Friday, 25 February 2011 17:12

Radiation Accidents

Rate this item
(3 votes)

Description, Sources, Mechanisms

Apart from the transportation of radioactive materials, there are three settings in which radiation accidents can occur:

  • use of nuclear reactions to produce energy or arms, or for research purposes
  • industrial applications of radiation (gamma radiography, irradiation)
  • research and nuclear medicine (diagnosis or therapy).


Radiation accidents may be classified into two groups on the basis of whether or not there is environmental emission or dispersion of radionuclides; each of these types of accident affects different populations.

The magnitude and duration of the exposure risk for the general population depends on the quantity and the characteristics (half-life, physical and chemical properties) of the radionuclides emitted into the environment (table 1). This type of contamination occurs when there is rupture of the containment barriers at nuclear power plants or industrial or medical sites which separate radioactive materials from the environment. In the absence of environmental emissions, only workers present onsite or handling radioactive equipment or materials are exposed.

Table 1. Typical radionuclides, with their radioactive half-lives



Radiation emitted

Physical half-life*

Biological half-life
after incorporation




10.7 y

65 d




284 d

263 d




30 y

109 d




5.3 y

1.6 y




8 d

7.5 d




24,065 y

50 y




138 d

27 d




29.1 y

18 y




12.3 y

10 d

* y = years; d = days.

Exposure to ionizing radiation may occur through three routes, regardless of whether the target population is composed of workers or the general public: external irradiation, internal irradiation, and contamination of skin and wounds.

External irradiation occurs when individuals are exposed to an extracorporeal radiation source, either point (radiotherapy, irradiators) or diffuse (radioactive clouds and fallout from accidents, figure 1). Irradiation may be local, involving only a portion of the body, or whole body.

Figure 1. Exposure pathways to ionizing radiation after an accidental release of radioactivity in the environment


Internal radiation occurs following incorporation of radioactive substances into the body (figure 1) through either inhalation of airborne radioactive particles (e.g., caesium-137 and iodine-131, present in the Chernobyl cloud) or ingestion of radioactive materials in the food chain (e.g., iodine-131 in milk). Internal irradiation may affect the whole body or only certain organs, depending on the characteristics of the radionuclides: caesium-137 distributes itself homogeneously throughout the body, while iodine-131 and strontium-90 concentrate in the thyroid and the bones, respectively.

Finally, exposure may also occur through direct contact of radioactive materials with skin and wounds.

Accidents involving nuclear power plants

Sites included in this category include power-generating stations, experimental reactors, facilities for the production and processing or reprocessing of nuclear fuel and research laboratories. Military sites include plutonium breeder reactors and reactors located aboard ships and submarines.

Nuclear power plants

The capture of heat energy emitted by atomic fission is the basis for the production of electricity from nuclear energy. Schematically, nuclear power plants can be thought of as comprising: (1) a core, containing the fissile material (for pressurized-water reactors, 80 to 120 tonnes of uranium oxide); (2) heat-transfer equipment incorporating heat-transfer fluids; (3) equipment capable of transforming heat energy into electricity, similar to that found in power plants that are not nuclear.

Strong, sudden power surges capable of causing core meltdown with emission of radioactive products are the primary hazards at these installations. Three accidents involving reactor-core meltdown have occurred: at Three Mile Island (1979, Pennsylvania, United States), Chernobyl (1986, Ukraine), and Fukushima (2011, Japan) [Edited, 2011].

The Chernobyl accident was what is known as a criticality accident—that is, a sudden (within the space of a few seconds) increase in fission leading to a loss of process control. In this case, the reactor core was completely destroyed and massive amounts of radioactive materials were emitted (table 2). The emissions reached a height of 2 km, favouring their dispersion over long distances (for all intents and purposes, the entire Northern hemisphere). The behaviour of the radioactive cloud has proven difficult to analyse, due to meteorological changes during the emission period (figure 2) (IAEA 1991).

Table 2. Comparison of different nuclear accidents


Type of facility


Total emitted
radioactivity (GBq)

of emission

Main emitted

dose (hSv)

Khyshtym 1957

Storage of high-
activity fission

Chemical explosion





Windscale 1957




23 hours

Iodine-131, polonium-210,


Three Mile Island

PWR industrial

Coolant failure





Chernobyl 1986

RBMK industrial 



More than 10 days

Iodine-131, iodine-132, 
caesium-137, caesium-134, 
strontium-89, strontium-90


Fukushima 2011


The final report of the Fukushima Assessment Task Force will be submitted in 2013.






Source: UNSCEAR 1993.

