Monday, 07 March 2011 18:49

The Nature and Aims of Ergonomics

Rate this item
(13 votes)

Definition and Scope

Ergonomics means literally the study or measurement of work. In this context, the term work signifies purposeful human function; it extends beyond the more restricted concept of work as labour for monetary gain to incorporate all activities whereby a rational human operator systematically pursues an objective. Thus it includes sports and other leisure activities, domestic work such as child care and home maintenance, education and training, health and social service, and either controlling engineered systems or adapting to them, for example, as a passenger in a vehicle.

The human operator, the focus of study, may be a skilled professional operating a complex machine in an artificial environment, a customer who has casually purchased a new piece of equipment for personal use, a child sitting in a classroom or a disabled person in a wheelchair. The human being is highly adaptable but not infinitely so. There are ranges of optimum conditions for any activity. One of the tasks of ergonomics is to define what these ranges are and to explore the undesirable effects which occur if the limits are transgressed—for example if a person is expected to work in conditions of excessive heat, noise or vibration, or if the physical or mental workload is too high or too low.

Ergonomics examines not only the passive ambient situation but also the unique advantages of the human operator and the contributions that can be made if a work situation is designed to permit and encourage the person to make the best use of his or her abilities. Human abilities may be characterized not only with reference to the generic human operator but also with respect to those more particular abilities that are called upon in specific situations where high performance is essential. For example, an automobile manufacturer will consider the range of physical size and strength of the population of drivers who are expected to use a particular model to ensure that the seats are comfortable, that the controls are readily identifiable and within reach, that there is clear visibility to the front and the rear, and that the internal instruments are easy to read. Ease of entry and egress will also be taken into account. By contrast, the designer of a racing car will assume that the driver is athletic so that ease of getting in and out, for example, is not important and, in fact, design features as a whole as they relate to the driver may well be tailored to the dimensions and preferences of a particular driver to ensure that he or she can exercise his or her full potential and skill as a driver.

In all situations, activities and tasks the focus is the person or persons involved. It is assumed that the structure, the engineering and any other technology is there to serve the operator, not the other way round.

History and Status

About a century ago it was recognized that working hours and conditions in some mines and factories were not tolerable in terms of safety and health, and the need was evident to pass laws to set permissible limits in these respects. The determination and statement of those limits can be regarded as the beginning of ergonomics. They were, incidentally, the beginning of all the activities which now find expression through the work of the International Labour Organization (ILO).

Research, development and application proceeded slowly until the Second World War. This triggered greatly accelerated development of machines and instrumentation such as vehicles, aircraft, tanks, guns and vastly improved sensing and navigation devices. As technology advanced, greater flexibility was available to allow adaptation to the operator, an adaptation that became the more necessary because human performance was limiting the performance of the system. If a powered vehicle can travel at a speed of only a few kilometres per hour there is no need to worry about the performance of the driver, but when the vehicle’s maximum speed is increased by a factor of ten or a hundred, then the driver has to react more quickly and there is no time to correct mistakes to avert disaster. Similarly, as technology is improved there is less need to worry about mechanical or electrical failure (for instance) and attention is freed to think about the needs of the driver.

Thus ergonomics, in the sense of adapting engineering technology to the needs of the operator, becomes simultaneously both more necessary and more feasible as engineering advances.

The term ergonomics came into use about 1950 when the priorities of developing industry were taking over from the priorities of the military. The development of research and application for the following thirty years is described in detail in Singleton (1982). The United Nations agencies, particularly the ILO and the World Health Organization (WHO), became active in this field in the 1960s.

In immediate postwar industry the overriding objective, shared by ergonomics, was greater productivity. This was a feasible objective for ergonomics because so much industrial productivity was determined directly by the physical effort of the workers involved—speed of assembly and rate of lifting and movement determined the extent of output. Gradually, mechanical power replaced human muscle power. More power, however, leads to more accidents on the simple principle that an accident is the consequence of power in the wrong place at the wrong time. When things are happening faster, the potential for accidents is further increased. Thus the concern of industry and the aim of ergonomics gradually shifted from productivity to safety. This occurred in the 1960s and early 1970s. About and after this time, much of manufacturing industry shifted from batch production to flow and process production. The role of the operator shifted correspondingly from direct participation to monitoring and inspection. This resulted in a lower frequency of accidents because the operator was more remote from the scene of action but sometimes in a greater severity of accidents because of the speed and power inherent in the process.

When output is determined by the speed at which machines function then productivity becomes a matter of keeping the system running: in other words, reliability is the objective. Thus the operator becomes a monitor, a trouble-shooter and a maintainer rather than a direct manipulator.

This historical sketch of the postwar changes in manufacturing industry might suggest that the ergonomist has regularly dropped one set of problems and taken up another set but this is not the case for several reasons. As explained earlier, the concerns of ergonomics are much wider than those of manufacturing industry. In addition to production ergonomics, there is product or design ergonomics, that is, adapting the machine or product to the user. In the car industry, for example, ergonomics is important not only to component manufacturing and the production lines but also to the eventual driver, passenger and maintainer. It is now routine in the marketing of cars and in their critical appraisal by others to review the quality of the ergonomics, considering ride, seat comfort, handling, noise and vibration levels, ease of use of controls, visibility inside and outside, and so on.

It was suggested above that human performance is usually optimized within a tolerance range of a relevant variable. Much of the early ergonomics attempted to reduce both muscle power output and the extent and variety of movement by way of ensuring that such tolerances were not exceeded. The greatest change in the work situation, the advent of computers, has created the opposite problem. Unless it is well designed ergonomically, a computer workspace can induce too fixed a posture, too little bodily movement and too much repetition of particular combinations of joint movements.

This brief historical review is intended to indicate that, although there has been continuous development of ergonomics, it has taken the form of adding more and more problems rather than changing the problems. However, the corpus of knowledge grows and becomes more reliable and valid, energy expenditure norms are not dependent on how or why the energy is expended, postural issues are the same in aircraft seats and in front of computer screens, much human activity now involves using videoscreens and there are well-established principles based on a mix of laboratory evidence and field studies.

Ergonomics and Related Disciplines

The development of a science-based application which is intermediate between the well-established technologies of engineering and medicine inevitably overlaps into many related disciplines. In terms of its scientific basis, much of ergonomic knowledge derives from the human sciences: anatomy, physiology and psychology. The physical sciences also make a contribution, for example, to solving problems of lighting, heating, noise and vibration.

Most of the European pioneers in ergonomics were workers among the human sciences and it is for this reason that ergonomics is well-balanced between physiology and psychology. A physiological orientation is required as a background to problems such as energy expenditure, posture and application of forces, including lifting. A psychological orientation is required to study problems such as information presentation and job satisfaction. There are of course many problems which require a mixed human sciences approach such as stress, fatigue and shift work.

