
                                        Chemical exposure
                                        Irradiation

                                         

                                        Employment status may be a risk factor regardless of a specific physical or chemical hazard and may act as a confounder in assessment of occupational exposure and spontaneous abortion. Some investigators suggest that women who stay in the workforce are more likely to have an adverse pregnancy history and as a result are able to continue working; others believe this group is an inherently more fit subpopulation due to higher incomes and better prenatal care.

                                        Congenital Anomalies

                                        During the first 60 days after conception, the developing infant may be more sensitive to xenobiotic toxicants than at any other stage in the life cycle. Historically, terata and congenital malformations referred to structural defects resent at birth that may be gross or microscopic, internal or external, hereditary or nonhereditary, single or multiple. Congenital anomaly, however, is more broadly defined as including abnormal behaviour, function and biochemistry. Malformations may be single or multiple; chromosomal defects generally produce multiple defects, whereas single-gene changes or exposure to environmental agents may cause either single defects or a syndrome.

                                        The incidence of malformations depends on the status of the concetus—live birth, spontaneous abortus, stillbirth. Overall, the abnormality rate in spontaneous abortuses is approximately 19%, a tenfold increase in what is seen in the live born (Sheard, Fantel and Fitsimmons 1989). A 32% rate of anomalies was found among stillborn foetuses weighing more than 500 g. The incidence of major defects in live births is about 2.24% (Nelson and Holmes 1989). The prevalence of minor defects ranges between 3 and 15% (averaging about 10%). Birth anomalies are associated with genetic factors (10.1%), multifactorial inheritance (23%), uterine factors (2.5%), twinning (0.4%) or teratogens (3.2%). The causes of the remaining defects are unknown. Malformation rates are approximately 41% higher for boys than for girls and this is explained by the significantly higher rate of anomalies for male genital organs.

                                        One challenge in studying malformations is deciding how to group defects for analysis. Anomalies can be classified by several parameters, including seriousness (major, minor), pathogenesis (deformation, disruption), associated versus isolated, anatomic by organ system, and aetiological (e.g., chromosomal, single gene defects or teratogen induced). Often, all malformations are combined or the combination is based either on major or minor categorization. A major malformation can be defined as one that results in death, requires surgery or medical treatment or constitutes a substantial physical or psychological handicap. The rationale for combining anomalies into large groups is that the majority arise, at approximately the same time period, during organogenesis. Thus, by maintaining larger sample sizes, the total number of cases is increased with a concomitant increase in the statistical power. If, however, the exposure effect is specific to a particular type of malformation (e.g., central nervous system), such grouping may mask the effect. Alternatively, malformations may be grouped by organ system. Though this method may be an improvement, certain defects may dominate the class, such as varus deformities of the feet in the musculoskeletal system. Given a sufficiently large sample, the optimal approach is to divide the defects into embryologically or pathogenetically homogenous groups (Källén 1988). Considerations should be given to the exclusion or inclusion of certain malformations, such as those that are likely caused by chromosomal defects, autosomal dominant conditions or malposition in utero. Ultimately, in analysing congenital anomalies, a balance has to be maintained between maintaining precision and compromising statistical power.

                                        A number of environmental and occupational toxicants have been associated with congenital anomalies in offspring. One of the strongest associations is maternal consumption of food contaminated with methylmercury causing morphological, central nervous system and neurobehavioural abnormalities. In Japan, the cluster of cases was linked to consumption of fish and shellfish contaminated with mercury derived from the effluent of a chemical factory. The most severely affected offspring developed cerebral palsy. Maternal ingestion of polychlorinated biphenyl’s (CBs) from contaminated rice oil gave rise to babies with several disorders, including growth retardation, dark brown skin pigmentation, early eruption of teeth, gingival hyperplasia, wide sagittal suture, facial oedema and exophthalmoses. Occupations involving exposures to mixtures have been linked with a variety of adverse outcomes. The offspring of women working in the ul and aer industry, in either laboratory work or jobs involving “conversions” or aer refinement, also had increased risk of central nervous system, heart and oral cleft defects. Women working in industrial or construction work with unspecified exposures had a 50% increase in central nervous system defects, and women working in transportation and communication had two times the risk of having a child with an oral cleft. Veterinarians represent a unique group of health care personnel exposed to anaesthetic gases, radiation, trauma from animal kicks, insecticides and zoonotic diseases. Though no difference was found in the rate of spontaneous abortions or in birth weight of the offspring between female veterinarians and female lawyers, there was a significant excess of birth defects among veterinarians (Schenker et al. 1990). Lists of known, possible and unlikely teratogens are available as well as computer databases and risk lines for obtaining current information on potential teratogens (Paul 1993). Evaluating congenital anomalies in an occupational cohort is particularly difficult, however, because of the large sample size needed for statistical power and our limited ability to identify specific exposures occurring during a narrow window of time, primarily the first 55 days of gestation.

                                        Small for Gestational Age

                                        Among the many factors linked with infant survival, physical underdevelopment associated with low birth weight (LBW) resents one of the greatest risks. Significant weight gain of the foetus does not begin until the second trimester. The concetus weighs 1 g at eight weeks, 14 g at 12 weeks, and reaches 1.1 kg at 28 weeks. An additional 1.1 kg is gained every six weeks thereafter until term. The normal newborn weighs approximately 3,200 g at term. The newborn’s weight is dependent on its rate of growth and its gestational age at delivery. An infant that is growth retarded is said to be small for gestational age (SGA). If an infant is delivered prior to term it will have a reduced weight but will not necessarily be growth retarded. Factors associated with a preterm delivery are discussed elsewhere, and the focus of this discussion is on the growth-retarded newborn. The terms SGA and LBW will be used interchangeably. A low birth-weight infant is defined as an infant weighing less than 2,500 g, a very low birth weight is defined as less than 1,500 g, and extremely low birth weight is one that is less than 1,000 g (WHO 1969).

                                        When examining causes of reduced growth, it is important to distinguish between asymmetrical and symmetrical growth retardation. Asymmetrical growth retardation, i.e., where the weight is affected more than the skeletal structure, is primarily associated with a risk factor operating during late pregnancy. On the other hand, symmetrical growth retardation may more likely be associated with an aetiology that operates over the entire period of gestation (Kline, Stein and Susser 1989). The difference in rates between asymmetrical and symmetrical growth retardation is especially apparent when comparing developing and developed countries. The rate of growth retardation in developing countries is 10 to 43%, and is primarily symmetrical, with the most important risk factor being poor nourishment. In developed countries foetal growth retardation is usually much lower, 3 to 8%, and is generally asymmetrical with a multifactorial aetiology. Hence, worldwide, the proportion of low birth-weight infants defined as intrauterine growth retarded rather than preterm varies dramatically. In Sweden and the United States, the proportion is approximately 45%, while in developing countries, such as India, the proportion varies between approximately 79 and 96% (Villar and Belizan 1982).

                                        Studies of the Dutch famine showed that starvation confined to the third trimester depressed foetal growth in an asymmetric pattern, with birth weight being primarily affected and head circumference least affected (Stein, Susser and Saenger 1975). Asymmetry of growth also has been observed in studies of environmental exposures. In a study of 202 expectant mothers residing in neighbourhoods at high risk for lead exposures, prenatal maternal blood samples were collected between the sixth and the 28th week of gestation (Bornschein, Grote and Mitchell 1989). Blood lead levels were associated with both a decreased birth weight and length, but not head circumference, after adjustment for other relevant risk factors including length of gestation, socioeconomic status and use of alcohol or cigarettes. The finding of maternal blood lead as a factor in birth length was seen entirely in Caucasian infants. The birth length of Caucasian infants decreased approximately 2.5 cm per log unit increment in maternal blood lead. Care should be given to selection of the outcome variable. If only birth weight had been selected for study, the finding of the effects of lead on other growth parameters might have been missed. Also, if Caucasians and African Americans had been pooled in the above analysis, the differential effects on Caucasians, perhaps due to genetic differences in the storage and binding capacity of lead, may have been missed. A significant confounding effect also was observed between prenatal blood lead and maternal age and the birth weight of the offspring after adjustment for other covariables. The findings indicate that for a 30-year-old woman with an estimated blood lead level of about 20 mg/dl, the offspring weighed proximately 2,500 g compared with proximately 3,000 g for a 20-year-old with similar lead levels. The investigators speculated that this observed difference may indicate that older women are more sensitive to the additional insult of lead exposure or that older women may have had higher total lead burden from greater numbers of years of exposure or higher ambient lead levels when they were children. Another factor may be increased blood pressure. Nonetheless, the important lesson is that careful examination of high-risk subpopulations by age, race, economic status, daily living habits, sex of the offspring and other genetic differences may be necessary in order to discover the more subtle effects of exposures on foetal growth and development.

                                        Risk factors associated with low birth weight are summarized in  Table 5. Social class as measured by income or education persists as a risk factor in situations in which there are no ethnic differences. Other factors that may be operating under social class or race may include cigarette smoking, physical work, prenatal care and nutrition. Women between the ages of 25 and 29 are least likely to deliver a growth-retarded offspring. Maternal smoking increases the risk of low birth-weight offspring  by about 200% for heavy smokers. Maternal medical conditions associated with LBW include placental abnormalities, heart disease, viral pneumonia, liver disease, re-eclamsia, eclamsia, chronic hypertension, weight gain and hyeremesis. An adverse pregnancy history of foetal loss, preterm delivery or prior LBW infant increases the risk of a current preterm low birth-weight infant two- to fourfold. An interval between births of less than a year triples the risk of having a low birth-weight offspring. Chromosomal anomalies associated with abnormal growth include Down’s syndrome, trisomy 18 and most malformation syndromes.

                                        Smoking cigarettes is one of the primary behaviours most directly linked with lower weight offspring. Maternal smoking during pregnancy has been shown to increase the risk of a low birth-weight offspring two to three times and to cause an overall weight deficit of between 150 and 400 g. Nicotine and carbon monoxide are considered the most likely causative agents since both are rapidly and referentially transferred across the placenta. Nicotine is a powerful vasoconstrictor, and significant differences in the size of umbilical vessels of smoking mothers have been demonstrated. Carbon monoxide levels in cigarette smoke range from 20,000 to 60,000 m. Carbon monoxide has an affinity for haemoglobin 210 times that of oxygen, and because of lower arterial oxygen tension the foetus is especially compromised. Others have suggested that these effects are not due to smoking but are attributable to characteristics of smokers. Certainly occupations with potential carbon monoxide exposure, such as those associated with ul and aer, blast furnaces, acetylene, breweries, carbon black, coke ovens, garages, organic chemical synthesizers and petroleum refineries should be considered possible high risk occupations for pregnant employees.

                                        Ethanol is also a widely used and researched agent associated with foetal growth retardation (as well as congenital anomalies). In a prospective study of 9,236 births, it was found that maternal alcohol consumption of more than 1.6 oz per day was associated with an increase in stillbirths and growth-retarded infants (Kaminski, Rumeau and Schwartz 1978). Smaller infant length and head circumference also are related to maternal alcohol ingestion.

                                        In evaluating the possible effects of exposures on birth weight, some problematic issues must be considered. preterm delivery should be considered as a possible mediating outcome and the potential effects on gestational age considered. In addition, pregnancies having longer gestational length also have a longer opportunity for exposure. If enough women work late in pregnancy, the longest cumulative exposure may be associated with the oldest gestational ages and heaviest babies purely as an artifact. There are a number of procedures that can be used to overcome this problem including a variant of the Cox life-table regression model, which has the ability to handle time-dependent covariables.