Figure 2. Trajectory of emissions from the Chernobyl accident, 26 April-6 May 1986


Contamination maps were drawn up on the basis of environmental measurements of caesium-137, one of the main radioactive emission products (table 1 and table 2). Areas of Ukraine, Byelorussia (Belarus) and Russia were heavily contaminated, while fallout in the rest of Europe was less significant (figure  3 and figure 4 (UNSCEAR 1988). Table 3 presents data on the area of the contaminated zones, characteristics of the exposed populations and routes of exposure.

FIgure 3. Caesium-137 deposition in Byelorussia, Russia and Ukraine following the Chernobyl accident.


Figure 4. Caesium-137 fallout (kBq/km2) in Europe following the Chernobyl accident


Table 3. Area of contaminated zones, types of populations exposed and modes of exposure in Ukraine, Byelorussia and Russia following the Chernobyl accident

Type of population

Surface area ( km2 )

Population size (000)

Main modes of exposure

Occupationally exposed populations:

Employees onsite at
the time of the

Clean-up and relief





External irradiation,
inhalation, skin
from the damaged
reactor, fragments
of the reactor
dispersed throughout
the site, radioactive
vapours and dusts

External irradiation,
inhalation, skin

General public:

Evacuated from the
prohibited zone in
the first few days

Residents of 
( Mbq/m2 ) - ( Ci/km2 )
>1.5              (>40)
0.6–1.5      (15–40)
0.2–0.6        (5–15)
0.04–0.2        (1–5)
Residents of other zones <0.04mbq/m2




External irradiation by
the cloud, inhalation
of radioactive
elements present
in the cloud

External radiation from
fallout, ingestion of

External irradiation
by fallout, ingestion
of contaminated

* Individuals participating in clean-up within 30 km of the site. These include fire-fighters, military personnel, technicians and engineers who intervened during the first weeks, as well as physicians and researchers active at a later date.

** Caesium-137 contamination.

Source: UNSCEAR 1988; IAEA 1991.


The Three Mile Island accident is classified as a thermal accident with no reactor runaway, and was the result of a reactor-core coolant failure lasting several hours. The containment shell ensured that only a limited quantity of radioactive material was emitted into the environment, despite the partial destruction of the reactor core (table 2). Although no evacuation order was issued, 200,000 residents voluntarily evacuated the area.

Finally, an accident involving a plutonium production reactor occurred on the west coast of England in 1957 (Windscale, table 2). This accident was caused by a fire in the reactor core and resulted in environmental emissions from a chimney 120 metres high.

Fuel-processing facilities

Fuel production facilities are located “upstream” from nuclear reactors and are the site of ore extraction and the physical and chemical transformation of uranium into fissile material suitable for use in reactors (figure 5). The primary accident hazards present in these facilities are chemical in nature and related to the presence of uranium hexafluoride (UF6), a gaseous uranium compound which may decompose upon contact with air to produce hydrofluoric acid (HF), a very corrosive gas.

Figure 5. Nuclear fuel processing cycle.


“Downstream” facilities include fuel storage and reprocessing plants. Four criticality accidents have occurred during chemical reprocessing of enriched uranium or plutonium (Rodrigues 1987). In contrast to accidents occurring at nuclear power plants, these accidents involved small quantities of radioactive materials—tens of kilograms at most—and resulted in negligible mechanical effects and no environmental emission of radioactivity. Exposure was limited to very high dose, very short term (of the order of minutes) external gamma ray and neutron irradiation of workers.

In 1957, a tank containing highly radioactive waste exploded at Russia’s first military-grade plutonium production facility, located in Khyshtym, in the south Ural Mountains. Over 16,000 km2 were contaminated and 740 PBq (20 MCi) were emitted into the atmosphere (table  2 and table 4).

Table 4. Surface area of the contaminated zones and size of population exposed after the Khyshtym accident (Urals 1957), by strontium-90 contamination

Contamination ( kBq/m2 )

( Ci/km2 )

Area ( km2 )


≥ 37,000

≥ 1,000



≥ 3,700




≥ 74

≥ 2



≥ 3.7

≥ 0.1




Research reactors

Hazards at these facilities are similar to those present at nuclear power plants, but are less serious, given the lower power generation. Several criticality accidents involving significant irradiation of personnel have occurred (Rodrigues 1987).

Accidents related to the use of radioactive sources in industry and medicine (excluding nuclear plants) (Zerbib 1993)

The most common accident of this type is the loss of radioactive sources from industrial gamma radiography, used, for example, for the radiographic inspection of joints and welds. However, radioactive sources may also be lost from medical sources (table 5). In either case, two scenarios are possible: the source may be picked up and kept by a person for several hours (e.g., in a pocket), then reported and restored, or it may be collected and carried home. While the first scenario causes local burns, the second may result in long-term irradiation of several members of the general public.