Most of the American pioneers in this field were involved in either experimental psychology or engineering and it is for this reason that their typical occupational titles—human engineering and human factors—reflect a difference in emphasis (but not in core interests) from European ergonomics. This also explains why occupational hygiene, from its close relationship to medicine, particularly occupational medicine, is regarded in the United States as quite different from human factors or ergonomics. The difference in other parts of the world is less marked. Ergonomics concentrates on the human operator in action, occupational hygiene concentrates on the hazards to the human operator present in the ambient environment. Thus the central interest of the occupational hygienist is toxic hazards, which are outside the scope of the ergonomist. The occupational hygienist is concerned about effects on health, either long-term or short-term; the ergonomist is, of course, concerned about health but he or she is also concerned about other consequences, such as productivity, work design and workspace design. Safety and health are the generic issues which run through ergonomics, occupational hygiene, occupational health and occupational medicine. It is, therefore, not surprising to find that in a large institution of a research, design or production kind, these subjects are often grouped together. This makes possible an approach based on a team of experts in these separate subjects, each making a specialist contribution to the general problem of health, not only of the workers in the institution but also of those affected by its activities and products. By contrast, in institutions concerned with design or provision of services, the ergonomist might be closer to the engineers and other technologists.

It will be clear from this discussion that because ergonomics is interdisciplinary and still quite new there is an important problem of how it should best be fitted into an existing organization. It overlaps onto so many other fields because it is concerned with people and people are the basic and all-pervading resource of every organization. There are many ways in which it can be fitted in, depending on the history and objectives of the particular organization. The main criteria are that ergonomics objectives are understood and appreciated and that mechanisms for implementation of recommendations are built into the organization.

Aims of Ergonomics

It will be clear already that the benefits of ergonomics can appear in many different forms, in productivity and quality, in safety and health, in reliability, in job satisfaction and in personal development.

The reason for this breadth of scope is that its basic aim is efficiency in purposeful activity—efficiency in the widest sense of achieving the desired result without wasteful input, without error and without damage to the person involved or to others. It is not efficient to expend unnecessary energy or time because insufficient thought has been given to the design of the work, the workspace, the working environment and the working conditions. It is not efficient to achieve the desired result in spite of the situation design rather than with support from it.

The aim of ergonomics is to ensure that the working situation is in harmony with the activities of the worker. This aim is self-evidently valid but attaining it is far from easy for a variety of reasons. The human operator is flexible and adaptable and there is continuous learning, but there are quite large individual differences. Some differences, such as physical size and strength, are obvious, but others, such as cultural differences and differences in style and in level of skill, are less easy to identify.

In view of these complexities it might seem that the solution is to provide a flexible situation where the human operator can optimize a specifically appropriate way of doing things. Unfortunately such an approach is sometimes impracticable because the more efficient way is often not obvious, with the result that a worker can go on doing something the wrong way or in the wrong conditions for years.

Thus it is necessary to adopt a systematic approach: to start from a sound theory, to set measurable objectives and to check success against these objectives. The various possible objectives are considered below.

Safety and health

There can be no disagreement about the desirability of safety and health objectives. The difficulty stems from the fact that neither is directly measurable: their achievement is assessed by their absence rather than their presence. The data in question always pertain to departures from safety and health.

In the case of health, much of the evidence is long-term as it is based on populations rather than individuals. It is, therefore, necessary to maintain careful records over long periods and to adopt an epidemiological approach through which risk factors can be identified and measured. For example, what should be the maximum hours per day or per year required of a worker at a computer workstation? It depends on the design of the workstation, the kind of work and the kind of person (age, vision, abilities and so on). The effects on health can be diverse, from wrist problems to mental apathy, so it is necessary to carry out comprehensive studies covering quite large populations while simultaneously keeping track of differences within the populations.

Safety is more directly measurable in a negative sense in terms of kinds and frequencies of accidents and damage. There are problems in defining different kinds of accidents and identifying the often multiple causal factors and there is often a distant relationship between the kind of accident and the degree of harm, from none to fatality.

Nevertheless, an enormous body of evidence concerning safety and health has been accumulated over the past fifty years and consistencies have been discovered which can be related back to theory, to laws and standards and to principles operative in particular kinds of situations.

Productivity and efficiency

Productivity is usually defined in terms of output per unit of time, whereas efficiency incorporates other variables, particularly the ratio of output to input. Efficiency incorporates the cost of what is done in relation to achievement, and in human terms this requires the consideration of the penalties to the human operator.

In industrial situations, productivity is relatively easy to measure: the amount produced can be counted and the time taken to produce it is simple to record. Productivity data are often used in before/after comparisons of working methods, situations or conditions. It involves assumptions about equivalence of effort and other costs because it is based on the principle that the human operator will perform as well as is feasible in the circumstances. If the productivity is higher then the circumstances must be better. There is much to recommend this simple approach provided that it is used with due regard to the many possible complicating factors which can disguise what is really happening. The best safeguard is to try to make sure that nothing has changed between the before and after situations except the aspects being studied.

Efficiency is a more comprehensive but always a more difficult measure. It usually has to be specifically defined for a particular situation and in assessing the results of any studies the definition should be checked for its relevance and validity in terms of the conclusions being drawn. For example, is bicycling more efficient than walking? Bicycling is much more productive in terms of the distance that can be covered on a road in a given time, and it is more efficient in terms of energy expenditure per unit of distance or, for indoor exercise, because the apparatus required is cheaper and simpler. On the other hand, the purpose of the exercise might be energy expenditure for health reasons or to climb a mountain over difficult terrain; in these circumstances walking will be more efficient. Thus, an efficiency measure has meaning only in a well-defined context.

Reliability and quality

As explained above, reliability rather than productivity becomes the key measure in high technology systems (for instance, transport aircraft, oil refining and power generation). The controllers of such systems monitor performance and make their contribution to productivity and to safety by making tuning adjustments to ensure that the automatic machines stay on line and function within limits. All these systems are in their safest states either when they are quiescent or when they are functioning steadily within the designed performance envelope. They become more dangerous when moving or being moved between equilibrium states, for example, when an aircraft is taking off or a process system is being shut down. High reliability is the key characteristic not only for safety reasons but also because unplanned shut-down or stoppage is extremely expensive. Reliability is straightforward to measure after performance but is extremely difficult to predict except by reference to the past performance of similar systems. When or if something goes wrong human error is invariably a contributing cause, but it is not necessarily an error on the part of the controller: human errors can originate at the design stage and during setting up and maintenance. It is now accepted that such complex high-technology systems require a considerable and continuous ergonomics input from design to the assessment of any failures that occur.

Quality is related to reliability but is very difficult if not impossible to measure. Traditionally, in batch and flow production systems, quality has been checked by inspection after output, but the current established principle is to combine production and quality maintenance. Thus each operator has parallel responsibility as an inspector. This usually proves to be more effective, but it may mean abandoning work incentives based simply on rate of production. In ergonomic terms it makes sense to treat the operator as a responsible person rather than as a kind of robot programmed for repetitive performance.

Job satisfaction and personal development

From the principle that the worker or human operator should be recognized as a person and not a robot it follows that consideration should be given to responsibilities, attitudes, beliefs and values. This is not easy because there are many variables, mostly detectable but not quantifiable, and there are large individual and cultural differences. Nevertheless a great deal of effort now goes into the design and management of work with the aim of ensuring that the situation is as satisfactory as is reasonably practicable from the operator’s viewpoint. Some measurement is possible by using survey techniques and some principles are available based on such working features as autonomy and empowerment.