                                        Another problem centres on how to define lowered birth weight. Often studies define lower birth weight as a dichotomous variable, less than 2,500 g. The exposure, however, must have a very powerful effect in order to produce a drastic drop in the infant’s weight. Birth weight defined as a continuous variable and analysed in a multiple regression model is more sensitive for detecting subtle effects. The relative paucity of significant findings in the literature in relationship to occupational exposures and SGA infants may, in art, be caused by ignoring these design and analysis issues.

                                        Conclusions

                                        Studies of adverse pregnancy outcomes must characterize exposures during a fairly narrow window of time. If the woman has been transferred to another job or laid off work during a critical period of time such as organogenesis, the exposure-effect relationship can be severely altered. Therefore, the investigator is held to a high standard of identifying the woman’s exposure during a critical small time period as compared with other studies of chronic diseases, where errors of a few months or even years may have minimal impact.

                                        Uterine growth retardation, congenital anomaly and spontaneous abortions are frequently evaluated in occupational exposure studies. There is more than one approach available to assess each outcome. These end-points are of public health importance due to both the psychological and the financial costs. Generally, nonsecificity in the exposure-outcome relationships has been observed, e.g., with exposure to lead, anaesthetic gases and solvents. Because of the potential for nonsecificity in the exposure-effect relationship, studies should be designed to assess several end-points associated with a range of possible mechanisms.

                                         

                                        Back

                                        Saturday, 19 February 2011 01:50

                                        Laboratory Hygiene


                                        Occupational exposure to hazardous chemicals in laboratories 1990 OSHA Laboratory Standard 29 CFR 1910.1450

                                        The following description of a laboratory chemical hygiene plan corresponds with Section (e:1-4), Chemical hygiene plan-General, of the 1990 OSHA Laboratory Standard. This plan should be made readily available to employees and employee representatives.The chemical hygiene plan shall include each of the following elements and shall indicate specific measures that the employer will take to ensure laboratory employee protection:

                                        1. Stand operating procedures relevant to safety and health considerations to be followed when laboratory work involves the use of hazardous chemicals;
                                        2. Criteria that the employer will use to determine and implement control measures to reduce employee exposure to hazardous chemicals, including engineering controls, the use of personal protective equipment and hygiene practices; particular attention shall be given to the selection of control measures for chemicals that are known to be extremely hazardous;
                                        3. A requirement that fume hoods and other protective equipment are functioning properly, and specific measures that shall be taken to ensure proper and adequate performance of such equipment;
                                        4. Provisions for employee information and training as prescribed [elsewhere in this plan];
                                        5. The circumstances under which a particular laboratory operation, procedure or activity shall require prior approval from the employer or the employer’s designee before implementation;
                                        6. Provisions for medical consultation and medical examinations...;
                                        7. Designation of personnel responsible for implementation of the chemical hygiene plan, including the assignment of a chemical hygiene officer and, if appropriate, establishment of a chemical hygiene committee; and
                                        8. Provision for additional employee protection for work with particularly hazardous substances. These include “select carcinogens”, reproductive toxins and substances which have a high degree of acute toxicity. Specific consideration shall be given to the following provisions, which shall be included where appropriate:

                                         (a)     establishment of a designated area;

                                         (b)     use of containment devices such as fume hoods or glove boxes;

                                         (c)     procedures for safe removal of contaminated waste; and

                                         (d)     decontamination procedures. 

                                        The employer shall review and evaluate the effectiveness of the chemical hygiene plan at least annually and update it as necessary.


                                        Setting up a Safe and Healthy Laboratory

                                        A laboratory can only be safe and hygienic if the work practices and procedures that are followed there are safe and hygienic. Such practices are fostered by first giving responsibility and authority for laboratory safety and chemical hygiene to a laboratory safety officer who, together with a safety committee of laboratory personnel, decides what tasks must be accomplished and assigns responsibility for carrying out each of them.

                                        The safety committee’s specific tasks include conducting periodic laboratory inspections and summarizing the results in a report submitted to the laboratory safety officer. These inspections are properly done with a checklist. Another important aspect of safety management is periodic inspections of safety equipment to ensure that all equipment is in good working order and in designated locations. Before this can be done, an annual inventory of all the safety equipment must be made; this includes a brief description, including size or capacity and manufacturer. Of no less importance is a semiannual inventory of all laboratory chemicals, including proprietary products. These should be classified into groups of chemically similar substances and also classified according to their fire hazard. Another essential safety classification depends on the degree of hazard associated with a substance, since the treatment a substance receives is directly related to the harm it can cause and the ease with which the harm is unleashed. Each chemical is put into one of three hazard classes chosen on the basis of grouping according to the order of magnitude of risk involved; they are:

                                        1. ordinary hazard substances
                                        2. high-hazard substances
                                        3. extremely hazardous materials.

                                         

                                        Ordinary hazard substances are those that are relatively easily controlled, are familiar to laboratory personnel and present no unusual risk. This class ranges from innocuous substances such as sodium bicarbonate and sucrose to concentrated sulphuric acid, ethylene glycol and pentane.

                                        High-hazard substances present much greater hazards than ordinary hazards. They require special handling or, sometimes, monitoring, and present high fire or explosion hazards or severe health risks. In this group are chemicals that form unstable explosive compounds on standing (e.g., hydroperoxides formed by ethers) or substances that have high acute toxicities (e.g., sodium fluoride, which has an oral toxicity of 57 mg/kg in mice), or that have chronic toxicities such as carcinogens, mutagens or teratogens. Substances in this group often have the same kind of hazard as those in the group that follows. The difference is one of degree—those in group 3, the extremely hazardous materials, have either a greater intensity of hazard, or their order of magnitude is much greater, or the dire effects can be released far more easily.

                                        Extremely hazardous materials, when not handled correctly, can very readily cause a serious accident resulting in severe injury, loss of life or extensive property damage. Extreme caution must be exercised in dealing with these substances. Examples of this class are nickel tetracarbonyl (a volatile, extremely poisonous liquid, the vapours of which have been lethal in concentrations as low as 1 ppm) and triethylaluminium (a liquid that spontaneously ignites on exposure to air and reacts explosively with water).

                                        One of the most important of the safety committee’s tasks is to write a comprehensive document for the laboratory, a laboratory safety and chemical hygiene plan, that fully describes its safety policy and standard procedures for carrying out laboratory operations and fulfilling regulatory obligations; these include guidelines for working with substances that may fall into any of the three hazard categories, inspecting safety equipment, responding to a chemical spill, chemical waste policy, standards for laboratory air quality and any recordkeeping required by regulatory standards. The laboratory safety and chemical hygiene plan must be kept in the laboratory or must be otherwise easily accessible to its workers. Other sources of printed information include: chemical information sheets (also called material safety data sheets, MSDSs), a laboratory safety manual, toxicological information and fire hazard information. The inventory of laboratory chemicals and three associated derivative lists (classification of chemicals according to chemical class, fire safety class and the three degrees of hazard) must also be kept with these data.

                                        A file system for records of safety-related activities is also required. It is not necessary that this file either be in the laboratory or be immediately accessible to laboratory workers. The records are mainly for the use of laboratory personnel who oversee laboratory safety and chemical hygiene and for the perusal of regulatory agency inspectors. It should thus be easily available and kept up to date. It is advisable that the file be kept outside the laboratory in order to reduce the possibility of its destruction in the event of a fire. The documents on file should include: records of laboratory inspections by the safety committee, records of inspections by any local regulatory agencies including fire departments and state and federal agencies, records dealing with hazardous waste disposal, records of taxes levied on various classes of hazardous waste, where applicable, a second copy of the inventory of laboratory chemicals, and copies of other pertinent documents dealing with the facility and its personnel (e.g., records of attendance of personnel at annual laboratory safety sessions).

                                        Causes of Illness and Injury in the Laboratory

                                        Measures for the prevention of personal injury, illness and anxiety are an integral part of the plans for the day-to-day operation of a well-run laboratory. The people who are affected by unsafe and unhygienic conditions in a laboratory include not only those who work in that laboratory but also neighbouring personnel and those who provide mechanical and custodial services. Since personal injuries in laboratories stem largely from inappropriate contact between chemicals and people, inappropriate mixing of chemicals or inappropriate supply of energy to chemicals, protecting health entails preventing such undesirable interactions. This, in turn, means suitably confining chemicals, combining them properly and closely regulating the energy supplied to them. The main kinds of personal injury in the laboratory are poisoning, chemical burns and injury resulting from fires or explosions. Fires and explosions are a source of thermal burns, lacerations, concussions and other severe bodily harm.

                                        Chemical attack on the body. Chemical attack takes place when poisons are absorbed into the body and interfere with its normal function through disturbance of metabolism or other mechanisms. Chemical burns, or the gross destruction of tissue, usually occur by contact with either strong acids or strong alkalis. Toxic materials that have entered the body by absorption through the skin, eyes or mucous membranes, by ingestion or by inhalation, can cause systemic poisoning, usually by being spread via the circulatory system.

                                        Poisoning is of two general types—acute and chronic. Acute poisoning is characterized by ill effects appearing during or directly after a single exposure to a toxic substance. Chronic poisoning becomes evident only after the passage of time, which may take weeks, months, years or even decades. Chronic poisoning is said to occur when each of these conditions is met: the victim must have been subjected to multiple exposures over long periods of time and to metabolically significant amounts of a chronic poison.

                                        Chemical burns, usually encountered when liquid corrosives are spilled or splashed on the skin or in the eyes, also occur when those tissues come in contact with corrosive solids, ranging in size from powdery dusts to fairly large crystals, or with corrosive liquids dispersed in the air as mists, or with such corrosive gases as hydrogen chloride. The bronchial tubes, lungs, tongue, throat and epiglottis can also be attacked by corrosive chemicals in either the gaseous, liquid or solid states. Toxic chemicals also, of course, may be introduced into the body in any of these three physical states, or in the form of dusts or mists.

                                        Injury through fires or explosions. Both fires or explosions may produce thermal burns. Some of the injuries caused by explosions, however, are particularly characteristic of them; they are injuries engendered either by the concussive force of the detonation itself or by such of its effects as glass fragments hurled through the air, causing loss of fingers or limbs in the first case, or skin lacerations or loss of vision, in the second.

                                        Laboratory injuries from other sources. A third class of injuries may be caused neither by chemical attack nor by combustion. Rather they are produced by a miscellany of all other sources—mechanical, electrical, high-energy light sources (ultraviolet and lasers), thermal burns from hot surfaces, sudden explosive shattering of screw-capped glass chemical containers from the unexpected build-up of high internal gas pressures and lacerations from the sharp, jagged edges of newly broken glass tubing. Among the most serious sources of injury of a mechanical origin are tall, high-pressure gas cylinders tipping over and falling to the floor. Such episodes can injure legs and feet; in addition, should the cylinder stem break during the fall, the gas cylinder, propelled by the rapid, massive, uncontrolled escape of gas, becomes a deadly, undirected missile, a potential source of greater, more widespread harm.

                                        Injury Prevention

                                        Safety sessions and information dissemination. Injury prevention, dependent on performance of laboratory operations in a safe and prudent manner, is, in turn, dependent on laboratory workers being trained in correct laboratory methodology. Although they have received some of this training in their undergraduate and graduate education, it must be supplemented and reinforced by periodic laboratory safety sessions. Such sessions, which should emphasize understanding the physical and biological bases of safe laboratory practice, will enable laboratory workers to reject questionable procedures easily and to select technically sound methods as a matter of course. The sessions should also acquaint laboratory personnel with the kinds of data needed to design safe procedures and with sources of such information.

                                        Workers must also be provided with ready access, from their work stations, to pertinent safety and technical information. Such materials should include laboratory safety manuals, chemical information sheets and toxicological and fire hazard information.