Table 5. Accidents involving the loss of radioactive sources and which resulted in exposure of the general public

Country (year)

Number of

Number of
receiving high

Number of deaths**

Radioactive material involved

Mexico (1962)





China (1963)




Cobalt 60

Algeria (1978)





Morocco (1984)





(Juarez, 1984)





(Goiânia, 1987)





(Xinhou, 1992)





United States
(Indiana, 1992)





* Individuals exposed to doses capable of causing acute or long-term effects or death.
** Among individuals receiving high doses.

Source: Nénot 1993.


The recovery of radioactive sources from radiotherapy equipment has resulted in several accidents involving the exposure of scrap workers. In two cases—the Juarez and Goiânia accidents—the general public was also exposed (see table 5 and box below).

The Goiвnia Accident, 1987

Between 21 September and 28 September 1987, several people suffering from vomiting, diarrhoea, vertigo and skin lesions at various parts of the body were admitted to the hospital specializing in tropical diseases in Goiânia, a city of one million inhabitants in the Brazilian state of Goias. These problems were attributed to a parasitic disease common in Brazil. On 28 September, the physician responsible for health surveillance in the city saw a woman who presented him with a bag containing debris from a device collected from an abandoned clinic, and a powder which emitted, according to the woman “a blue light”. Thinking that the device was probably x-ray equipment, the physician contacted his colleagues at the hospital for tropical diseases. The Goias Department of the Environment was notified, and the next day a physicist took measurements in the hygiene department’s yard, where the bag was stored overnight. Very high radioactivity levels were found. In subsequent investigations the source of radioactivity was identified as a caesium-137 source (total activity: approximately 50 TBq (1,375 Ci)) which had been contained within radiotherapy equipment used in a clinic abandoned since 1985. The protective housing surrounding the caesium had been disassembled on 10 September 1987 by two scrapyard workers and the caesium source, in powder form, removed. Both the caesium and the fragments of the contaminated housing were gradually dispersed throughout the city. Several people who had transported or handled the material, or who had simply come to see it (including parents, friends and neighbours) were contaminated. In all, over 100,000 people were examined, of whom 129 were very seriously contaminated; 50 were hospitalized (14 for medullary failure), and 4, including a 6-year-old girl, died. The accident had dramatic economic and social consequences for the entire city of Goiânia and the state of Goias: 1/1000 of the city’s surface area was contaminated, and the price of agricultural produce, rents, real estate, and land all fell. The inhabitants of the entire state suffered real discrimination.

Source: IAEA 1989a

The Juarez accident was discovered serendipitously (IAEA 1989b). On 16 January 1984, a truck entering the Los Alamos (New Mexico, United States) scientific laboratory loaded with steel bars triggered a radiation detector. Investigation revealed the presence of cobalt-60 in the bars and traced the cobalt-60 to a Mexican foundry. On January 21, a heavily contaminated scrapyard in Juarez was identified as the source of the radioactive material. Systematic monitoring of roads and highways by detectors resulted in the identification of a heavily contaminated truck. The ultimate radiation source was determined to be a radiotherapy device stored in a medical centre until December 1983, at which time it was disassembled and transported to the scrapyard. At the scrapyard, the protective housing surrounding the cobalt-60 was broken, freeing the cobalt pellets. Some of the pellets fell into the truck used to transport scrap, and others were dispersed throughout the scrapyard during subsequent operations, mixing with the other scrap.

Accidents involving the entry of workers into active industrial irradiators (e.g., those used to preserve food, sterilize medical products, or polymerize chemicals) have occurred. In all cases, these have been due to failure to follow safety procedures or to disconnected or defective safety systems and alarms. The dose levels of external irradiation to which workers in these accidents were exposed were high enough to cause death. Doses were received within a few seconds or minutes (table 6).

Table 6. Main accidents involving industrial irradiators

Site, date


Number of

Exposure level
and duration

Affected organs
and tissues

Dose  received (Gy),

Medical effects

Forbach, August 1991



several  deciGy/

Hands, head, trunk

40, skin

Burns  affecting  25–60% of
body area

Maryland, December 1991





55, hands

Bilateral finger amputation

Viet nam, November 1992



1,000 Gy/minute


1.5, whole  body

Amputation of the right hand and a finger of the left hand

Italy, May 1975



Several minutes

Head, whole body

8, bone marrow


San Salvador, February 1989




Whole body, legs,

3–8, whole body

2 leg  amputations, 1 death

Israel, June 1990



1 minute

Head, whole body



Belarus, October 1991



Several minutes

Whole body



* EA: electron accelerator CI: cobalt-60 irradiator.