Even accepting that these efforts take time and cost money, there can still be considerable dividends from listening to the suggestions, opinions and attitudes of the people actually doing the work. Their approach may not be the same as that of the external work designer and not the same as the assumptions made by the work designer or manager. These differences of view are important and can provide a refreshing change in strategy on the part of everyone involved.

It is well established that the human being is a continuous learner or can be, given the appropriate conditions. The key condition is to provide feedback about past and present performance which can be used to improve future performance. Moreover, such feedback itself acts as an incentive to performance. Thus everyone gains, the performer and those responsible in a wider sense for the performance. It follows that there is much to be gained from performance improvement, including self-development. The principle that personal development should be an aspect of the application of ergonomics requires greater designer and manager skills but, if it can be applied successfully, can improve all the aspects of human performance discussed above.

Successful application of ergonomics often follows from doing no more than developing the appropriate attitude or point of view. The people involved are inevitably the central factor in any human effort and the systematic consideration of their advantages, limitations, needs and aspirations is inherently important.

Conclusion

Ergonomics is the systematic study of people at work with the objective of improving the work situation, the working conditions and the tasks performed. The emphasis is on acquiring relevant and reliable evidence on which to base recommendation for changes in specific situations and on developing more general theories, concepts, guidelines and procedures which will contribute to the continually developing expertise available from ergonomics.

 

Back

Read 17799 times Last modified on Thursday, 13 October 2011 20:29

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Ergonomics References

Abeysekera, JDA, H Shahnavaz, and LJ Chapman. 1990. Ergonomics in developing countries. In Advances in Industrial Ergonomics and Safety, edited by B Das. London: Taylor & Francis.

Ahonen, M, M Launis, and T Kuorinka. 1989. Ergonomic Workplace Analysis. Helsinki: Finnish Institute of Occupational Health.

Alvares, C. 1980. Homo Faber: Technology and Culture in India, China and the West from 1500 to Present Day. The Hague: Martinus Nijhoff.

Amalberti, R. 1991. Savoir-faire de l’opérateur: aspects théoriques et pratiques en ergonomie. In Modèle en analyse du travail, edited by R Amalberti, M de Montmollin, and J Thereau. Liège: Mardaga.

Amalberti, R, M Bataille, G Deblon, A Guengant, JM Paquay, C Valot, and JP Menu. 1989. Développement d’aides intelligentes au pilotage: Formalisation psychologique et informatique d’un modèle de comportement du pologage de combat engagé en mission de pènètration. Paris: Rapport CERMA.

Åstrand, I. 1960. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand 49 Suppl. 169:1-92.

Bainbridge, L. 1981. Le contrôleur de processus. B Psychol XXXIV:813-832.

—. 1986. Asking questions and accessing knowledge. Future Comput Sys 1:143-149.

Baitsch, C. 1985. Kompetenzentwicklung und partizipative Arbeitsgestaltung. Bern: Huber.

Banks, MH and RL Miller. 1984. Reliability and convergent validity of the job component inventory. J Occup Psychol 57:181-184.

Baranson, J. 1969. Industrial Technology for Developing Economies. New York: Praeger.

Bartenwerfer, H. 1970. Psychische Beanspruchung und Erdmüdung. In Handbuch der Psychologie, edited by A Mayer and B Herwig. Göttingen: Hogrefe.

Bartlem, CS and E Locke. 1981. The Coch and French study: A critique and reinterpretation. Hum Relat 34:555-566.

Blumberg, M. 1988. Towards a new theory of job design. In Ergonomics of Hybrid Automated Systems, edited by W Karwowski, HR Parsaei, and MR Wilhelm. Amsterdam: Elsevier.

Bourdon, F and A Weill Fassina. 1994. Réseau et processus de coopération dans la gestion du trafic ferroviaire. Travail Hum. Numéro spécial consacré au travail collectif.

Brehmer, B. 1990. Towards a taxonomy for microworlds. In Taxonomy for an Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Brown DA and R Mitchell. 1986. The Pocket Ergonomist. Sydney: Group Occupational Health Centre.

Bruder. 1993. Entwicklung eines wissensbusierten Systems zur belastungsanalytisch unterscheidbaren Erholungszeit. Düsseldorf: VDI-Verlag.

Caverni, JP. 1988. La verbalisation comme source d’observables pour l’étude du fonctionnnement cognitif. In Psychologie cognitive: Modèles et méthodes, edited by JP
Caverni, C Bastien, P Mendelson, and G Tiberghien. Grenoble: Presses Univ. de Grenoble.

Campion, MA. 1988. Interdisciplinary approaches to job design: A constructive replication with extensions. J Appl Psychol 73:467-481.

Campion, MA and PW Thayer. 1985. Development and field evaluation of an inter-disciplinary measure of job design. J Appl Psychol 70:29-43.

Carter, RC and RJ Biersner. 1987. Job requirements derived from the Position Analysis Questionnaire and validity using military aptitude test scores. J Occup Psychol 60:311-321.

Chaffin, DB. 1969. A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2:429-441.

Chaffin, DB and G Andersson. 1984. Occupational Biomechanics. New York: Wiley.

Chapanis, A. 1975. Ethnic Variables in Human Factors Engineering. Baltimore: Johns Hopkins University.

Coch, L and JRP French. 1948. Overcoming resistance to change. Hum Relat 1:512-532.

Corlett, EN and RP Bishop. 1976. A technique for assessing postural discomfort. Ergonomics 19:175-182.

Corlett, N. 1988. The investigation and evaluation of work and workplaces. Ergonomics 31:727-734.

Costa, G, G Cesana, K Kogi, and A Wedderburn. 1990. Shiftwork: health, sleep and performance. Frankfurt: Peter Lang.

Cotton, JL, DA Vollrath, KL Froggatt, ML Lengnick-Hall, and KR Jennings. 1988. Employee participation: Diverse forms and different outcomes. Acad Manage Rev 13:8-22.

Cushman, WH and DJ Rosenberg. 1991. Human Factors in Product Design. Amsterdam: Elsevier.

Dachler, HP and B Wilpert. 1978. Conceptual dimensions and boundaries of participation in organizations: A critical evaluation. Adm Sci Q 23:1-39.

Daftuar, CN. 1975. The role of human factors in underdeveloped countries, with special reference to India. In Ethnic Variable in Human Factor Engineering, edited by Chapanis. Baltimore: Johns Hopkins University.

Das, B and RM Grady. 1983a. Industrial workplace layout design. An application of engineering anthropometry. Ergonomics 26:433-447.

—. 1983b. The normal working area in the horizontal plane. A comparative study between Farley’s and Squire’s concepts. Ergonomics 26:449-459.

Deci, EL. 1975. Intrinsic Motivation. New York: Plenum Press.

Decortis, F and PC Cacciabue. 1990. Modèlisation cognitive et analyse de l’activité. In Modèles et pratiques de l’analyse du travail, edited by R Amalberti, M Montmollin, and J Theureau. Brussels: Mardaga.