                                        Prevention of poisoning and chemical burns. Poisoning and chemical burns have a common feature—the same four sites of entry or attack: (1) skin, (2) eyes, (3) mouth to stomach to intestines and (4) nose to bronchial tubes to lungs. Prevention consists in making these sites inaccessible to poisonous or corrosive substances. This is done by placing one or more physical barriers between the person to be protected and the hazardous substance or by ensuring that the ambient laboratory air is not contaminated. Procedures that use these methods include working behind a safety shield or using a fume hood, or utilizing both methods. The use of a glove box, of course, of itself affords a twofold protection. Minimization of injury, should contamination of tissue occur, is accomplished by removing the toxic or corrosive contaminant as quickly and completely as possible.

                                        Prevention of acute poisoning and chemical burns in contrast with the prevention of chronic poisoning. Although the basic approach of isolation of the hazardous substance from the person to be protected is the same in preventing acute poisoning, chemical burns and chronic poisoning, its application must be somewhat different in preventing chronic poisoning. Whereas acute poisoning and chemical burns may be likened to massive assault in warfare, chronic poisoning has the aspect of a siege. Usually produced by much lower concentrations, exerting their influence through multiple exposures over long periods of time, its effects surface gradually and insidiously through sustained and subtle action. Corrective action involves either first detecting a chemical capable of causing chronic poisoning before any physical symptoms appear, or recognizing one or more aspects of a laboratory worker’s discomfort as possibly being physical symptoms connected with chronic poisoning. Should chronic poisoning be suspected, medical attention must be sought promptly. When a chronic poison is found at a concentration exceeding the allowable level, or even approaching it, steps must be taken either to eliminate that substance or, at the very least, to reduce its concentration to a safe level. Protection against chronic poisoning often requires that protective equipment be used for all or much of the workday; however, for reasons of comfort, the use of a glove box or a self-contained breathing apparatus (SCBA) is not always feasible.

                                        Protection against poisoning or chemical burns. Protection against contamination of the skin by a particular splashed corrosive liquid or scattered poisonous airborne solid is best done by the use of safety gloves and a laboratory apron made of a suitable natural or synthetic rubber or polymer. The term suitable here is taken to mean a material which is neither dissolved, swelled nor in any other way attacked by the substance against which it must afford protection, nor should it be permeable to the substance. The use of a safety shield on the laboratory bench interposed between apparatus in which chemicals are being heated, reacted or distilled and the experimenter is a further safeguard against chemical burns and poisoning via skin contamination. Since the speed with which a corrosive or a poison is washed from the skin is a critical factor in preventing or minimizing the damage these substances can inflict, a safety shower, conveniently located in the laboratory, is an indispensable piece of safety equipment.

                                        The eyes are best protected from splashed liquids by safety goggles or face shields. Airborne contaminants, in addition to gases and vapours, include solids and liquids when they are present in a finely subdivided state as dusts or mists. These are most effectively kept out of the eyes by conducting operations in a fume hood or glove box, although goggles afford some protection against them. To afford additional protection while the hood is being used, goggles may be worn. The presence of easily accessible eyewash fountains in the laboratory will often eliminate, and certainly will, at least, reduce eye damage through contamination by splashed corrosives or poisons.

                                        The mouth to stomach to intestines route is usually connected with poisoning rather than with attack by corrosives. When toxic materials are ingested, it usually happens unwittingly through the chemical contamination of foods or cosmetics. Sources of such contamination are food stored in refrigerators with chemicals, food and beverages consumed in the laboratory, or lipstick kept or applied in the laboratory. Prevention of this kind of poisoning is done by avoiding practices known to cause it; this is feasible only when refrigerators to be used exclusively for food, and dining space outside of the laboratory, are made available.

                                        The nose to bronchial tubes to lungs route, or respiratory route, of poisoning and chemical burns deals exclusively with airborne substances, whether gases, vapours, dusts or mists. These airborne materials may be kept from the respiratory systems of people within and outside of the laboratory by the concurrent practices of: (1) confining operations that either use or produce them to the fume hood (2) adjusting the laboratory air supply so that the air is changed 10 to 12 times per hour and (3) keeping the laboratory air pressure negative with respect to that of the corridors and rooms around it. Fume- or dust-producing operations that involve very bulky pieces of apparatus or containers the size of a 218-l drum, which are too large to be enclosed by an ordinary fume hood, should be done in a walk-in hood. In general, respirators or SCBA should not be used for any laboratory operations other than those of an emergency nature.

                                        Chronic mercury poisoning, produced by the inhalation of mercury vapours, is occasionally found in laboratories. It is encountered when a pool of mercury that has accumulated in a hidden location—under floorboards, in drawers or a closet—has been emitting vapours over a long enough period of time to affect the health of laboratory personnel. Good laboratory housekeeping will avert this problem. Should a hidden source of mercury be suspected, the laboratory air must be checked for mercury either by the use of a special detector designed for the purpose or by sending an air sample for analysis.

                                        Preventing fires and explosions and extinguishing fires. The principal cause of laboratory fires is the accidental ignition of flammable liquids. Flammable liquid is defined, in the fire safety sense, as being a liquid having a flashpoint of less than 36.7 °C. Ignition sources known to have caused this kind of laboratory fire include open flames, hot surfaces, electric sparks from switches and motors found in such equipment as stirrers, household-type refrigerators and electric fans, and sparks produced by static electricity. When ignition of a flammable liquid occurs, it takes place, not in the liquid itself, but above it, in the mixture of its vapours with air (when the concentration of vapour falls between certain upper and lower limits).

                                        Preventing laboratory fires is accomplished by confining the vapours of flammables completely within the containers in which the liquids are kept or the apparatus in which they are used. If it is not possible to contain these vapours completely, their rate of escape should be made as low as possible and a continuous vigorous flow of air should be supplied to sweep them away, so as to keep their concentration at any given time well below the lower critical concentration limit. This is done both when reactions involving a flammable liquid are run in a fume hood and when drums of flammables are stored in safety solvent cabinets vented to an exhaust.

                                        A particularly unsafe practice is the storage of such flammables as ethanol in a household-type refrigerator. These refrigerators will not keep vapours of stored flammable liquids from the sparks of its switches, motors and relays. No containers of flammables must ever be put in this type of refrigerator. This is especially true of open vessels and trays containing flammable liquids. However, even flammables in screw-capped bottles, kept in this type of refrigerator, have caused explosions, presumably by vapours leaking through a faulty seal or by the bottles breaking. Flammable liquids that require refrigeration must be kept only in explosion-proof refrigerators.

                                        A significant source of fires that occur when large quantities of flammables are poured or siphoned from one drum to another is sparks produced through the accumulation of electric charge produced by a moving fluid. Spark generation of this sort can be prevented by electrically grounding both drums.

                                        Most chemical and solvent fires that occur in the laboratory and are of manageable size, may be extinguished with either a carbon dioxide or dry-chemical type fire extinguisher. One or more 4.5 kg extinguishers of either kind should be supplied to a laboratory, according to its size. Certain special types of fires require other kinds of extinguishing agents. Many metal fires are put out with sand or graphite. Burning metal hydrides require graphite or powdered limestone.

                                        When clothing is set afire in the laboratory, the flames must be put out quickly to minimize the injury caused by thermal burns. A wall-mounted wrap-around fire blanket extinguishes such fires effectively. It may be used for unassisted smothering of flames by the person whose clothing is on fire. Safety showers may also be used to extinguish these fires.

                                        There are limits to the total volumes of flammable liquids that may be safely kept in a particular laboratory. Such limits, generally written into local fire codes, vary and depend on the materials of construction of the laboratory and on whether it is equipped with an automatic fire-extinguishing system. They usually range from about 55 to 135 litres.

                                        Natural gas is often available from numbers of valves located throughout a typical laboratory. These are the most common sources of gas leaks, along with the rubber tubes and burners leading from them. Such leaks, when not detected soon after their onset, have led to severe explosions. Gas detectors, designed to indicate the level of gas concentration in the air, may be used to locate the source of such leakage quickly.

                                        Prevention of injury from miscellaneous sources. Harm from tall, high-pressure gas cylinders falling, among the most familiar in this group of accidents, is avoided easily by strapping or chaining these cylinders securely to a wall or laboratory bench and putting cylinder caps on all unused and empty cylinders.

                                        Most of the injuries from jagged edges of broken glass tubing are sustained through breakage while the tubing is being put into corks or rubber stoppers. They are avoided by lubricating the tube with glycerol and protecting the hands with leather work gloves.


                                        Appendix A to 1910.1450—National Research Council recommendations concerning chemical hygiene in laboratories (non-mandatory)

                                        The following guidelines concerning proper laboratory ventilation correspond with the information provided in Section C. The Laboratory Facility; 4. Ventilation - (a) General laboratory ventilation, Appendix A of the 1990 OSHA Laboratory Standard, 29 CFR 1910.1450.

                                        Ventilation

                                        (a)     General laboratory ventilation. This system should: Provide a source of air for breathing and for input to local ventilation devices; it should not be relied on for protection from toxic substances released into the laboratory; ensure that laboratory air is continually replaced, preventing increase of air concentrations of toxic substances during the working day; direct air flow into the laboratory from non-laboratory areas and out to the exterior of the building.

                                        (b)    Hoods. A laboratory hood with 2.5 linear feet (76 cm) of hood space per person should be provided for every 2 workers if they spend most of their time working with chemicals; each hood should have a continuous monitoring device to allow convenient confirmation of adequate hood performance before use. If this is not possible, work with substances of unknown toxicity should be avoided or other types of local ventilation devices should be provided.

                                        (c)     Other local ventilation devices. Ventilated storage cabinets, canopy hoods, snorkels, etc. should be provided as needed. Each canopy hood and snorkel should have a separate exhaust duct.

                                        (d)    Special ventilation areas. Exhaust air from glove boxes and isolation rooms should be passed through scrubbers or other treatment before release into the regular exhaust system. Cold rooms and warm rooms should have provisions for rapid escape and for escape in the event of electrical failure.

                                        (e)     Modifications. Any alteration of the ventilation system should be made only if thorough testing indicates that worker protection from airborne toxic substances will continue to be adequate.

                                        (f)     Performance. Rate: 4-12 room air changes/hour is normally adequate general ventilation if local exhaust systems such as hoods are used as the primary method of control.

                                        (g)    Quality. General air flow should not be turbulent and should be relatively uniform throughout the laboratory, with no high velocity or static areas; airflow into and within the hood should not be excessively turbulent; hood face velocity should be adequate (typically 60-100 lf/min) (152-254 cm/min).

                                        (h)     Evaluation. Quality and quantity of ventilation should be evaluated on installation, regularly monitored (at least every 3 months), and reevaluated whenever a change in local ventilation is made.


                                        Incompatible Materials

                                        Incompatible materials are a pair of substances that, on contact or mixing, produce either a harmful or potentially harmful effect. The two members of an incompatible pair may be either a pair of chemicals or a chemical and a material of construction such as wood or steel. The mixing or contact of two incompatible materials leads either to a chemical reaction or to a physical interaction that generates a large amount of energy. Specific harmful or potentially harmful effects of these combinations, which can ultimately lead to serious injury or damage to the health, include liberation of large amounts of heat, fires, explosions, production of a flammable gas or generation of a toxic gas. Since a fairly extensive variety of substances is usually found in laboratories, the occurrence of incompatibles in them is quite common and presents a threat to life and health if they are not handled correctly.