Source: Zerbib 1993; Nénot 1993.


Finally, medical and scientific personnel preparing or handling radioactive sources may be exposed through skin and wound contamination or inhalation or ingestion of radioactive materials. It should be noted that this type of accident is also possible in nuclear power plants.

Public Health Aspects of the Problem

Temporal patterns

The United States Radiation Accident Registry (Oak Ridge, United States) is a worldwide registry of radiation accidents involving humans since 1944. To be included in the registry, an accident must have been the subject of a published report and have resulted in whole-body exposure exceeding 0.25 Sievert (Sv), or skin exposure exceeding 6 Sv or exposure of other tissues and organs exceeding 0.75 Sv (see "Case Study: What does dose mean?" for a definition of dose). Accidents that are of interest from the point of view of public health but which resulted in lower exposures are thus excluded (see below for a discussion of the consequences of exposure).

Analysis of the registry data from 1944 to 1988 reveals a clear increase in both the frequency of radiation accidents and the number of exposed individuals starting in 1980 (table 7). The increase in the number of exposed individuals is probably accounted for by the Chernobyl accident, particularly the approximately 135,000 individuals initially residing in the prohibited area within 30 km of the accident site. The Goiânia (Brazil) and Juarez (Mexico) accidents also occurred during this period and involved significant exposure of many people (table 5).

Table 7. Radiation accidents listed in the Oak Ridge (United States) accident registry (worldwide, 1944-88)





Total number of accidents




Number of individuals involved




Number of individuals exposed to doses exceeding
exposure criteria*




Number of deaths (acute effects)




* 0.25 Sv for whole-body exposure, 6 Sv for skin exposure, 0.75 Sv for other tissues and organs.


Potentially exposed populations

From the point of view of exposure to ionizing radiation, there are two populations of interest: occupationally exposed populations and the general public. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR 1993) estimates that 4 million workers worldwide were occupationally exposed to ionizing radiation in the period 1985-1989; of these, approximately 20% were employed in the production, use and processing of nuclear fuel (table 8). IAEA member countries were estimated to possess 760 irradiators in 1992, of which 600 were electron accelerators and 160 gamma irradiators.

Table 8. Temporal pattern of occupational exposure to ionizing radiation worldwide (in thousands)





Nuclear fuel processing*




Military applications**




Industrial applications




Medical applications








* Production and reprocessing of fuel: 40,000; reactor operation: 430,000.
** including 190,000 shipboard personnel.

Source: UNSCEAR 1993.


The number of nuclear sites per country is a good indicator of the potential for exposure of the general public (figure 6).

Figure 6. Distribution of power-generating reactors and fuel  reprocessing plants in the world, 1989-90


Health Effects

Direct health effects of ionizing radiation

In general, the health effects of ionizing radiation are well known and depend on the dose level received and the dose rate (received dose per unit of time (see "Case Study: What does dose mean?").

Deterministic effects

These occur when the dose exceeds a given threshold and the dose rate is high. The severity of the effects is proportional to the dose, although the dose threshold is organ specific (table 9).

Table 9. Deterministic effects: thresholds for selected organs

Tissue or effect

Equivalent single dose
received at the organ (Sv)


Temporary sterility


Permanent sterility





Crystalline lens:

Detectable opacities


Impaired vision (cataracts)


Bone marrow:

Depression of haemopoiesis


Source: ICRP 1991.

In the accidents such as those discussed above, deterministic effects may be caused by local intense irradiation, such as that caused by external irradiation, direct contact with a source (e.g., a misplaced source picked up and pocketed) or skin contamination. All these result in radiological burns. If the local dose is of the order of 20 to 25 Gy (table 6, "Case Study: What does dose mean?") tissue necrosis may ensue. A syndrome known as acute irradiation syndrome, characterized by digestive disorders (nausea, vomiting, diarrhoea) and bone marrow aplasia of variable severity, may be induced when the average whole-body irradiation dose exceeds 0.5 Gy. It should be recalled that whole-body and local irradiation may occur simultaneously.

Nine of 60 workers exposed during criticality accidents at nuclear fuel processing plants or research reactors died (Rodrigues 1987). Decedents received 3 to 45 Gy, while survivors received 0.1 to 7 Gy. The following effects were observed in survivors: acute irradiation syndrome (gastro-intestinal and haematological effects), bilateral cataracts and necrosis of limbs, requiring amputation.