DeGreve, TB and MM Ayoub. 1987. A workplace design expert system. Int J Ind Erg 2:37-48.

De Keyser, V. 1986. De l’évolution des métiers. In Traité de psychologie du travail, edited by C Levy- Leboyer and JC Sperandio. Paris: Presses Universitaires de France.

—. 1992. Man within the Production Line. Proceedings of the Fourth Brite-EuRam Conference, 25-27 May, Séville, Spain. Brussels: EEC.

De Keyser, V and A Housiaux. 1989. The Nature of Human Expertise. Rapport Intermédiaire Politique Scientifique. Liège: Université de Liège.

De Keyser, V and AS Nyssen. 1993. Les erreurs humaines en anesthésie. Travail Hum 56:243-266.

De Lisi, PS. 1990. Lesson from the steel axe: Culture, technology and organizational change. Sloan Manage Rev 32:83-93.

Dillon, A. 1992. Reading from paper versus screen: A critical review of the empirical literature. Ergonomics 35:1297-1326.

Dinges, DF. 1992. Probing the limits of functional capacity: The effects of sleep loss on short-duration tasks. In Sleep, Arousal, and Performance, edited by RJ Broughton and RD Ogilvie. Boston: Birkhäuser.

Drury, CG. 1987. A biomechanical evaluation of the repetitive motion injury potential of industrial jobs. Sem Occup Med 2:41-49.

Edholm, OG. 1966. The assessment of habitual activity. In Physical Activity in Health and Disease, edited by K Evang and K Lange-Andersen. Oslo: Universitetterlaget.

Eilers, K, F Nachreiner, and K Hänicke. 1986. Entwicklung und Überprüfung einer Skala zur Erfassung subjektiv erlebter Anstrengung. Zeitschrift für Arbeitswissenschaft 40:215-224.

Elias, R. 1978. A medicobiological approach to workload. Note No. 1118-9178 in Cahiers De Notes Documentaires—Sécurité Et Hygiène Du Travail. Paris: INRS.

Elzinga, A and A Jamison. 1981. Cultural Components in the Scientific Attitude to Nature: Eastern and Western Mode. Discussion paper No. 146. Lund: Univ. of Lund, Research Policy Institute.

Emery, FE. 1959. Characteristics of Socio-Technical Systems. Document No. 527. London: Tavistock.

Empson, J. 1993. Sleep and Dreaming. New York: Harvester Wheatsheaf.

Ericson, KA and HA Simon. 1984. Protocol Analysis: Verbal Reports As Data. Cambridge, Mass.: MIT Press.

European Committee for Standardization (CEN). 1990. Ergonomic Principles of the Design of Work Systems. EEC Council Directive 90/269/EEC, The Minimum Health and Safety Requirements for the Manual Handling of Loads. Brussels: CEN.

—. 1991. CEN Catalogue 1991: Catalogue of European Standards. Brussels: CEN.

—. 1994. Safety of Machinery: Ergonomic Design Principles. Part 1: Terminology and General Principles. Brussels: CEN.

Fadier, E. 1990. Fiabilité humaine: méthodes d’analyse et domaines d’application. In Les facteurs humains de la fiabilité dans les systèmes complexes, edited by J Leplat and G De Terssac. Marseilles: Octares.

Falzon, P. 1991. Cooperative dialogues. In Distributed Decision Making. Cognitive Models for Cooperative Works, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Faverge, JM. 1972. L’analyse du travail. In Traité de psychologie appliqueé, edited by M Reuchlin. Paris: Presses Universitaires de France.

Fisher, S. 1986. Stress and Strategy. London: Erlbaum.

Flanagan, JL. 1954. The critical incident technique. Psychol Bull 51:327-358.

Fleishman, EA and MK Quaintance. 1984. Toxonomies of Human Performance: The Description of Human Tasks. New York: Academic Press.

Flügel, B, H Greil, and K Sommer. 1986. Anthropologischer Atlas. Grundlagen und Daten. Deutsche Demokratische Republik. Berlin: Verlag tribüne.

Folkard, S and T Akerstedt. 1992. A three-process model of the regulation of alertness sleepiness. In Sleep, Arousal and Performance, edited by RJ Broughton and BD Ogilvie. Boston: Birkhäuser.

Folkard, S and TH Monk. 1985.  Hours of work: Temporal factors in work scheduling . Chichester: Wiley.

Folkard, S, TH Monk, and MC Lobban. 1978. Short and long-term adjustment of circadian rhythms in “permanent” night nurses. Ergonomics 21:785-799.

Folkard, S, P Totterdell, D Minors and J Waterhouse. 1993. Dissecting circadian performance rhythms: Implications for shiftwork.  Ergonomics  36(1-3):283-88.

Fröberg, JE. 1985. Sleep deprivation and prolonged working hours. In Hours of Work: Temporal Factors in Work Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

Fuglesang, A. 1982. About Understanding Ideas and Observations on Cross-Cultural
Communication. Uppsala: Dag Hammarskjöld Foundation.

Geertz, C. 1973. The Interpretation of Cultures. New York: Basic Books.

Gilad, I. 1993. Methodology for functional ergonomic evaluation of repetitive operations. In Advances in Industrial Egonomics and Safety, edited by Nielsen and Jorgensen. London: Taylor & Francis.

Gilad, I and E Messer. 1992. Biomechanics considerations and ergonomic design in diamond polishing. In Advances in Industrial Ergonomics and Safety, edited by Kumar. London: Taylor & Francis.

Glenn, ES and CG Glenn. 1981. Man and Mankind: Conflict and Communication between Cultures. Norwood, NJ: Ablex.

Gopher, D and E Donchin. 1986. Workload—An examination of the concept. In Handbook of Perception and Human Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Gould, JD. 1988. How to design usable systems. In Handbook of Human Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Gould, JD and C Lewis. 1985. Designing for usability: Key principles and what designers think. Commun ACM 28:300-311.

Gould, JD, SJ Boies, S Levy, JT Richards, and J Schoonard. 1987. The 1984 Olympic message system: A test of behavioral principles of the design. Commun ACM 30:758-769.

Gowler, D and K Legge. 1978. Participation in context: Towards a synthesis of the theory and practice of organizational change, part I. J Manage Stud 16:150-175.

Grady, JK and J de Vries. 1994. RAM: The Rehabilitation Technology Acceptance Model as a Base for an Integral Product Evaluation. Instituut voor Research, Ontwikkeling en Nascholing in de Gezondheidszorg (IRON) and University Twente, Department of Biomedical Engineering.

Grandjean, E. 1988. Fitting the Task to the Man. London: Taylor & Francis.

Grant, S and T Mayes. 1991. Cognitive task analysis? In Human-Computer Interactionand Complex Systems, edited by GS Weir and J Alty. London: Academic Press.

Greenbaum, J and M Kyng. 1991. Design At Work: Cooperative Design of Computer Systems. Hillsdale, NJ: Lawrence Erlbaum.

Greuter, MA and JA Algera. 1989. Criterion development and job analysis. In Assessment and Selection in Organizations, edited by P Herlot. Chichester: Wiley.