                                        Incompatible materials are seldom mixed intentionally. Most often, their mixing is the result of a simultaneous accidental breaking of two adjacent containers. Sometimes it is the effect of leakage or dripping, or results from the mixing of gases or vapours from nearby bottles. Although in many cases in which a pair of incompatibles is mixed, the harmful effect is easily observed, in at least one instance, a not readily detectable chronic poison is formed. This occurs as the result of the reaction of formaldehyde gas from 37% formalin with hydrogen chloride that has escaped from concentrated hydrochloric acid to form the potent carcinogen bis(chloromethyl) ether. Other instances of not immediately detectable effects are the generation of odourless, flammable gases.

                                        Keeping incompatibles from mixing through the simultaneous breaking of adjacent containers or through escape of vapours from nearby bottles is simple—the containers are moved far apart. The incompatible pair, however, must first be identified; not all such identifications are simple or obvious. To minimize the possibility of overlooking an incompatible pair, a compendium of incompatibles should be consulted and scanned occasionally to acquire an acquaintance with less familiar examples. Preventing a chemical from coming in contact with incompatible shelving material, through dripping or through a bottle breaking, is done by keeping the bottle in a glass tray of sufficient capacity to hold all of its contents.

                                         

                                        Back

                                        Adapted from 3rd edition, Encyclopaedia of Occupational Health and Safety

                                        Gases in their compressed state, and particularly compressed air, are almost indispensable to modern industry, and are also used widely for medical purposes, for the manufacture of mineral waters, for underwater diving and in connection with motor vehicles.

                                        For purposes of the present article, compressed gases and air are defined as being those with a gauge pressure exceeding 1.47 bar or as liquids having a vapour pressure exceeding 2.94 bar. Thus, consideration is not given to such cases as natural gas distribution, which is dealt with elsewhere in this Encyclopaedia.

                                        Table 1 shows the gases commonly encountered in compressed cylinders.

                                        Table 1. Gases often found in compressed form

                                        Acetylene*
                                        Ammonia*
                                        Butane*
                                        Carbon dioxide
                                        Carbon monoxide*
                                        Chlorine
                                        Chlorodifluormethane
                                        Chloroethane*
                                        Chloromethane*
                                        Chlorotetrafluoroethane
                                        Cyclopropane*
                                        Dichlorodifluoromethane
                                        Ethane*
                                        Ethylene*
                                        Helium
                                        Hydrogen*
                                        Hydrogen chloride
                                        Hydrogen cyanide*
                                        Methane*
                                        Methylamine*
                                        Neon
                                        Nitrogen
                                        Nitrogen dioxide
                                        Nitrous oxide
                                        Oxygen
                                        Phosgene
                                        Propane*
                                        Propylene*
                                        Sulphur dioxide

                                        *These gases are flammable.

                                        All the above gases present either an irritant, asphyxiant or highly toxic respiratory hazard and may also be flammable and an explosive when compressed. Most countries provide for a standard colour-coding system whereby different coloured bands or labels are applied to the gas cylinders to indicate the type of hazard to be expected. Particularly toxic gases, such as hydrogen cyanide, are also given special markings.

                                        All compressed gas containers are so constructed that they are safe for the purposes for which they are intended when first put into service. However, serious accidents may result from their misuse, abuse or mishandling, and the greatest care should be exercised in the handling, transport, storage and even in the disposal of such cylinders or containers.

                                        Characteristics and Production

                                        Depending on the characteristics of the gas, it may be introduced into the container or cylinder in liquid form or simply as a gas under high pressure. In order to liquefy a gas, it is necessary to cool it to below its critical temperature and to subject it to an appropriate pressure. The lower the temperature is reduced below the critical temperature, the less the pressure required.

                                        Certain of the gases listed in table 1 have properties against which precautions must be taken. For example, acetylene can react dangerously with copper and should not be in contact with alloys containing more than 66% of this metal. It is usually delivered in steel containers at about 14.7 to 16.8 bar. Another gas that has a highly corrosive action on copper is ammonia, which must also be kept out of contact with this metal, use being made of steel cylinders and authorized alloys. In the case of chlorine, no reaction takes place with copper or steel except in the presence of water, and for this reason all storage vessels or other containers must be kept free from contact with moisture at all times. Fluorine gas, on the other hand, although reacting readily with most metals, will tend to form a protective coating, as, for example, in the case of copper, where a layer of copper fluoride over the metal protects it from further attack by the gas.

                                        Among the gases listed, carbon dioxide is one of the most readily liquefied, this taking place at a temperature of 15 °C and a pressure of about 14.7 bar. It has many commercial applications and may be kept in steel cylinders.

                                        The hydrocarbon gases, of which liquefied petroleum gas (LPG) is a mixture formed mainly of butane (about 62%) and propane (about 36%), are not corrosive and are generally delivered in steel cylinders or other containers at pressures of up to 14.7 to 19.6 bar. Methane is another highly flammable gas that is also generally delivered in steel cylinders at a pressure of 14.7 to 19.6 bar.

                                        Hazards

                                        Storage and transport

                                        When a filling, storage and dispatch depot is being selected, consideration must be given to the safety of both the site and the environment. Pump rooms, filling machinery and so on must be located in fire-resistant buildings with roofs of light construction. Doors and other closures should open outwards from the building. The premises should be adequately ventilated, and a system of lighting with flameproof electrical switches should be installed. Measures should be taken to ensure free movement in the premises for filling, checking and dispatch purposes, and safety exits should be provided.

                                        Compressed gases may be stored in the open only if they are adequately protected from the weather and direct sunlight. Storage areas should be located at a safe distance from occupied premises and neighbouring dwellings.

                                        During the transport and distribution of containers, care must be taken to ensure that valves and connections are not damaged. Adequate precautions should be taken to prevent cylinders from falling off the vehicle and from being subjected to rough usage, excessive shocks or local stress, and to prevent excessive movement of liquids in large tanks. Every vehicle should be equipped with a fire extinguisher and an electrically conductive strip for earthing static electricity, and should be clearly marked “Flammable liquids”. Exhaust pipes should have a flame-control device, and engines should be halted during loading and unloading. The maximum speed of these vehicles should be rigorously limited.

                                        Use

                                        The main dangers in the use of compressed gases arise from their pressure and from their toxic and/or flammable properties. The principal precautions are to ensure that equipment is used only with those gases for which it was designed, and that no compressed gases are used for any purpose other than that for which their use has been authorized.

                                        All hoses and other equipment should be of good quality and should be examined frequently. The use of non-return valves should be enforced wherever necessary. All hose connections should be in good condition and no joints should be made by forcing together threads that do not exactly correspond. In the case of acetylene and combustible gases, a red hose should be used; for oxygen the hose should be black. It is recommended that for all flammable gases, the connection-screw thread shall be left-handed, and for all other gases, it shall be right-handed. Hoses should never be interchanged.

                                        Oxygen and some anaesthetic gases are often transported in large cylinders. The transfer of these compressed gases to small cylinders is a hazardous operation, which should be done under competent supervision, making use of the correct equipment in a correct installation.

                                        Compressed air is widely used in many branches of industry, and care should be taken in the installation of pipelines and their protection from damage. Hoses and fittings should be maintained in good condition and subjected to regular examinations. The application of a compressed air hose or jet to an open cut or wound through which air can enter the tissues or the bloodstream is particularly dangerous; precautions should also be taken against all forms of irresponsible behaviour which could result in a compressed air jet coming in contact with any openings in the body (the result of which can be fatal). A further hazard exists when compressed air jets are used to clean machined components or workplaces: flying particles have been known to cause injury or blindness, and precautions against such dangers should be enforced.


                                        Labelling and marking

                                        4.1.1.  The competent authority, or a body approved or recognized by the competent authority, should establish requirements for the marking and labelling of chemicals to enable persons handling or using chemicals to recognize and distinguish between them, both when receiving and when using them, so that they may be used safely (see paragraph 2.1.8 (criteria and requirements)). Existing criteria for marking and labelling established by other competent authorities may be followed where they are consistent with the provisions of this paragraph and are encouraged where this may assist uniformity of approach. 

                                        4.1.2.  Suppliers of chemicals should ensure that chemicals are marked and hazardous chemicals are labelled, and that revised labels are prepared and provided to employers whenever new relevant safety and health information becomes available (see paragraphs 2.4.1 (suppliers’ responsibilities) and 2.4.2 (classification)). 

                                        4.1.3.  Employers receiving chemicals that have not been labelled or marked should not use them until the relevant information is obtained from the supplier or from other reasonably available sources. Information should be obtained primarily from the supplier but may be obtained from other sources listed in paragraph 3.3.1 (sources of information), with a view to marking and labelling in accordance with the requirements of the national competent authority, prior to use. ...

                                        4.3.2.   The purpose of the label is to give essential information on:

                                        1. (a) the classification of the chemical;
                                        2. (b) its hazards;
                                        3. (c) the precautions to be observed.

                                        The information should refer to both acute and chronic exposure hazards.

                                        4.3.3.     Labelling requirements, which should be in conformity with national requirements, should cover:

                                        (a) the information to be given on the label, including as appropriate:

                                        1. trade names;
                                        2. identity of the chemical;
                                        3. name, address and telephone number of the supplier;
                                        4. hazard symbols;
                                        5. nature of the special risks associated with the use of the chemical;
                                        6. safety precautions;
                                        7. identification of the batch;
                                        8. the statement that a chemical safety data sheet giving additional information is available from the employer;
                                        9. the classification assigned under the system established by the competent authority;

                                        (b)     the legibility, durability and size of the label;

                                        (c)     the uniformity of labels and symbols, including colours.

                                        Source: ILO 1993, Chapter 4.


                                        Labelling and marking should be in accordance with standard practice in the country or region in question. The use of one gas for another by mistake, or the filling of a container with a gas different from that which it previously contained, without the necessary cleaning and decontamination procedures, may cause serious accidents. Colour marking is the best method of avoiding such errors, painting specific areas of containers or piping systems in accordance with the colour code stipulated in national standards or recommended by the national safety organization.

                                        Gas Cylinders

                                        For convenience in handling, transportation and storage, gases are commonly compressed in metal gas cylinders at pressures that range from a few atmospheres overpressure to 200 bar or even more. Alloy steel is the material most commonly used for the cylinders, but aluminium is also widely used for many purposes—for example, for fire extinguishers.

                                        The hazards met with in handling and using compressed gases are:

                                          • normal hazards entailed in handling heavy objects
                                          • hazards connected with pressure (i.e., the amount of stored energy in the gases)
                                          • hazards from the special properties of the gas content, which may be flammable, poisonous, oxidizing and so on.

                                               

                                              Cylinder manufacture. Steel cylinders may be seamless or welded. The seamless cylinders are made from high-quality alloy steels and carefully heat-treated in order to obtain the desired combination of strength and toughness for high-pressure service. They may be forged and hot-drawn from steel billets or hot-formed from seamless tubes. Welded cylinders are made from sheet material. The pressed top and bottom parts are welded to a cylindrical seamless or welded tube section and heat-treated to relieve material stresses. Welded cylinders are extensively used in low-pressure service for liquefiable gases and for dissolved gases such as acetylene.

                                              Aluminium cylinders are extruded in large presses from special alloys that are heat-treated to give the desired strength.

                                              Gas cylinders must be designed, produced and tested according to strict norms or standards. Every batch of cylinders should be checked for material quality and heat treatment, and a certain number of cylinders tested for mechanical strength. Inspection is often aided by sophisticated instruments, but in all cases the cylinders should be inspected and hydraulically tested to a given test pressure by an approved inspector. Identification data and the inspector’s mark should be permanently stamped on the cylinder neck or another suitable place.

                                              Periodic inspection. Gas cylinders in use may be affected by rough treatment, corrosion from inside and outside, fire and so on. National or international codes therefore require that they shall not be filled unless they are inspected and tested at certain intervals, which mostly range between two and ten years, depending on the service. Internal and external visual inspection together with a hydraulic pressure test is the basis for the approval of the cylinder for a new period in a given service. The test date (month and year) is stamped on the cylinder.