At Chernobyl, power plant personnel, as well as emergency response personnel not using special protective equipment, suffered high beta and gamma radiation exposure in the initial hours or days following the accident. Five hundred people required hospitalization; 237 individuals who received whole-body irradiation exhibited acute irradiation syndrome, and 28 individuals died despite treatment (table 10) (UNSCEAR 1988). Others received local irradiation of the limbs, in some cases affecting over 50% of the body surface and continue to suffer, many years later, multiple skin disorders (Peter, Braun-Falco and Birioukov 1994).

Table 10. Distribution of patients exhibiting acute irradiation syndrome (AIS) after the Chernobyl accident, by severity of condition

Severity of AIS

Equivalent dose

Number of

Number of
deaths (%)

Average survival
period (days)







1 (1.8)





7 (33.3)





20 (95.2)


Source: UNSCEAR 1988.

Stochastic effects

These are probabilistic in nature (i.e., their frequency increases with received dose), but their severity is independent of dose. The main stochastic effects are:

  • Mutation. This has been observed in animal experiments but has been difficult to document in humans.
  • Cancer. The effect of irradiation on the risk of developing cancer has been studied in patients receiving radiation therapy and in survivors of the Hiroshima and Nagasaki bombings. UNSCEAR (1988, 1994) regularly summarizes the results of these epidemiological studies. The duration of the latency period is typically 5 to 15 years from the date of exposure depending on organ and tissue. Table 11 lists the cancers for which an association with ionizing radiation has been established. Significant cancer excesses have been demonstrated among survivors of the Hiroshima and Nagasaki bombings with exposures above 0.2 Sv.
  • Selected benign tumours. Benign thyroid adenomas.


Table 11. Results of epidemiological studies of the effect of high dose rate of external irradiation on cancer

Cancer site


Other studies
No. positive/
total No.





Haematopoietic system






Lymphoma (not specified)




Non-Hodgkin lymphoma








Oral cavity




Salivary glands




Digestive system










Small intestine















Gall bladder






Respiratory system





Trachea, bronchi, lungs






Not specified






Other cancers




Breast (women)




Reproductive system


Uterus (non-specific)




Uterine body







Other (women)







Urinary system












Central nervous system











Connective tissue



All cancers, excluding leukaemias



+ Cancer sites studied in the Hiroshima and Nagasaki survivors.
* Positive association with ionizing radiation.
1 Cohort (incidence or mortality) or case-control studies.

Source: UNSCEAR 1994.


Two important points concerning the effects of ionizing radiation remain controversial.

Firstly, what are the effects of low-dose irradiation (below 0.2 Sv) and low dose rates? Most epidemiological studies have examined survivors of the Hiroshima and Nagasaki bombings or patients receiving radiation therapy—populations exposed over very short periods to relatively high doses—and estimates of the risk of developing cancer as a result of exposure to low doses and dose rates depends essentially on extrapolations from these populations. Several studies of nuclear power plant workers, exposed to low doses over several years, have reported cancer risks for leukaemia and other cancers that are compatible with extrapolations from high-exposure groups, but these results remain unconfirmed (UNSCEAR 1994; Cardis, Gilbert and Carpenter 1995).

Secondly, is there a threshold dose (i.e., a dose below which there is no effect)? This is currently unknown. Experimental studies have demonstrated that damage to genetic material (DNA) caused by spontaneous errors or environmental factors are constantly repaired. However, this repair is not always effective, and may result in malignant transformation of cells (UNSCEAR 1994).

Other effects

Finally, the possibility of teratogenic effects due to irradiation during pregnancy should be noted. Microcephaly and mental retardation have been observed in children born to female survivors of the Hiroshima and Nagasaki bombings who received irradiation of at least 0.1 Gy during the first trimester (Otake, Schull and Yoshimura 1989; Otake and Schull 1992). It is unknown whether these effects are deterministic or stochastic, although the data do suggest the existence of a threshold.

Effects observed following the Chernobyl accident

The Chernobyl accident is the most serious nuclear accident to have occurred to date. However, even now, ten years after the fact, not all the health effects on the most highly exposed populations have been accurately evaluated. There are several reasons for this:

  • Some effects appear only many years after the date of exposure: for example, solid-tissue cancers typically take 10 to 15 years to appear.
  • As some time elapsed between the accident and the commencement of epidemiological studies, some effects occurring in the initial period following the accident may not have been detected.
  • Useful data for the quantification of the cancer risk were not always gathered in a timely fashion. This is particularly true for data necessary to estimate the exposure of the thyroid gland to radioactive iodides emitted during the incident (tellurium-132, iodine-133) (Williams et al. 1993).
  • Finally, many initially exposed individuals subsequently left the contaminated zones and were probably lost for follow-up.