Grote, G. 1994. A participatory approach to the complementary design of highly automated work systems. In Human Factors in Organizational Design and Management, edited by G Bradley and HW Hendrick. Amsterdam: Elsevier.

Guelaud, F, M-N Beauchesne, J Gautrat, and G Roustang. 1977. Pour une analyse des conditions du travail ouvrier dans l’entreprise. Paris: A. Colin.

Guillerm, R, E Radziszewski, and A Reinberg. 1975. Circadian rhythms of six healthy young men over a 4-week period with night-work every 48 h and a 2 per cent Co2 atmosphere. In Experimental Studies of Shiftwork, edited by P Colquhoun, S Folkard, P Knauth, and J Rutenfranz. Opladen: Westdeutscher Werlag.

Hacker, W. 1986. Arbeitspsychologie. In Schriften zur Arbeitpsychologie, edited by E Ulich. Bern: Huber.

Hacker, W and P Richter. 1994. Psychische Fehlbeanspruchung. Ermüdung, Monotonie, Sättigung, Stress. Heidelberg: Springer.

Hackman, JR and GR Oldham. 1975. Development of the job diagnostic survey. J Appl Psychol 60:159-170.

Hancock, PA and MH Chignell. 1986. Toward a Theory of Mental Work Load: Stress and Adaptability in Human-Machine Systems. Proceedings of the IEEE International Conference On Systems, Man, and Cybernetics. New York: IEEE Society.

Hancock, PA and N Meshkati. 1988. Human Mental Workload. Amsterdam: North Holland.

Hanna, A (ed.). 1990. Annual Design Review ID. 37 (4).

Härmä, M. 1993. Individual differences in tolerance to shiftwork: a review.  Ergonomics  36:101-109.

Hart, S and LE Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Human Mental Work Load, edited by PA Hancock and N Meshkati. Amsterdam: North Holland.

Hirschheim, R and HK Klein. 1989. Four paradigms of information systems development. Commun ACM 32:1199-1216.

Hoc, JM. 1989. Cognitive approaches to process control. In Advances in Cognitive Science, edited by G Tiberghein. Chichester: Horwood.

Hofstede, G. 1980. Culture’s Consequences: International Differences in Work-Related Values. Beverly Hills, Calif.: Sage Univ. Press.

—. 1983. The cultural relativity of organizational practices and theories. J Int Stud :75-89.

Hornby, P and C Clegg. 1992. User participation in context: A case study in a UK bank. Behav Inf Technol 11:293-307.

Hosni, DE. 1988. The transfer of microelectronics technology to the third world. Tech Manage Pub TM 1:391-3997.

Hsu, S-H and Y Peng. 1993. Control/display relationship of the four-burner stove: A reexamination. Hum Factors 35:745-749.

International Labour Organization (ILO). 1990.The hours we work: new work schedules in policy and practice. Cond Wor Dig 9.

International Organization for Standardization (ISO). 1980. Draft Proposal for Core List of Anthropometric Measurements ISO/TC 159/SC 3 N 28 DP 7250. Geneva: ISO.

—. 1996. ISO/DIS 7250 Basic Human Body Measurements for Technological Design. Geneva: ISO.
Japan Industrial Design Promotion Organization (JIDPO). 1990. Good Design Products 1989. Tokyo: JIDPO.

Jastrzebowski, W. 1857. Rys ergonomiji czyli Nauki o Pracy, opartej naprawdach poczerpnietych z Nauki Przyrody. Przyoda i Przemysl 29:227-231.

Jeanneret, PR. 1980. Equitable job evaluation and classification with the Position Analysis Questionnaire. Compens Rev 1:32-42.

Jürgens, HW, IA Aune, and U Pieper. 1990. International data on anthropometry. Occupational Safety and Health Series. Geneva: ILO.

Kadefors, R. 1993. A model for assessment and design of workplaces for manual welding. In The Ergonomics of Manual Work, edited by WS Marras, W Karwowski, and L Pacholski. London: Taylor & Francis.

Kahneman, D. 1973. Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.

Karhu, O, P Kansi, and I Kuorinka. 1977. Correcting working postures in industry: A practical method for analysis. Appl Ergon 8:199-201.

Karhu, O, R Harkonen, P Sorvali, and P Vepsalainen. 1981. Observing working postures in industry: Examples of OWAS application. Appl Ergon 12:13-17.

Kedia, BL and RS Bhagat. 1988. Cultural constraints on transfer of technology across nations: Implications for research in international and comparative management. Acad Manage Rev 13:559-571.

Keesing, RM. 1974. Theories of culture. Annu Rev Anthropol 3:73-79.

Kepenne, P. 1984. La charge de travail dans une unité de soins de médecine. Mémoire. Liège: Université de Liège.

Kerguelen, A. 1986. L’observation systématique en ergonomie: Élaboration d’un logiciel d’aide au recueil et à l’analyse des données. Diploma in Ergonomics Thesis, Conservatoire National des Arts et Métiers, Paris.

Ketchum, L. 1984. Sociotechnical design in a third world country: The railway maintenance depot at Sennar in Sudan. Hum Relat 37:135-154.

Keyserling, WM. 1986. A computer-aided system to evaluate postural stress in the workplace. Am Ind Hyg Assoc J 47:641-649.

Kingsley, PR. 1983. Technological development: Issues, roles and orientation for social psychology. In Social Psychology and Developing Countries, edited by Blacker. New York: Wiley.

Kinney, JS and BM Huey. 1990. Application Principles for Multicolored Displays. Washington, DC: National Academy Press.

Kivi, P and M Mattila. 1991. Analysis and improvement of work postures in building industry: Application of the computerized OWAS method. Appl Ergon 22:43-48.

Knauth, P, W Rohmert and J Rutenfranz. 1979. Systemic selection of shift plans for continuous production with the aid of work-physiological criteria. Appl Ergon 10(1):9-15.

Knauth, P. and J Rutenfranz. 1981. Duration of sleep related to the type of shift work, in  Night and shiftwork: biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford Pergamon Press.

Kogi, K. 1982. Sleep problems in night and shift work. II. Shiftwork: Its practice and improvement . J Hum Ergol:217-231.

—. 1981. Comparison of resting conditions between various shift rotation systems for industrial workers, in  Night and shift work. Biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford: Pergamon.

—. 1985. Introduction to the problems of shiftwork. In Hours of Work: Temporal Factors in Work-Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

—. 1991. Job content and working time: The scope for joint change. Ergonomics 34:757-773.

Kogi, K and JE Thurman. 1993. Trends in approaches to night and shiftwork and new international standards. Ergonomics 36:3-13.

Köhler, C, M von Behr, H Hirsch-Kreinsen, B Lutz, C Nuber, and R Schultz-Wild. 1989. Alternativen der Gestaltung von Arbeits- und Personalstrukturen bei rechnerintegrierter Fertigung. In Strategische Optionen der Organisations- und Personalentwicklung bei CIM Forschungsbericht KfK-PFT 148, edited by Institut für Sozialwissenschaftliche Forschung. Karlsruhe: Projektträgerschaft Fertigungstechnik.