                                              Disposal. A large number of cylinders are scrapped every year for various reasons. It is equally important that these cylinders be disposed of in such a way that they will not find their way back into use through uncontrolled channels. The cylinders should therefore be made completely unserviceable by cutting, crushing or a similar safe procedure.

                                              Valves. The valve and any safety attachment must be regarded as a part of the cylinder, which must be kept in good working condition. Neck and outlet threads should be intact, and the valve should close tight without the use of undue force. Shut-off valves are often equipped with a pressure-relief device. This may be in the form of a resetting safety valve, bursting disc, fuse plug (melt plug) or a combination of bursting disc and fuse plug. The practice varies from country to country, but cylinders for low-pressure liquefied gases are always equipped with safety valves connected to the gas phase.

                                              Hazards

                                              Different transport codes classify gases as compressed, liquefied or dissolved under pressure. For the purpose of this article, it is useful to use the type of hazard as a classification.

                                              High pressure. If cylinders or equipment burst, damage and injuries may be caused by flying debris or by the gas pressure. The more a gas is compressed, the higher is the stored energy. This hazard is always present with compressed gases and will increase with temperature if the cylinders are heated. Hence:

                                                • Mechanical damage to the cylinder (dents, cuts and so on) should be avoided.
                                                • Cylinders should be stored away from heat and not in direct sun.
                                                • Cylinders should be removed from fires.
                                                • Cylinders should only be connected to equipment suitable for the intended use.
                                                • The cylinder valve should be protected with the cap during transport.
                                                • Cylinders should be secured in use against falling, which may knock off the valve.
                                                • Tampering with safety devices should be avoided.
                                                • Cylinders should be handled with care to avoid mechanical shocks in very cold climates, since steel may become brittle at low temperature.
                                                • Corrosion, which reduces the strength of the shell, should be avoided.

                                                                 

                                                                Low temperature. Most liquefied gases will evaporate rapidly under atmospheric pressure, and may reach very low temperatures. A person whose skin is exposed to such liquid may sustain injuries in the form of “cold burns”. (Liquid CO2 will form snow particles when expanded.) Correct protective equipment (e.g., gloves, goggles) should therefore be used.

                                                                Oxidation. The hazard of oxidation is most evident with oxygen, which is one of the most important compressed gases. Oxygen will not burn on its own, but is necessary for combustion. Normal air contains 21% oxygen by volume.

                                                                All combustible materials will ignite more easily and burn more vigorously when the oxygen concentration is increased. This is noticeable with even a slight increase in oxygen concentration, and utmost care must be taken to avoid oxygen enrichment in the working atmosphere. In confined spaces small oxygen leaks may lead to dangerous enrichment.

                                                                The danger with oxygen increases with increasing pressure to the point where many metals will burn vigorously. Finely divided materials may burn in oxygen with explosive force. Clothing that is saturated with oxygen will burn very rapidly and be difficult to extinguish.

                                                                Oil and grease have always been regarded as dangerous in combination with oxygen. The reason is that they react readily with oxygen, their existence is common, the ignition temperature is low and the developed heat may start a fire in the underlying metal. In high-pressure oxygen equipment the necessary ignition temperature may easily be reached by the compression shock that may result from rapid valve opening (adiabatic compression).

                                                                Therefore:

                                                                  • Valves should be operated slowly.
                                                                  • All oxygen equipment should be kept clean and free from oil and dirt.
                                                                  • Only materials that are proven to be safe with oxygen should be used.
                                                                  • Workers should refrain from lubricating oxygen equipment.
                                                                  • Entering confined spaces where oxygen may exist in higher concentration should be avoided.
                                                                  • The atmosphere should be checked and the use of oxygen instead of compressed air or some other gas should be strictly avoided.

                                                                             

                                                                            Flammability. The flammable gases have flashpoints below room temperature and will form explosive mixtures with air (or oxygen) within certain limits known as the lower and upper explosion limits.

                                                                            Escaping gas (also from safety valves) may ignite and burn with a shorter or longer flame depending on the pressure and amount of gas. The flames may again heat nearby equipment, which may burn, melt or explode. Hydrogen burns with an almost invisible flame.

                                                                            Even small leaks may cause explosive mixtures in confined spaces. Some gases, such as liquefied petroleum gases, mostly propane and butane, are heavier than air and are difficult to vent away, as they will concentrate in the lower parts of buildings and “float” through channels from one room to another. Sooner or later, the gas may reach an ignition source and explode.

                                                                            Ignition may be caused by hot sources, but also by electrical sparks, even very small ones.

                                                                            Acetylene takes a special place among the combustible gases because of its properties and wide use. If heated, the gas may start to decompose with the development of heat even without the presence of air. If allowed to proceed, this may lead to cylinder explosion.

                                                                            Acetylene cylinders are, for safety reasons, filled with a highly porous mass which also contains a solvent for the gas. Outside heating from a fire or welding torch, or in certain cases internal ignition by strong backfires from welding equipment, may start a decomposition within the cylinder. In such cases:

                                                                              • The valve should be closed (using protective gloves if necessary) and the cylinder should be removed from fire.
                                                                              • If part of the cylinder becomes hotter, it should be put into a river, canal or the like to cool down or cooled with water sprays.
                                                                              • If the cylinder is too hot to be handled, it should be sprayed with water from a safe distance.
                                                                              • Cooling should continue until the cylinder stays cool by itself.
                                                                              • The valve should be kept closed, because gas flow will accelerate decomposition.

                                                                                       

                                                                                      Acetylene cylinders in several countries are equipped with fuse (melting) plugs. These will release the gas pressure when they melt (usually at about 100 °C) and prevent cylinder explosion. At the same time there is a risk that the released gas may ignite and explode.

                                                                                      Common precautions to observe in respect of combustible gases are as follows:

                                                                                        • Cylinders should be stored separately from other gases in a well ventilated area above ground level.
                                                                                        • Leaking cylinders or equipment should not be used.
                                                                                        • Liquid gas cylinders should be stored and used in an upright position. Larger quantities of gas will come out if liquid is expelled through the safety valves instead of gas. The pressure will be reduced more slowly. Very long flame will result if the gas ignites.
                                                                                        • In case of leaks, any possible ignition source should be avoided.
                                                                                        • Smoking where flammable gases are stored or used should be prohibited.
                                                                                        • The safest way of extinguishing a fire is usually to stop the supply of gas. Merely extinguishing the flame may cause the formation of an explosive cloud, which may re-ignite in contact with a hot object.

                                                                                                   

                                                                                                  Toxicity. Certain gases, if not the most common, may be toxic. At the same time, they may be irritating or corrosive to the skin or eyes.

                                                                                                  Persons who handle these gases should be well trained and aware of the danger involved and the necessary precautions. The cylinders should be stored in a well ventilated area. No leaks should be tolerated. Suitable protective equipment (gas masks or breathing equipment) should be used.

                                                                                                  Inert gases. Gases such as argon, carbon dioxide, helium and nitrogen are widely used as protective atmospheres to prevent unwanted reactions in welding, chemical plants, steel works and so on. These gases are not labelled as being hazardous, and serious accidents may happen because only oxygen can support life.

                                                                                                  When any gas or gas mixture displaces the air so that the breathing atmosphere becomes deficient in oxygen, there is a danger of asphyxiation. Unconsciousness or death may result very rapidly when there is little or no oxygen, and there is no warning effect.

                                                                                                  Confined spaces where the breathing atmosphere is deficient in oxygen must be ventilated before entering. When breathing equipment is used, the person entering must be supervised. Breathing equipment must be used even in rescuing operations. Normal gas masks give no protection against oxygen deficiency. The same precaution must be observed with large, permanent firefighting installations, which are often automatic, and those who may be present in such areas should be warned of the danger.

                                                                                                  Cylinder filling. Cylinder filling involves the operation of high-pressure compressors or liquid pumps. The pumps may operate with cryogenic (very low-temperature) liquids. The filling stations may also incorporate large storage tanks of liquid gases in a pressurized and/or deeply refrigerated state.

                                                                                                  The gas filler should check that the cylinders are in acceptable condition for filling, and should fill the correct gas in not more than the approved amount or pressure. The filling equipment should be designed and tested for the given pressure and type of gas, and protected by safety valves. Cleanliness and material requirements for oxygen service must be observed strictly. When filling flammable or toxic gases, special attention should be given to the safety of the operators. The primary requirement is good ventilation combined with correct equipment and technique.

                                                                                                  Cylinders which are contaminated with other gases or liquids by the customers constitute a special hazard. Cylinders with no residual pressure may be purged or evacuated before filling. Special care should be taken to ensure that medical gas cylinders are free from any harmful matter.

                                                                                                  Transport. Local transport tends to become more mechanized through the use of fork-lift trucks and so on. Cylinders should be transported only with the caps on and secured against falling from the vehicles. Cylinders must not be dropped from trucks directly onto the ground. For hoisting with cranes, suitable lifting cradles should be used. Magnetic lifting devices or caps with uncertain threads should not be used for lifting cylinders.

                                                                                                  When cylinders are manifolded into larger packages, great care should be taken to avoid strain on the connections. Any hazard will be increased because of the greater amount of gas involved. It is good practice to divide larger units into sections and to place shut-off valves where they can be operated in any emergency.

                                                                                                  The most frequently occurring accidents in cylinder handling and transport are injuries caused by the hard, heavy and difficult-to-handle cylinders. Safety shoes should be worn. Trolleys should be provided for longer transport of single cylinders.

                                                                                                  In international transport codes, compressed gases are classified as dangerous goods. These codes give details about which gases may be transported, cylinder requirements, allowed pressure, marking and so on.

                                                                                                  Identification of content. The most important requirement for safe handling of compressed gases is the correct identification of the gas content. Stamping, labelling, stencilling and colour marking are the means that are used for this purpose. Certain requirements for marking are covered in International Organization for Standardization (ISO) standards. The colour marking of medical gas cylinders follows the ISO standards in most countries. Standardized colours are also used in many countries for other gases, but this is not a sufficient identification. In the end only the written word can be regarded as a proof of the cylinder content.

                                                                                                  Standardized valve outlets. The use of a standardized valve outlet for a certain gas or group of gases strongly reduces the chance of connecting cylinders and equipment made for different gases. Adapters should therefore not be used, as this sets aside the safety measures. Only normal tools and no excessive force should be used when making connections.