Workers. Currently, comprehensive information is unavailable for all the workers who were strongly irradiated in the first few days following the accident. Studies on the risk to clean-up and relief workers of developing leukaemia and solid-tissue cancers are in progress (see table 3). These studies face many obstacles. Regular follow-up of the health status of clean-up and relief workers is greatly hindered by the fact that many of them came from different parts of the ex-USSR and were redispatched after working on the Chernobyl site. Further, received dose must be estimated retrospectively, as there are no reliable data for this period.

General population. The only effect plausibly associated with ionizing radiation in this population to date is an increase, starting in 1989, of the incidence of thyroid cancer in children younger than 15 years. This was detected in Byelorussia (Belarus) in 1989, only three years after the incident, and has been confirmed by several expert groups (Williams et al. 1993). The increase was particularly noteworthy in the most heavily contaminated areas of Belarus, especially the Gomel region. While thyroid cancer was normally rare in children younger than 15 years, (annual incidence rate of 1 to 3 per million), its incidence increased tenfold on a national basis and twentyfold in the Gomel area (table 12, figure 7), (Stsjazhko et al. 1995). A tenfold increase of the incidence of thyroid cancer was subsequently reported in the five most heavily contaminated areas of Ukraine, and an increase in thyroid cancer was also reported in the Bryansk (Russia) region (table 12). An increase among adults is suspected but has not been confirmed. Systematic screening programmes undertaken in the contaminated regions allowed latent cancers present prior to the accident to be detected; ultrasonographic programmes capable of detecting thyroid cancers as small as a few millimetres were particularly helpful in this regard. The magnitude of the increase in incidence in children, taken together with the aggressiveness of the tumours and their rapid development, suggests that the observed increases in thyroid gland cancer are partially due to the accident.

Table 12. Temporal pattern of the incidence and total number of thyroid cancers in children in Belarus, Ukraine & Russia, 1981-94


Incidence* (/100,000)

Number of cases







Entire country





Gomel area






Entire country





Five most heavily
contaminated areas






Entire country





Bryansk and
Kaluga areas





* Incidence: the ratio of the number of new cases of a disease during a given period to the size of the population studied in the same period.

Source: Stsjazhko et al. 1995.


Figure 7. Incidence of cancer of the thyroid in children younger than 15 years in Belarus


In the most heavily contaminated zones (e.g., the Gomel region), the thyroid doses were high, particularly among children (Williams et al. 1993). This is consistent with the significant iodine emissions associated with the accident and the fact that radioactive iodine will, in the absence of preventive measures, concentrate preferentially in the thyroid gland.

Exposure to radiation is a well-documented risk factor for thyroid cancer. Clear increases in the incidence of thyroid cancer have been observed in a dozen studies of children receiving radiation therapy to the head and neck. In most cases, the increase was clear ten to 15 years after exposure, but was detectable in some cases within three to seven years. On the other hand, the effects in children of internal irradiation by iodine-131 and by short half-life iodine isotopes are not well established (Shore 1992).

The precise magnitude and pattern of the increase in the coming years of the incidence of thyroid cancer in the most highly exposed populations should be studied. Epidemiological studies currently under way should help to quantify the association between the dose received by the thyroid gland and the risk of developing thyroid cancer, and to identify the role of other genetic and environmental risk factors. It should be noted that iodine deficiency is widespread in the affected regions.

An increase in the incidence of leukaemia, particularly juvenile leukaemia (since children are more sensitive to the effects of ionizing radiation), is to be expected among the most highly exposed members of the population within five to ten years of the accident. Although no such increase has yet been observed, the methodological weaknesses of the studies conducted to date prevent any definitive conclusions from being drawn.

Psychosocial effects

The occurrence of more or less severe chronic psychological problems following psychological trauma is well established and has been studied primarily in populations faced with environmental disasters such as floods, volcanic eruptions and earthquakes. Post-traumatic stress is a severe, long-lasting and crippling condition (APA 1994).

Most of our knowledge on the effect of radiation accidents on psychological problems and stress is drawn from studies conducted in the wake of the Three Mile Island accident. In the year following the accident, immediate psychological effects were observed in the exposed population, and mothers of young children in particular exhibited increased sensitivity, anxiety and depression (Bromet et al. 1982). Further, an increase in depression and anxiety-related problems was observed in power-plant workers, compared to workers in another power plant (Bromet et al. 1982). In the following years (i.e., after the reopening of the power plant), approximately one-quarter of the surveyed population exhibited relatively significant psychological problems. There was no difference in the frequency of psychological problems in the rest of the survey population, compared to control populations (Dew and Bromet 1993). Psychological problems were more frequent among individuals living close to the power plant who were without a social support network, had a history of psychiatric problems, or who had evacuated their home at the time of the accident (Baum, Cohen and Hall 1993).