Koller, M. 1983. Health risks related to shift work. An example of time-contingent effects of long-term stress. Int Arch Occ Env Health 53:59-75.

Konz, S. 1990. Workstation organization and design. Ergonomics 32:795-811.

Kroeber, AL and C Kluckhohn. 1952. Culture, a critical review of concepts and definitions. In Papers of the Peabody Museum. Boston: Harvard Univ.

Kroemer, KHE. 1993. Operation of ternary chorded keys. Int J Hum Comput Interact 5:267-288.

—. 1994a. Locating the computer screen: How high, how far? Ergonomics in Design (January):40.

—. 1994b. Alternative keyboards. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

—. 1995. Ergonomics. In Fundamentals of Industrial Hygiene, edited by BA Ploog. Chicago: National Safety Council.

Kroemer, KHE, HB Kroemer, and KE Kroemer-Elbert. 1994. Ergonomics: How to Design for Ease and Efficiency. Englewood Cliffs, NJ: Prentice Hall.

Kwon, KS, SY Lee, and BH Ahn. 1993. An approach to fuzzy expert systems for product colour design. In The Ergonomics of Manual Work, edited by Maras, Karwowski, Smith, and Pacholski. London: Taylor & Francis.

Lacoste, M. 1983. Des situations de parole aux activités interprétives. Psychol Franç 28:231-238.

Landau, K and W Rohmert. 1981. AET-A New Job Analysis Method. Detroit, Mich.: AIIE Annual Conference.

Laurig, W. 1970. Elektromyographie als arbeitswissenschaftliche Untersuchungsmethode zur Beurteilung von statischer Muskelarbeit. Berlin: Beuth.

—. 1974. Beurteilung einseitig dynamischer Muskelarbeit. Berlin: Beuth.

—. 1981. Belastung, Beanspruchung und Erholungszeit bei energetisch-muskulärer Arbeit—Literaturexpertise. In Forschungsbericht Nr. 272 der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund. Bremerhaven: Wirtschaftsverlag NW.

—. 1992. Grundzüge der Ergonomie. Erkenntnisse und Prinzipien. Berlin, Köln: Beuth Verlag.

Laurig, W and V Rombach. 1989. Expert systems in ergonomics: Requirements and an approach. Ergonomics 32:795-811.

Leach, ER. 1965. Culture and social cohesion: An anthropologist’s view. In Science and Culture, edited by Holten. Boston: Houghton Mifflin.

Leana, CR, EA Locke, and DM Schweiger. 1990. Fact and fiction in analyzing research on participative decision making: A critique of Cotton, Vollrath, Froggatt, Lengnick-Hall, and Jennings. Acad Manage Rev 15:137-146.

Lewin, K. 1951. Field Theory in Social Science. New York: Harper.

Liker, JK, M Nagamachi, and YR Lifshitz. 1988. A Comparitive Analysis of Participatory Programs in US and Japan Manufacturing Plants. Ann Arbor, Mich.: Univ. of Michigan, Center for Ergonomics, Industrial and Operational Engineering.

Lillrank, B and N Kano. 1989. Continuous Improvement: Quality Control Circles in Japanese Industries. Ann Arbor, Mich.: Univ. of Michigan, Center for Japanese Studies.

Locke, EA and DM Schweiger. 1979. Participation in decision making: One more look. In Research in Organizational Behavior, edited by BM Staw. Greenwich, Conn.: JAI Press.

Louhevaara, V, T Hakola, and H Ollila. 1990. Physical work and strain involved in manual sorting of postal parcels. Ergonomics 33:1115-1130.

Luczak, H. 1982.  Belastung, Beanspruchung und Erholungszeit bei informatorisch- mentaler Arbeit — Literaturexpertise. Forschungsbericht der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund . Bremerhaven: Wirtschaftsverlag NW.

—. 1983. Ermüdung. In Praktische Arbeitsphysiologie, edited by W Rohmert and J Rutenfranz. Stuttgart: Georg Thieme Verlag.

—. 1993. Arbeitswissenschaft. Berlin: Springer Verlag.

Majchrzak, A. 1988. The Human Side of Factory Automation. San Francisco: Jossey-Bass.

Martin, T, J Kivinen, JE Rijnsdorp, MG Rodd, and WB Rouse. 1991. Appropriate automation-integrating technical, human, organization, economic and cultural factors. Automatica 27:901-917.

Matsumoto, K and M Harada. 1994. The effect of night-time naps on recovery from fatigue following night work. Ergonomics 37:899-907.

Matthews, R. 1982. Divergent conditions in the technological development of India and Japan. Lund Letters on Technology and Culture, No. 4. Lund: Univ. of Lund, Research Policy Institute.

McCormick, EJ. 1979. Job Analysis: Methods and Applications. New York: American Management Association.

McIntosh, DJ. 1994. Integration of VDUs into the US office work environment. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

McWhinney. 1990. The Power of Myth in Planning and Organizational Change, 1989 IEEE Technics, Culture and Consequences. Torrence, Calif.: IEEE Los Angeles Council.

Meshkati, N. 1989. An etiological investigation of micro and macroergonomics factors in the Bhopal disaster: Lessons for industries of both industrialized and developing countries. Int J Ind Erg 4:161-175.

Minors, DS and JM Waterhouse. 1981. Anchor sleep as a synchronizer of rhythms on abnormal routines.  Int J Chronobiology : 165-188.

Mital, A and W Karwowski. 1991. Advances in Human Factors/Ergonomics. Amsterdam: Elsevier.

Monk, TH. 1991.  Sleep, Sleepiness and Performance . Chichester: Wiley.

Moray, N, PM Sanderson, and K Vincente. 1989. Cognitive task analysis for a team in a complex work domain: A case study. Proceedings of the Second European Meeting On Cognitive Science Approaches to Process Control, Siena, Italy.

Morgan, CT, A Chapanis, JS III Cork, and MW Lund. 1963. Human Engineering Guide to Equipment Design. New York: McGraw-Hill.

Mossholder, KW and RD Arvey. 1984. Synthetic validity: A conceptual and comparative review. J Appl Psychol 69:322-333.

Mumford, E and Henshall. 1979. A Participative Approach to Computer Systems Design. London: Associated Business Press.

Nagamachi, M. 1992. Pleasantness and Kansei engineering. In Measurement Standards. Taejon, Korea: Korean Research Institute of Standards and Science Publishing.

National Institute for Occupational Safety and Health (NIOSH). 1981. Work Practices Guide for Manual Lifting. Cincinnati, Ohio: US Department of Health and Human Services.

—. 1990. OSHA Instruction CPL 2.85: Directorate of Compliance Programs: Appendix C, Guidelines Auggested By NIOSH for Videotape Evaluation of Work Station for Upper Extremities Cumulative Trauma Disorders. Washington, DC: US Department of Health and Human Services.

Navarro, C. 1990. Functional communication and problem-solving in a bus traffic-regulation task. Psychol Rep 67:403-409.

Negandhi, ART. 1975. Modern Organizational Behaviour. Kent: Kent Univ..