                                                                                                  Safe Practice for Users

                                                                                                  The safe use of compressed gases entails applying the safety principles outlined in this chapter and the ILO Code of Practice Safety in the Use of Chemicals at Work (ILO 1993). This is not possible unless the user has some basic knowledge of the gas and the equipment that he or she is handling. In addition the user should take the following precautions:

                                                                                                    • Gas cylinders should only be used for the purpose for which they are intended and not as rollers or work supports.
                                                                                                    • The cylinders should be stored and handled in such a way that their mechanical strength is not reduced (e.g., by severe corrosion, sharp dents, cuts and so on).
                                                                                                    • The cylinders should be removed from fires or excessive heat.
                                                                                                    • Only the necessary number of gas cylinders should be kept in working areas or occupied buildings. It is preferable for them to be kept near doors and not in emergency escape routes or difficult-to-reach areas.
                                                                                                    • Any cylinders that have been exposed to fires should be clearly marked and returned to the filler (owner), since the cylinders may have become brittle or lost their strength.
                                                                                                    • Cylinders should be stored in a well-ventilated place, away from rain or snow and any combustible storage.
                                                                                                    • Cylinders in use should be secured against falling.
                                                                                                    • Gas content should be positively identified before use.
                                                                                                    • Labels and instructions should be carefully read.
                                                                                                    • Cylinders should only be connected to equipment meant for the particular service.
                                                                                                    • Connections should be kept clean and in good order; their condition should be checked at regular intervals.
                                                                                                    • Good tools (e.g., normal length, fixed wrenches) should be used.
                                                                                                    • Loose valve keys should be left in place when the cylinder is in use.
                                                                                                    • Valves should be kept closed when cylinders are not in use.
                                                                                                    • Cylinders or connected equipment should be removed from confined spaces when not in use (even during short breaks).
                                                                                                    • The atmosphere should be checked for oxygen content and, if possible, for flammable gases before confined spaces are entered and during prolonged working periods.
                                                                                                    • It should be kept in mind that heavy gases may concentrate in lower areas and that they may be difficult to remove by ventilation.
                                                                                                    • Cylinders should be protected against contamination from pressurized equipment, since backflow of other gases may lead to serious accidents. Proper non-return valves, block-and-bleed arrangements and the like should be used.
                                                                                                    • Empty cylinders should be returned to the filler with the valves closed and the caps in place. A little residual pressure should always be left in the cylinder to prevent contamination with air and moisture.
                                                                                                    • The filler should be notified of any faulty cylinders.
                                                                                                    • Acetylene should only be used at a correctly reduced pressure.
                                                                                                    • Flame arrestors should only be used in acetylene lines where acetylene is used with compressed air or oxygen.
                                                                                                    • Fire extinguishers and heat-protecting gloves should be available with gas welding equipment.
                                                                                                    • Liquid gas cylinders should be stored and used in an upright position.
                                                                                                    • Poisonous and irritating gases, such as chlorine, should be handled only by well-informed operators with personal safety equipment.
                                                                                                    • Unidentified cylinders should not be kept in stock. Fixed installations, with the gas cylinders connected in separate gas centrals, are safest where gases are used regularly.

                                                                                                                                                       

                                                                                                                                                      Back

                                                                                                                                                      Saturday, 19 February 2011 01:08

                                                                                                                                                      Safe Handling and Storage of Chemicals

                                                                                                                                                      Adapted from 3rd edition, Encyclopaedia of Occupational Health and Safety

                                                                                                                                                      Before a new hazardous substance is received for storage, information concerning its correct handling should be provided to all users. Planning and maintaining of storage areas are necessary to avoid material losses, accidents and disasters. Good housekeeping is essential, and special attention should be paid to incompatible substances, suitable location of products and climatic conditions.

                                                                                                                                                      Written instructions of storage practices should be provided, and the chemicals’ material safety data sheets (MSDSs) should be available in storage areas. Locations of the different classes of chemicals should be illustrated in a storage map and in a chemical register. The register should contain the maximum allowed quantity of all chemical products and the maximum allowed quantity of all chemical products per class. All substances should be received at a central location for distribution to the storerooms, stockrooms and laboratories. A central receiving area is also helpful in monitoring substances that may eventually enter the waste-disposal system. An inventory of substances contained in the storerooms and stockrooms will give an indication of the quantity and nature of substances targeted for future disposal.

                                                                                                                                                      Stored chemicals should be examined periodically, at least annually. Chemicals with expired shelf lives and deteriorated or leaking containers should be disposed of safely. A “first in, first out” system of keeping stock should be used.

                                                                                                                                                      The storage of dangerous substances should be supervised by a competent, trained person. All workers required to enter storage areas should be fully trained in appropriate safe work practices, and a periodic inspection of all storage areas should be carried out by a safety officer. A fire alarm should be situated in or near the outside of the storage premises. It is recommended that persons should not work alone in a storage area containing toxic substances. Chemical storage areas should be located away from process areas, occupied buildings and other storage areas. In addition, they should not be in proximity of fixed sources of ignition.

                                                                                                                                                      Labelling and Relabelling Requirements

                                                                                                                                                      The label is the key to organizing chemical products for storage. Tanks and containers should be identified with signs indicating the name of the chemical product. No containers or cylinders of compressed gases should be accepted without the following identifying labels:

                                                                                                                                                      • identification of contents
                                                                                                                                                      • description of principal hazard (e.g., flammable liquid)
                                                                                                                                                      • precautions to minimize hazards and prevent accidents
                                                                                                                                                      • correct first aid procedures
                                                                                                                                                      • correct procedures for cleaning up spills
                                                                                                                                                      • special instructions to medical personnel in case of an accident.

                                                                                                                                                       

                                                                                                                                                      The label may also offer precautions for correct storage, such as “Keep in a cool place” or “Keep container dry”. When certain dangerous products are delivered in tankers, barrels or bags and repackaged at the workplace, each new container should be relabelled so that the user will be able to identify the chemical and recognize the risks immediately.

                                                                                                                                                      Explosive Substances

                                                                                                                                                      Explosive substances include all chemicals, pyrotechnics and matches which are explosives per se and also those substances such as sensitive metallic salts which, by themselves or in certain mixtures or when subject to certain conditions of temperature, shock, friction or chemical action, may transform and undergo an explosive reaction. In the case of explosives, most countries have stringent regulations regarding safe storage requirements and precautions to be taken in order to prevent theft for use in criminal activities.

                                                                                                                                                      The storage places should be situated far away from other buildings and structures so as to minimize damage in case of an explosion. Manufacturers of explosives issue instructions as to the most suitable type of storage. The storerooms should be of solid construction and kept securely locked when not in use. No store should be near a building containing oil, grease, waste combustible material or flammable material, open fire or flame.

                                                                                                                                                      In some countries there is a legal requirement that magazines should be situated at least 60 m from any power plant, tunnel, mine shaft, dam, highway or building. Advantage should be taken of any protection offered by natural features such as hills, hollows, dense woods or forests. Artificial barriers of earth or stone walls are sometimes placed around such storage places.

                                                                                                                                                      The storage place should be well ventilated and free from dampness. Natural lighting or portable electric lamps should be used, or lighting provided from outside the storehouse. Floors should be constructed of wood or other non-sparking material. The area surrounding the storage place should be kept free of dry grass, rubbish or any other material likely to burn. Black powder and explosives should be stored in separate storehouses, and no detonators, tools or other materials should be kept in an explosive store. Non-ferrous tools should be used for opening cases of explosives.

                                                                                                                                                      Oxidizing Substances

                                                                                                                                                      Oxidizing substances provide sources of oxygen, and thus are capable of supporting combustion and intensifying the violence of any fire. Some of these oxygen suppliers give off oxygen at storage-room temperature, but others require the application of heat. If containers of oxidizing materials are damaged, the contents may mix with other combustible materials and start a fire. This risk can be avoided by storing oxidizing materials in a separate storage place. However, this practice may not always be available, as, for example, in dock warehouses for goods in transit.

                                                                                                                                                      It is dangerous to store powerful oxidizing substances near liquids that even have a low flash point or even slightly flammable materials. It is safer to keep all flammable materials away from a place where oxidizing substances are stored. The storage area should be cool, well ventilated and of fire-resisting construction.

                                                                                                                                                      Flammable Substances

                                                                                                                                                      A gas is deemed to be flammable if it burns in the presence of air or oxygen. Hydrogen, propane, butane, ethylene, acetylene, hydrogen sulphide and coal gas are among the most common flammable gases. Some gases such as hydrogen cyanide and cyanogen are both flammable and poisonous. Flammable materials should be stored in places which are cool enough to prevent accidental ignition if the vapours mix with the air.

                                                                                                                                                      Vapours of flammable solvents may be heavier than air and may move along the floor to a distant ignition source. Flammable vapours from spilled chemicals have been known to descend into stairwells and elevator shafts and ignite at a lower storey. It is therefore essential that smoking and open flames be prohibited where these solvents are handled or stored.

                                                                                                                                                      Portable, approved safety cans are the safest vessels for storing flammables. Quantities of flammable liquids greater than 1 litre should be stored in metal containers. Two-hundred-litre drums are commonly used to ship flammables, but are not intended as long-term storage containers. The stopper should be removed carefully and replaced by an approved pressure-relief vent to avoid increased internal pressure from heat, fire or exposure to sunlight. When transferring flammables from metal equipment, the worker should use an enclosed transfer system or have adequate exhaust ventilation.

                                                                                                                                                      The storage area should be situated away from any source of heat or fire hazard. Highly flammable substances should be kept apart from powerful oxidizing agents or from materials which are susceptible to spontaneous combustion. When highly volatile liquids are stored, any electric light fittings or apparatus should be of certified flameproof construction, and no open flames should be permitted in or near the storage place. Fire extinguishers and absorbent inert materials, such as dry sand and earth, should be available for emergency situations.

                                                                                                                                                      The walls, ceilings and floors of the storage room should consist of materials with at least a 2-hour fire resistance. The room should be fitted with self-closing fire doors. The storage-room installations should be electrically grounded and periodically inspected, or equipped with automatic smoke- or fire-detection devices. Control valves on storage vessels containing flammable liquids should be clearly labelled, and pipelines should be painted with distinctive safety colours to indicate the type of liquid and the direction of flow. Tanks containing flammable substances should be situated on ground sloping away from the main buildings and plant installations. If they are on level ground, protection against fire spread can be obtained by adequate spacing and the provision of dykes. The dyke capacity should preferably be 1.5 times that of the storage tank, as a flammable liquid may be likely to boil over. Provision should be made for venting facilities and flame arrestors on such storage tanks. Adequate fire extinguishers, either automatic or manual, should be available. No smoking should be allowed.

                                                                                                                                                      Toxic Substances

                                                                                                                                                      Toxic chemicals should be stored in cool, well ventilated areas out of contact with heat, acids, moisture and oxidizing substances. Volatile compounds should be stored in spark-free freezers (–20 °C) to avoid evaporation. Because containers may develop leaks, storerooms should be equipped with exhaust hoods or equivalent local ventilation devices. Open containers should be closed with tape or other sealant before being returned to the storeroom. Substances which can react chemically with each other should be kept in separate stores.

                                                                                                                                                      Corrosive Substances

                                                                                                                                                      Corrosive substances include strong acids, alkalis and other substances which will cause burns or irritation of the skin, mucous membranes or eyes, or which will damage most materials. Typical examples of these substances include hydrofluoric acid, hydrochloric acid, sulphuric acid, nitric acid, formic acid and perchloric acid. Such materials may cause damage to their containers and leak into the atmosphere of the storage area; some are volatile and others react violently with moisture, organic matter or other chemicals. Acid mists or fumes may corrode structural materials and equipment and have a toxic action on personnel. Such materials should be kept cool but well above their freezing point, since a substance such as acetic acid may freeze at a relatively high temperature, rupture its container and then escape when the temperature rises again above its freezing point.

                                                                                                                                                      Some corrosive substances also have other dangerous properties; for example, perchloric acid, in addition to being highly corrosive, is also a powerful oxidizing agent which can cause fire and explosions. Aqua regia has three dangerous properties: (1) it displays the corrosive properties of its two components, hydrochloric acid and nitric acid; (2) it is a very powerful oxidizing agent; and (3) application of only a small amount of heat will result in the formation of nitrosyl chloride, a highly toxic gas.

                                                                                                                                                      Storage areas for corrosive substances should be isolated from the rest of the plant or warehouses by impervious walls and floor, with provision for the safe disposal of spillage. The floors should be made of cinder blocks, concrete that has been treated to reduce its solubility, or other resistant material. The storage area should be well ventilated. No store should be used for the simultaneous storage of nitric acid mixtures and sulphuric acid mixtures. Sometimes it is necessary to store corrosive and poisonous liquids in special types of containers; for example, hydrofluoric acid should be kept in leaden, gutta percha or ceresin bottles. Since hydrofluoric acid interacts with glass, it should not be stored near glass or earthenware carboys containing other acids.