Studies are also under way among populations exposed during the Chernobyl accident and for whom stress appears to be an important public health issue (e.g., clean-up and relief workers and individuals living in a contaminated zone). For the moment, however, there are no reliable data on the nature, severity, frequency and distribution of psychological problems in the target populations. The factors that must be taken into account when evaluating the psychological and social consequences of the accident on residents of the contaminated zones include the harsh social and economic situation, the diversity of the available compensation systems, the effects of evacuation and resettlement (approximately 100,000 additional people were resettled in the years following the accident), and the effects of lifestyle limitations (e.g., modification of nutrition).

Principles of Prevention and Guidelines

Safety principles and guidelines

Industrial and medical use of radioactive sources

While it is true that the major radiation accidents reported have all occurred at nuclear power plants, the use of radioactive sources in other settings has nevertheless resulted in accidents with serious consequences for workers or the general public. The prevention of accidents such as these is essential, especially in light of the disappointing prognosis in cases of high-dose exposure. Prevention depends on proper worker training and on the maintenance of a comprehensive life-cycle inventory of radioactive sources which includes information on both the sources’ nature and location. The IAEA has established a series of safety guidelines and recommendations for the use of radioactive sources in industry, medicine and research (Safety Series No. 102). The principles in question are similar to those presented below for nuclear power plants.

Safety in nuclear power plants (IAEA Safety Series No. 75, INSAG-3)

The goal here is to protect both humans and the environment from the emission of radioactive materials under any circumstance. To this end, it is necessary to apply a variety of measures throughout the design, construction, operation and decommissioning of nuclear power plants.

The safety of nuclear power plants is fundamentally dependent on the “defence in depth” principle—that is, the redundancy of systems and devices designed to compensate for technical or human errors and deficiencies. Concretely, radioactive materials are separated from the environment by a series of successive barriers. In nuclear power production reactors, the last of these barriers is the containment structure (absent on the Chernobyl site but present at Three Mile Island). To avoid the breakdown of these barriers and to limit the consequences of breakdowns, the following three safety measures should be practised throughout the power plant’s operational life: control of the nuclear reaction, cooling of fuel, and containment of radioactive material.

Another essential safety principle is “operating experience analysis”—that is, using information gleaned from events, even minor ones, occurring at other sites to increase the safety of an existing site. Thus, analysis of the Three Mile Island and Chernobyl accidents has resulted in the implementation of modifications designed to ensure that similar accidents do not occur elsewhere.

Finally, it should be noted that significant efforts have been expended to promote a culture of safety, that is, a culture that is continually responsive to safety concerns related to the plant’s organization, activities and practices, as well as to individual behaviour. To increase the visibility of incidents and accidents involving nuclear power plants, an international scale of nuclear events (INES), identical in principle to scales used to measure the severity of natural phenomena such as earthquakes and wind, has been developed (table 12). This scale is not however suitable for the evaluation of a site’s safety or for performing international comparisons.

Table 13. International scale of nuclear incidents




Protective structure

7—Major accident

Major emission,
extensive health
and environmental


6—Serious accident

Significant emission,
may necessitate the application of all counter-measures.



Limited emission,
may necessitate
the application of
some counter-

Serious damage to
reactors and protective structures



Low emission, public
exposure approaching exposure limits

Damage to reactors
and protective
structures, fatal
exposure of workers


3—Serious incident

Very low emission,
public exposure
lower than exposure limits

contamination level, serious effects on
workers’ heath

Accident barely avoided



Serious contamination
level, over-exposure of workers

Serious failures of safety measures



Abnormality beyond
normal functional limits


No significance from
the point of view of safety



Principles of the protection of the general public from exposure to radiation

In cases involving the potential exposure of the general public, it may be necessary to apply protective measures designed to prevent or limit exposure to ionizing radiation; this is particularly important if deterministic effects are to be avoided. The first measures which should be applied in emergency are evacuation, sheltering and administration of stable iodine. Stable iodine should be distributed to exposed populations, since this will saturate the thyroid and inhibit its uptake of radioactive iodine. To be effective, however, thyroid saturation must occur before or soon after the start of exposure. Finally, temporary or permanent resettlement, decontamination, and control of agriculture and food may eventually be necessary.

Each of these countermeasures has its own “action level” (table 14), not to be confused with the ICRP dose limits for workers and the general public, developed to ensure adequate protection in cases of non-accidental exposure (ICRP 1991).