Nisbett, RE and TD De Camp Wilson. 1977. Telling more than we know. Psychol Rev 84:231-259.

Norman, DA. 1993. Things That Make Us Smart. Reading: Addison-Wesley.

Noro, K and AS Imada. 1991. Participatory Ergonomics. London: Taylor & Francis.

O’Donnell, RD and FT Eggemeier. 1986. Work load assessment methodology. In Handbook of Perception and Human Performance. Cognitive Processes and Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Pagels, HR. 1984. Computer culture: The scientific, intellectual and social impact of the computer. Ann NY Acad Sci :426.

Persson, J and Å Kilbom. 1983. VIRA—En Enkel Videofilmteknik För Registrering OchAnalys Av Arbetsställningar Och—Rörelser. Solna, Sweden: Undersökningsrapport,Arbetraskyddsstyrelsen.

Pham, DT and HH Onder. 1992. A knowledge-based system for optimizing workplace layouts using a genetic algorithm. Ergonomics 35:1479-1487.

Pheasant, S. 1986. Bodyspace, Anthropometry, Ergonomics and Design. London: Taylor & Francis.

Poole, CJM. 1993. Seamstress’ finger. Brit J Ind Med 50:668-669.

Putz-Anderson, V. 1988. Cumulative Trauma Disorders. A Manual for Musculoskeletal Diseases of the Upper Limbs. London: Taylor & Francis.

Rasmussen, J. 1983. Skills, rules, and knowledge: Sinds, signs, symbols and other distinctions in human performance models. IEEE T Syst Man Cyb 13:257-266.

—. 1986. A framework for cognitive task analysis in systems design. In Intelligent Decision Support in Process Environments, edited by E Hollnagel, G Mancini, and DD Woods. Berlin: Springer.

Rasmussen, J, A Pejtersen, and K Schmidts. 1990. In Taxonomy for Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Reason, J. 1989. Human Error. Cambridge: CUP.

Rebiffé, R, O Zayana, and C Tarrière. 1969. Détermination des zones optimales pour l’emplacement des commandes manuelles dans l’espace de travail. Ergonomics 12:913-924.

Régie nationale des usines Renault (RNUR). 1976. Les profils de poste: Methode d’analyse des conditions de travail. Paris: Masson-Sirtes.

Rogalski, J. 1991. Distributed decision making in emergency management: Using a method as a framework for analysing cooperative work and as a decision aid. In Distributed Decision Making. Cognitive Models for Cooperative Work, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Rohmert, W. 1962. Untersuchungen über Muskelermüdung und Arbeitsgestaltung. Bern: Beuth-Vertrieb.

—. 1973. Problems in determining rest allowances. Part I: Use of modern methods to evaluate stress and strain in static muscular work. Appl Ergon 4(2):91-95.

—. 1984. Das Belastungs-Beanspruchungs-Konzept. Z Arb wiss 38:193-200.

Rohmert, W and K Landau. 1985. A New Technique of Job Analysis. London: Taylor & Francis.

Rolland, C. 1986. Introduction à la conception des systèmes d’information et panorama des méthodes disponibles. Génie Logiciel 4:6-11.

Roth, EM and DD Woods. 1988. Aiding human performance. I. Cognitive analysis. Travail Hum 51:39-54.

Rudolph, E, E Schönfelder, and W Hacker. 1987. Tätigkeitsbewertungssystem für geistige arbeit mit und ohne Rechnerunterstützung (TBS-GA). Berlin: Psychodiagnostisches Zentrum der Humboldt-Universität.

Rutenfranz, J. 1982. Occupational health measures for night- and shiftworkers. II. Shiftwork: Its practice and improvement. J Hum Ergol:67-86.

Rutenfranz, J, J Ilmarinen, F Klimmer, and H Kylian. 1990. Work load and demanded physical performance capacity under different industrial working conditions. In Fitness for Aged, Disabled, and Industrial Workers, edited by M Kaneko. Champaign, Ill.: Human Kinetics Books.

Rutenfranz, J, P Knauth, and D Angersbach. 1981. Shift work research issues. In  Biological Rhythms, Sleep and Shift Work , edited by LC Johnson, DI Tepas, WP Colquhoun, and MJ Colligan. New York: Spectrum Publications Medical and Scientific Books.

Saito, Y. and K Matsumoto. 1988. Variations of physiological functions and psychological measures and their relationship on delayed shift of sleeping time.  Jap J Ind Health  30:196-205.

Sakai, K, A Watanabe, N Onishi, H Shindo, K Kimotsuki, H Saito, and K Kogl. 1984. Conditions of night naps effective to facilitate recovery from night work fatigue.  J Sci  Lab 60: 451-478.

Savage, CM and D Appleton. 1988. CIM and Fifth Generation Management. Dearborn: CASA/SME Technical Council.

Savoyant, A and J Leplat. 1983. Statut et fonction des communications dans l’activité des équipes de travail. Psychol Franç 28:247-253.

Scarbrough, H and JM Corbett. 1992. Technology and Organization. London: Routledge.

Schmidtke, H. 1965. Die Ermüdung. Bern: Huber.

—. 1971. Untersuchungen über den Erholunggszeitbedarf bei verschiedenen Arten gewerblicher Tätigkeit. Berlin: Beuth-Vertrieb.

Sen, RN. 1984. Application of ergonomics to industrially developing countries. Ergonomics 27:1021-1032.

Sergean, R. 1971. Managing Shiftwork. London: Gower Press.

Sethi, AA, DHJ Caro, and RS Schuler. 1987. Strategic Management of Technostress in an Information Society. Lewiston: Hogrefe.

Shackel, B. 1986. Ergonomics in design for usability. In People and Computer: Design for Usability, edited by MD Harrison and AF Monk. Cambridge: Cambridge Univ. Press.

Shahnavaz, H. 1991. Transfer of Technology to Industrially Developing Countries and Human Factors Consideration TULEÅ 1991: 22, 23024. Luleå Univ., Luleå, Sweden: Center for Ergonomics of Developing Countries.

Shahnavaz, H, J Abeysekera, and A Johansson. 1993. Solving multi-factorial work-environment problems through participatory ergonomics: Case study: VDT operators. In Ergonomics of Manual Work, edited by E Williams, S Marrs, W Karwowski, JL Smith, and L Pacholski. London: Taylor & Francis.

Shaw, JB and JH Riskind. 1983. Predicting job stress using data from the Position Analysis Questionnaire (PAQ). J Appl Psychol 68:253-261.

Shugaar, A. 1990. Ecodesign: New products for a greener culture. Int Herald Trib, 17.

Sinaiko, WH. 1975. Verbal factors in human engineering: Some cultural and psychological data. In Ethnic Variables in Human Factors Engineering, edited by A Chapanis. Baltimore: Johns Hopkins Univ..

Singleton, WT. 1982. The Body At Work. Cambridge: CUP.

Snyder, HL. 1985a. Image quality: Measures and visual performance. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

—. 1985b. The visual system: Capabilities and limitations. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

Solomon, CM. 1989. The corporate response to work force diversity. Pers J 68:42-53.