                                                                                                                                                      Carboys containing corrosive acids should be packed with kieselguhr (infusorial earth) or other effective inorganic insulating material. Any necessary first-aid equipment such as emergency showers and eyewash bottles should be provided in or immediately close to the storage place.

                                                                                                                                                      Water-reactive Chemicals

                                                                                                                                                      Some chemicals, such as sodium and potassium metals, react with water to produce heat and flammable or explosive gases. Certain polymerization catalysts, such as alkyl aluminium compounds, react and burn violently on contact with water. Storage facilities for water-reactive chemicals should not have water in the storage area. Non-water automatic sprinkler systems should be employed.

                                                                                                                                                      Legislation

                                                                                                                                                      Detailed legislation has been drawn up in many countries to regulate the manner in which various dangerous substances may be stored; this legislation includes the following specifications:

                                                                                                                                                      • type of building, its location, the maximum amounts of various substances that may be stored in one place
                                                                                                                                                      • type of ventilation required
                                                                                                                                                      • precautions to be taken against fire, explosion and the release of dangerous substances
                                                                                                                                                      • type of lighting (e.g., flameproof electrical equipment and light fixtures when explosive or flammable materials are stored)
                                                                                                                                                      • number and location of fire exits
                                                                                                                                                      • security measures against entry by unauthorized persons and against theft
                                                                                                                                                      • labelling and marking of storage vessels and pipelines
                                                                                                                                                      • warning notices to workers as to the precautions to be observed.

                                                                                                                                                       

                                                                                                                                                      In many countries there is no central authority concerned with the supervision of the safety precautions for the storage of all dangerous substances, but a number of separate authorities exist. Examples include mine and factory inspectorates, dock authorities, transport authorities, police, fire services, national boards and local authorities, each of which deals with a limited range of dangerous substances under various legislative powers. It is usually necessary to obtain a licence or permit from one of these authorities for the storage of certain types of dangerous substances such as petroleum, explosives, cellulose and cellulose solutions. The licensure procedures require that storage facilities comply with specified safety standards.

                                                                                                                                                       

                                                                                                                                                      Back

                                                                                                                                                       

                                                                                                                                                       

                                                                                                                                                      Hazard classification and labelling systems are included in legislation covering the safe production, transport, use and disposal of chemicals. These classifications are designed to provide a systematic and comprehensible transfer of health information. Only a small number of significant classification and labelling systems exist at the national, regional and international levels. Classification criteria and their definitions used in these systems vary in the number and degree of hazard scales, specific terminology and test methods, and the methodology for classifying mixtures of chemicals. The establishment of an international structure for harmonizing classification and labelling systems for chemicals would have a beneficial impact on chemical trade, on the exchange of information related to chemicals, on the cost of risk assessment and management of chemicals, and ultimately on the protection of workers, the general public and the environment.

                                                                                                                                                      The major basis for classification of chemicals is the assessment of exposure levels and environmental impact (water, air and soil). About half of the international systems contain criteria related to a chemical’s production volume or the effects of pollutant emissions. The most widespread criteria used in chemical classification are values of median lethal dose (LD50) and median lethal concentration (LC50). These values are evaluated in laboratory animals via three main pathways—oral, dermal and inhalation—with a one-time exposure. Values of LD50 and LC50 are evaluated in the same animal species and with the same exposure routes. The Republic of Korea considers LD50 with intravenous and intracutaneous administration as well. In Switzerland and Yugoslavia chemical management legislation requires quantitative criteria for LD50 with oral administration and adds a provision which specifies the possibility of different hazard classifications based on the route of exposure.

                                                                                                                                                      In addition, differences in the definitions of comparable hazard levels exist. While the European Community (EC) system utilizes a three-level acute toxicity scale (“very toxic”, “toxic” and “harmful”), the US Occupational Safety and Health Administration (OSHA) Hazard Communication Standard applies two acute toxicity levels (“highly toxic” and “toxic”). Most classifications apply either three categories (United Nations (UN), World Bank, International Maritime Organization (IMO), EC and others) or four (the former Council for Mutual Economic Assistance (CMEA), the Russian Federation, China, Mexico and Yugoslavia).

                                                                                                                                                      International Systems

                                                                                                                                                      The following discussion of existing chemical classification and labelling systems focuses primarily on major systems with long application experience. Hazard assessments of pesticides are not covered in general chemical classifications, but are included in the Food and Agricultural Organization/World Health Organization (FAO/WHO) classification as well as in various national legislation (e.g., Bangladesh, Bulgaria, China, the Republic of Korea, Poland, the Russian Federation, Sri Lanka, Venezuela and Zimbabwe).

                                                                                                                                                      Transport-oriented classifications

                                                                                                                                                      Transport classifications, which are broadly applied, serve as a basis for regulations governing labelling, packaging and transport of dangerous cargoes. Among these classifications are the UN Recommendations on the Transport of Dangerous Goods (UNRTDG), the International Maritime Dangerous Goods Code developed within the IMO, the classification established by the Group of Experts on the Scientific Aspects of Marine Pollution (GESAMP) for hazardous chemicals carried by ship, as well as national transport classifications. National classifications as a rule comply with UN, IMO and other classifications within international agreements on transportation of dangerous goods by air, rail, road and inland navigation, harmonized with the UN system.

                                                                                                                                                      The United Nations Recommendations on the Transport of Dangerous Goods and related transport modal authorities

                                                                                                                                                      The UNRTDG create a widely accepted global system which provides a framework for intermodal, international and regional transport regulations. These Recommendations are increasingly being adopted as the basis of national regulations for domestic transport. The UNRTDG is rather general on issues such as notification, identification and hazard communication. The scope has been restricted to the transport of hazardous substances in packaged form; the Recommendations do not apply to exposed hazardous chemicals or to transport in bulk. Originally the objective was to prevent dangerous goods from causing acute injury to workers or the general public, or damage to other goods or the means of transport employed (aircraft, vessel, railcar or road vehicle). The system has now been extended to include asbestos and substances hazardous to the environment.

                                                                                                                                                      The UNRTDG focus primarily on hazard communication based on labels which include a combination of graphic symbols, colours, warning words and classification codes. They also provide key data for emergency response teams. The UNRTDG are relevant for the protection of such transport workers as aircrew, mariners and the crews of trains and road vehicles. In many countries the Recommendations have been incorporated in legislation for the protection of dock workers. Parts of the system, such as the Recommendations on explosives, have been adapted to regional and national regulations for the workplace, generally including manufacturing and storage. Other UN organizations concerned with transport have adopted the UNRTDG. The transport classification systems of dangerous goods of Australia, Canada, India, Jordan, Kuwait, Malaysia and United Kingdom basically comply with the major principles of these Recommendations, for example.

                                                                                                                                                      The UN classification subdivides chemicals into nine classes of hazards:

                                                                                                                                                        • 1st class—explosive substances
                                                                                                                                                        • 2nd class—compressed, liquefied, dissolved under pressure or deeply condensed gases
                                                                                                                                                        • 3rd class—easily inflammable liquids
                                                                                                                                                        • 4th class—easily inflammable solid substances
                                                                                                                                                        • 5th class—oxidizing substances, organic peroxides
                                                                                                                                                        • 6th class—poisonous (toxic) and infectious substances
                                                                                                                                                        • 7th class—radioactive substances
                                                                                                                                                        • 8th class—corrosive agents
                                                                                                                                                        • 9th class—other dangerous substances.

                                                                                                                                                                         

                                                                                                                                                                        The packaging of goods for the purpose of transport, an area specified by the UNRTDG, is not covered as comprehensively by other systems. In support of the Recommendations, organizations such as IMO and International Civil Aviation Organization (ICAO) carry out very significant programmes aimed at training dock workers and airport personnel in the recognition of label information and packaging standards.

                                                                                                                                                                        The International Maritime Organization

                                                                                                                                                                        The IMO, with a mandate from the 1960 Conference on Safety of Life at Sea (SOLAS 1960), has developed the International Maritime Dangerous Goods (IMDG) Code. This code supplements the mandatory requirements of chapter VII (Carriage of Dangerous Goods) of SOLAS 74 and those of Annex III of the Maritime Pollution Convention (MARPOL 73/78). The IMDG Code has been developed and kept up to date for more than 30 years in close cooperation with the UN Committee of Experts on Transport of Dangerous Goods (CETG) and has been implemented by 50 IMO members representing 85% of the world’s merchant tonnage.

                                                                                                                                                                        Harmonization of the IMDG Code with the UNRTDG ensures compatibility with the national and international rules applicable to the transport of dangerous goods by other modes, in so far as these other modal rules are also based on the recommendations of the UNCETG—that is, ICAO Technical Instructions for the Safe Transport of Dangerous Goods by Air and the European Regulations concerning the international carriage of dangerous goods by road (ADR) and by rail (RID).

                                                                                                                                                                        In 1991 the 17th IMO Assembly adopted a Resolution on the Coordination of Work in Matters Relating to Dangerous Goods and Hazardous Substances, urging, inter alia, UN bodies and governments to coordinate their work in order to ensure the compatibility of any legislation on chemicals, dangerous goods and hazardous substances with established international transport rules.

                                                                                                                                                                        Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal, 1989

                                                                                                                                                                        The Convention’s Annexes define 47 categories of wastes, including domestic wastes. Although the hazard classification parallels that of the UNRTDG, a significant difference includes the addition of three categories reflecting more specifically the nature of toxic wastes: chronic toxicity, liberation of toxic gases from interaction of wastes with air or water, and capacity of wastes to yield secondary toxic material after disposal.

                                                                                                                                                                        Pesticides

                                                                                                                                                                        National classification systems related to the hazard assessment of pesticides tend to be quite comprehensive because of the wide use of these chemicals and the potential long-term damage to the environment. These systems may identify from two to five hazard classifications. The criteria are based on median lethal doses with different routes of exposure. While Venezuela and Poland recognize only one route of exposure, ingestion, the WHO and various other countries identify both ingestion and skin application.

                                                                                                                                                                        The criteria for hazard assessment of pesticides in East European countries, Cyprus, Zimbabwe, China and others are based on median lethal doses via inhalation. Bulgaria’s criteria, however, include skin and eye irritation, sensitization, accumulation ability, persistence in environmental media, blastogenic and teratogenic effects, embryotoxicity, acute toxicity and medical treatment. Many classifications of pesticides also include separate criteria based on median lethal doses with different aggregative states. For example, criteria for liquid pesticides are usually more severe than those for solid ones.

                                                                                                                                                                        WHO Recommended Classification of Pesticides by Hazard

                                                                                                                                                                        This Classification was first issued in 1975 by the WHO and updated subsequently on a regular basis by the United Nations Environment Programme, the ILO and the WHO (UNEP/ILO/WHO) International Programme on Chemical Safety (IPCS) with input from the Food and Agriculture Organization (FAO). It consists of one hazard category or classification criterion, acute toxicity, divided in four classification levels based on LD50 (rat, oral and dermal values for liquid and solid forms) and ranging from extremely to slightly hazardous. Apart from general considerations, no specific labelling rules are provided. The 1996–97 update contains a guide to classification which includes a list of classified pesticides and comprehensive safety procedures. (See the chapter Minerals and agricultural chemicals.)

                                                                                                                                                                        FAO International Code of Conduct on the Distribution and Use of Pesticides

                                                                                                                                                                        The WHO Classification is supported by another document, the FAO International Code of Conduct on the Distribution and Use of Pesticides. Although it is only a recommendation, this classification is applied most widely in developing countries, where it is often included into pertinent national legislation. With regard to labelling, the FAO has published Guidelines on Good Labelling Practice for Pesticides as an addendum to these guidelines.

                                                                                                                                                                        Regional Systems (EC, EFTA, CMEA)

                                                                                                                                                                        The EC Council Directive 67/548/EEC has been in application for over two decades and has harmonized the pertinent legislation of 12 countries. It has evolved into a comprehensive system which includes an inventory of existing chemicals, a notification procedure for new chemicals prior to marketing, a set of hazard categories, classification criteria for each category, testing methods, and a hazard communication system including labelling with codified risk and safety phrases and hazard symbols. Chemical preparations (mixtures of chemicals) are regulated by Council Directive 88/379/EEC. The definition of the chemical safety data sheet data elements is practically identical to that defined in ILO Recommendation No. 177, as discussed earlier in this chapter. A set of classification criteria and a label for chemicals that are dangerous to the environment have been produced. The Directives regulate chemicals placed on the market, with the goal of protecting human health and the environment. Fourteen categories are divided into two groups related respectively to physico-chemical properties (explosive, oxidizing, extremely flammable, highly flammable, flammable) and toxicological properties (very toxic, toxic, harmful, corrosive, irritant, carcinogenic, mutagenic, toxic to reproduction, properties dangerous to health or the environment).

                                                                                                                                                                        The Commission of European Communities (CEC) has an extension to the system specifically addressed to the workplace. In addition, these measures on chemicals should be considered within the overall framework of the protection of the health and safety of workers provided for under Directive 89/391/EEC and its individual Directives.

                                                                                                                                                                        With the exception of Switzerland, the countries in EFTA follow the EC system to a large degree.

                                                                                                                                                                        Former Council for Mutual Economic Assistance (CMEA)

                                                                                                                                                                        This system was elaborated under the umbrella of the Standing Commission for Cooperation in Public Health of the CMEA, which included Poland, Hungary, Bulgaria, the former USSR, Mongolia, Cuba, Romania, Vietnam and Czechoslovakia. China still uses a system which is similar in concept. It consists of two classification categories, namely toxicity and hazard, using a four-level ranking scale. Another element of the CMEA system is its requirement for the preparation of a “toxicological passport of new chemical compounds subjected to introduction in the economy and domestic life”. Criteria for irritancy, allergic effects, sensitization, carcinogenicity, mutagenicity, teratogenicity, antifertility and ecological hazards are defined. However, the scientific basis and the testing methodology related to the classification criteria are significantly different from those used by the other systems.

                                                                                                                                                                        Provisions for workplace labelling and hazard symbols are also different. The UNRTDG system is used for labelling goods for transport, but there does not seem to be any linkage between the two systems. There are no specific recommendations for chemical safety data sheets. The system is described in detail in the UNEP International Register of Potentially Toxic Chemicals (IRPTC) International Survey of Classification Systems. While the CMEA system contains most of the basic elements of the other classification systems, it differs significantly in the area of hazard assessment methodology, and uses exposure standards as one of the hazard classification criteria.

                                                                                                                                                                        Examples of National Systems

                                                                                                                                                                        Australia

                                                                                                                                                                        Australia has enacted legislation for the notification and assessment of industrial chemicals, the Industrial Chemicals Notification and Assessment Act of 1989, with similar legislation enacted in 1992 for agricultural and veterinary chemicals. The Australian system is similar to that of the EC. The differences are mainly due to its utilization of the UNRTDG classification (i.e., the inclusion of the categories compressed gas, radioactive and miscellaneous).

                                                                                                                                                                        Canada

                                                                                                                                                                        The Workplace Hazardous Materials Information System (WHMIS) was implemented in 1988 by a combination of federal and provincial legislation designed to enforce the transfer of information about hazardous materials from producers, suppliers and importers to employers and in turn to workers. It applies to all industries and workplaces in Canada. WHMIS is a communication system aimed primarily at industrial chemicals and composed of three interrelated hazard communication elements: labels, chemical safety data sheets and worker education programmes. A valuable support to this system was the earlier creation and commercial distribution worldwide of a computerized database, now available on compact disc, containing over 70,000 chemical safety data sheets voluntarily submitted to the Canadian Centre for Occupational Health and Safety by manufacturers and suppliers.

                                                                                                                                                                        Japan

                                                                                                                                                                        In Japan, the control of chemicals is covered mainly by two laws. First, the Chemical Substances Control Law, as amended in 1987, is aimed at preventing environmental contamination by chemical substances that are low in biodegradability and harmful to human health. The law defines a premarket notification procedure and three “hazard” classes:

                                                                                                                                                                          • Class 1—specified chemical substances (low biodegradation, high bioaccumulation, risk to human health)
                                                                                                                                                                          • Class 2—specified chemical substances (low biodegradation and bioaccumulation, risk to human health and of contamination of the environment in vast areas)
                                                                                                                                                                          • Class 3—designated substances (low biodegradation and bioaccumulation, suspicion of risk to human health)

                                                                                                                                                                               

                                                                                                                                                                              Control measures are defined, and a list of existing chemicals is provided.

                                                                                                                                                                              The second regulation, the Industrial Safety and Health Law, is a parallel system with its own list of “Specified chemical substances” which require labelling. Chemicals are classified into four groups (lead, tetraalkyl lead, organic solvents, specified chemical substances). The classification criteria are (1) possible occurrence of serious health impairment, (2) possible frequent occurrence of health impairment and (3) actual health impairment. Other laws dealing with the control of hazardous chemicals include the Explosives Control Law; the High Pressure Gas Control Law; the Fire Prevention Law; the Food Sanitation Law; and the Drugs, Cosmetics and Medical Instruments Law.

                                                                                                                                                                              United States

                                                                                                                                                                              The Hazard Communication Standard (HCS), a mandatory standard promulgated by OSHA, is a workplace-oriented binding regulation which refers to other existing laws. Its goal is to ensure that all chemicals produced or imported are evaluated, and that information related to their hazards is transmitted to employers and to workers through a comprehensive hazard communication programme. The programme includes labelling and other forms of warning, chemical safety data sheets and training. Label and data sheet minimum contents are defined, but the use of hazard symbols is not mandatory.

                                                                                                                                                                              Under the Toxic Substances Control Act (TSCA), administered by the Environmental Protection Agency (EPA), an inventory listing approximately 70,000 existing chemicals is maintained. The EPA is developing regulations to complement the OSHA HCS which would have similar hazard evaluation and worker communication requirements for the environmental hazards of chemicals on the inventory. Under TSCA, prior to manufacture or import of chemicals which are not on the inventory, the manufacturer must submit a premanufacture notice. The EPA may impose testing or other requirements based on the premanufacture notice review. As new chemicals are introduced into commerce, they are added to the inventory.

                                                                                                                                                                              Labelling

                                                                                                                                                                              Labels on containers of hazardous chemicals provide the first alert that a chemical is hazardous, and should provide basic information about safe handling procedures, protective measures, emergency first aid and the chemical’s hazards. The label should also include the identity of the hazardous chemical(s) and the name and address of the chemical manufacturer.

                                                                                                                                                                              Labelling consists of phrases as well as graphic and colour symbols applied directly on the product, package, label or tag. The marking should be clear, easily comprehensible and able to withstand adverse climatic conditions. The labelling should be placed against a background that contrasts with the product’s accompanying data or package colour. The MSDS provides more detailed information on the nature of the chemical product’s hazards and the appropriate safety instructions.

                                                                                                                                                                              While presently there are no globally harmonized labelling requirements, there are established international, national and regional regulations for labelling hazardous substances. Requirements for labelling are incorporated into the Law on Chemicals (Finland), the Act on Dangerous Products (Canada) and EC Directive N 67/548. Minimum label content requirements of the European Union, United States and Canadian systems are relatively similar.

                                                                                                                                                                              Several international organizations have established labelling content requirements for handling chemicals at the workplace and in transport. The labels, hazard symbols, risk and safety phrases, and emergency codes of the International Organization for Standardization (ISO), the UNRTDG, the ILO and EU are discussed below.

                                                                                                                                                                              The section on labelling in the ISO/IEC guide 51, Guidelines for Inclusion of Safety Aspects in Standards, includes commonly recognized pictograms (drawing, colour, sign). In addition, short and plain warning phrases alert the user to potential hazards and provide information on preventive safety and health measures.

                                                                                                                                                                              The guidelines recommend the use of the following “signal” words to alert the user:

                                                                                                                                                                                • DANGER—high danger
                                                                                                                                                                                • HANDLE WITH CARE—intermediate danger
                                                                                                                                                                                • BEWARE—potential danger.

                                                                                                                                                                                     

                                                                                                                                                                                    The UNRTDG establish five main pictograms for easy visible recognition of dangerous goods and significant hazard identification:

                                                                                                                                                                                      • bomb—explosive
                                                                                                                                                                                      • flame—flammable
                                                                                                                                                                                      • skull and cross-bones—toxic
                                                                                                                                                                                      • trefoil—radioactive
                                                                                                                                                                                      • liquid pouring out of two test-tubes on a hand and a piece of metal—corrosive.

                                                                                                                                                                                       

                                                                                                                                                                                      These symbols are supplemented by other representations such as:

                                                                                                                                                                                        • oxidizing substances—flame above a circle
                                                                                                                                                                                        • non-flammable gases—a gas bottle
                                                                                                                                                                                        • infectious substances—three crescent signs superimposed on a circle
                                                                                                                                                                                        • harmful substances which should be stowed away—St. Andrew’s cross posed on a wheat-ear.

                                                                                                                                                                                               

                                                                                                                                                                                              The Chemicals Convention, 1990 (No. 170), and Recommendation, 1990 (No. 177), were adopted at the 77th Session of the International Labour Conference (ILC). They establish requirements for the labelling of chemicals to ensure the communication of basic hazard information. The Convention states that label information should be easily understandable and should convey the potential risks and appropriate precautionary measures to the user. Regarding the transport of dangerous goods, the Convention refers to the UNRTDG.

                                                                                                                                                                                              The Recommendation outlines labelling requirements in accordance with existing national and international systems, and establishes criteria for classification of chemicals including chemical and physical properties; toxicity; necrotic and irritating properties; and allergic, teratogenic, mutagenic and reproductive effects.

                                                                                                                                                                                              The EC Council Directive N 67/548 stipulates the form of label information: graphic hazard symbols and pictograms including risk and safety phrases. Hazards are coded by the Latin letter R accompanied with combinations of Arabic numerals from 1 to 59. For example, R10 corresponds with “flammable”, R23 with “toxic by inhalation”. The hazard code is given with a safety code consisting of the Latin letter S and combinations of numerals from 1 to 60. For example, S39 means “Wear eye/face protection”. The EC labelling requirements serve as a reference for chemical and pharmaceutical companies throughout the world.

                                                                                                                                                                                              Despite significant efforts in chemical hazard data acquisition, evaluation and organization by different international and regional organizations, there is still a lack of coordination of these efforts, particularly in the standardization of assessment protocols and methods and interpretation of data. The ILO, the Organization for Economic Cooperation and Development (OECD), the IPCS and other concerned bodies have initiated a number of international activities aimed toward establishing a global harmonization of chemical classification and labelling systems. The establishment of an international structure to monitor chemical hazard assessment activities would greatly benefit workers, the general public and the environment. An ideal harmonization process would reconcile the transport, marketing and workplace classification and labelling of hazardous substances, and address consumer, worker and environmental concerns.

                                                                                                                                                                                               

                                                                                                                                                                                              Back

                                                                                                                                                                                              Page 67 of 87

                                                                                                                                                                                              " DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

                                                                                                                                                                                              Contents