Sparke, P. 1987. Modern Japanese Design. New York: EP Dutton.

Sperandio, JC. 1972. Charge de travail et régulation des processus opératoires. Travail Hum 35:85-98.

Sperling, L, S Dahlman, L Wikström, A Kilbom, and R Kadefors. 1993. A cube model for the classification of work with hand tools and the formulation of functional requirements. Appl Ergon 34:203-211.

Spinas, P. 1989. User oriented software development and dialogue design. In Work With Computers: Organizational, Management, Stress and Health Aspects, edited by MJ Smith and G Salvendy. Amsterdam: Elsevier.

Staramler, JH. 1993. The Dictionary of Human Factors Ergonomics. Boca Raton: CRC Press.

Strohm, O, JK Kuark, and A Schilling. 1993. Integrierte Produktion: Arbeitspsychologische Konzepte und empirische Befunde, Schriftenreihe Mensch, Technik, Organisation. In CIM—Herausforderung an Mensch, Technik, Organisation, edited by G Cyranek and E Ulich. Stuttgart, Zürich: Verlag der Fachvereine.

Strohm, O, P Troxler and E Ulich. 1994. Vorschlag für die Restrukturierung eines
Produktionsbetriebes. Zürich: Institut für Arbietspsychologie der ETH.

Sullivan, LP. 1986. Quality function deployment: A system to assure that customer needs drive the product design and production process. Quality Progr :39-50.

Sundin, A, J Laring, J Bäck, G Nengtsson, and R Kadefors. 1994. An Ambulatory Workplace for Manual Welding: Productivity through Ergonomics. Manuscript. Göteborg: Lindholmen Development.

Tardieu, H, D Nanci, and D Pascot. 1985. Conception d’un système d’information. Paris: Editions d’Organisation.

Teiger, C, A Laville, and J Durafourg. 1974. Taches répétitives sous contrainte de temps et charge de travail. Rapport no 39. Laboratoire de physiologie du travail et d’ergonomie du CNAM.

Torsvall, L, T Akerstedt, and M. Gillberg. 1981. Age, sleep and irregular workhours: a field study with EEG recording, catecholamine excretion and self-ratings.  Scand J Wor Env Health  7:196-203.

Ulich, E. 1994. Arbeitspsychologie 3. Auflage. Zürich: Verlag der Fachvereine and Schäffer-Poeschel.

Ulich, E, M Rauterberg, T Moll, T Greutmann, and O Strohm. 1991. Task orientation and user-oriented dialogue design. In  Int J Human-Computer Interaction  3:117-144.

United Nations Educational, Scientific and Cultural Organization (UNESCO). 1992. Ergonomics Impact of Science on Society. Vol. 165. London: Taylor & Francis.

Van Daele, A. 1988. L’écran de visualisation ou la communication verbale? Analyse comparative de leur utilisation par des opérateurs de salle de contrôle en sidérurgie. Travail Hum 51(1):65-80.

—. 1992. La réduction de la complexité par les opérateurs dans le contrôle de processus continus. contribution à l’étude du contrôle par anticipation et de ses conditions de mise en œuvre. Liège: Université de Liège.

Van der Beek, AJ, LC Van Gaalen, and MHW Frings-Dresen. 1992. Working postures and activities of lorry drivers: A reliability study of on-site observation and recording on a pocket computer. Appl Ergon 23:331-336.

Vleeschdrager, E. 1986.  Hardness 10: diamonds . Paris.

Volpert, W. 1987. Psychische Regulation von Arbeitstätigkeiten. In Arbeitspsychologie. Enzklopüdie der Psychologie, edited by U Kleinbeck and J Rutenfranz. Göttingen: Hogrefe.

Wagner, R. 1985. Job analysis at ARBED. Ergonomics 28:255-273.

Wagner, JA and RZ Gooding. 1987. Effects of societal trends on participation research. Adm Sci Q 32:241-262.

Wall, TD and JA Lischeron. 1977. Worker Participation: A Critique of the Literature and Some Fresh Evidence. London: McGraw-Hill.

Wang, WM-Y. 1992. Usability Evaluation for Human-Computer Interaction (HCI). Luleå, Sweden: Luleå Univ. of Technology.

Waters, TR, V Putz-Anderson, A Garg, and LJ Fine. 1993. Revised NIOSH equation for the design and evaluation of manual handling tasks. Ergonomics 36:749-776.

Wedderburn, A. 1991. Guidelines for shiftworkers. Bulletin of European Shiftwork Topics (BEST) No. 3. Dublin: European Foundation for the Improvement of Living and Working Conditions.

Welford, AT. 1986. Mental workload as a function of demand, capacity, strategy and skill. Ergonomics 21:151-176.

White, PA. 1988. Knowing more about what we tell: ‘Introspective access’ and causal report accuracy, 10 years later. Brit J Psychol 79:13-45.

Wickens, C. 1992. Engineering Psychology and Human Performance. New York: Harper Collins.

Wickens, CD and YY Yeh. 1983. The dissociation between subjective work load and performance: A multiple resources approach. In Proceedings of the Human Factors Society 27th Annual Meeting. Santa Monica, Calif.: Human Factors Society.

Wieland-Eckelmann, R. 1992. Kognition, Emotion und Psychische Beanspruchung. Göttingen: Hogrefe.

Wikström.L, S Byström, S Dahlman, C Fransson, R Kadefors, Å Kilbom, E Landervik, L Lieberg, L Sperling, and J Öster. 1991. Criterion for Selection and Development of Hand Tools. Stockholm: National Institute of Occupational Health.

Wilkinson, RT. 1964. Effects of up to 60 hours sleep deprivation on different types of work. Ergonomics 7:63-72.

Williams, R. 1976. Keywords: A Vocabulary of Culture and Society. Glasgow: Fontana.

Wilpert, B. 1989. Mitbestimmung. In Arbeits- und Organisationspsychologie. Internationales Handbuch in Schlüsselbegriffen, edited by S Greif, H Holling, and N Nicholson. Munich: Psychologie Verlags Union.

Wilson, JR. 1991. Participation: A framework and foundation for ergonomics. J Occup Psychol 64:67-80.

Wilson, JR and EN Corlett. 1990. Evaluation of Human Work: A Practical Ergonomics Methodology. London: Taylor & Francis.

Wisner, A. 1983. Ergonomics or anthropology: A limited or wide approach to working condition in technology transfer. In Proceedings of the First International Conference On Ergonomics of Developing Countries, edited by Shahnavaz and Babri. Luleå, Sweden: Luleå Univ. of Technology.

Womack, J, T Jones, and D Roos. 1990. The Machine That Changed the World. New York: Macmillan.

Woodson, WE, B Tillman, and P Tillman. 1991. Human Factors Design Handbook. New York: McGraw-Hill.

Zhang, YK and JS Tyler. 1990. The establishment of a modern telephone cable production facility in a developing country. A case study. In International Wire and Cable Symposium Proceedings. Illinois.

Zinchenko, V and V Munipov. 1989. Fundamentals of Ergonomics. Moscow: Progress.