Table 14. Examples of generic intervention levels for protective measures for general population

Protective measure

Intervention level (averted dose)



10 mSv


50 mSv

Distribution of stable iodine

100 mGy


Temporary resettlement

30 mSv in 30 days; 10 mSv in the next 30 days

Permanent resettlement

1 Sv lifetime

Source: IAEA 1994.

Research Needs and Future Trends

Current safety research concentrates on improving the design of nuclear power-generating reactors—more specifically, on the reduction of the risk and effects of core meltdown.

The experience gained from previous accidents should lead to improvements in the therapeutic management of seriously irradiated individuals. Currently, the use of bone marrow cell growth factors (haematopoietic growth factors) in the treatment of radiation-induced medullary aplasia (developmental failure) is being investigated (Thierry et al. 1995).

The effects of low doses and dose rates of ionizing radiation remains unclear and needs to be clarified, both from a purely scientific point of view and for the purposes of establishing dose limits for the general public and for workers. Biological research is necessary to elucidate the carcinogenic mechanisms involved. The results of large-scale epidemiological studies, especially those currently under way on workers at nuclear power plants, should prove useful in improving the accuracy of cancer risk estimates for populations exposed to low doses or dose rates. Studies on populations which are or have been exposed to ionizing radiation due to accidents should help further our understanding of the effects of higher doses, often delivered at low dose rates.

The infrastructure (organization, equipment and tools) necessary for the timely collection of data essential for the evaluation of the health effects of radiation accidents must be in place well in advance of the accident.

Finally, extensive research is necessary to clarify the psychological and social effects of radiation accidents (e.g., the nature and frequency of, and risk factors for, pathological and non-pathological post-traumatic psychological reactions). This research is essential if the management of both occupationally and non-occupationally exposed populations is to be improved.



Read 12777 times Last modified on Wednesday, 21 December 2011 19:45

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."


Disasters, Natural and Technological References

American Psychiatric Association (APA). 1994. DSM-IV Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: APA.


Andersson, N, M Kerr Muir, MK Ajwani, S Mahashabde, A Salmon, and K Vaidyanathan. 1986. Persistent eye watering among Bhopal survivors. Lancet 2:1152.


Baker, EL, M Zack, JW Miles, L Alderman, M Warren, RD Dobbin, S Miller, and WR Teeters. 1978. Epidemic malathion poisoning in Pakistan malaria working. Lancet 1:31-34.


Baum, A, L Cohen, and M Hall. 1993. Control and intrusive memories as possible determinants of chronic stress. Psychosom Med 55:274-286.


Bertazzi, PA. 1989. Industrial disasters and epidemiology. A review of recent experiences. Scand J Work Environ Health 15:85-100.


—. 1991. Long-term effects of chemical disasters. Lessons and result from Seveso. Sci Total Environ 106:5-20.


Bromet, EJ, DK Parkinson, HC Schulberg, LO Dunn, and PC Condek. 1982. Mental health of residents near the Three Mile Island reactor: A comparative study of selected groups. J Prev Psychiat 1(3):225-276.


Bruk, GY, NG Kaduka, and VI Parkhomenko. 1989. Air contamination by radionuclides as a result of the accident at the Chernobyl power station and its contribution to inner irradiation of the population (in Russian). Materials of the First All-Union Radiological Congress, 21-27 August, Moscow. Abstracts (in Russian). Puschkino, 1989, vol. II:414-416.


Bruzzi, P. 1983. Health impact of the accidental release of TCDD at Seveso. In Accidental Exposure to Dioxins. Human Health Aspects, edited by F Coulston and F Pocchiari. New York: Academic Press.


Cardis, E, ES Gilbert, and L Carpenter. 1995. Effects of low doses and low dose rates of external ionizing radiation: Cancer mortality among nuclear industry workers in three countries. Rad Res 142:117-132.


Centers for Disease Control (CDC). 1989. The Public Health Consequences of Disasters. Atlanta: CDC.


Centro Peruano-Japones de Investigaciones Sismicas y Mitigacióm de Desastres. Universidad Nacional de Ingeniería (CISMID). 1989. Seminario Internacional De Planeamiento Diseño,


Reparación Y Adminstración De Hospitales En Zonas Sísmicas: Conclusiones Y Recommendaciones. Lima: CISMID/Univ Nacional de Ingeniería.


Chagnon, SAJR, RJ Schicht, and RJ Semorin. 1983. A Plan for Research on Floods and their Mitigation in the United States. Champaign, Ill: Illinois State Water Survey.


Chen, PS, ML Luo, CK Wong, and CJ Chen. 1984. Polychlorinated biphenyls, dibenzofurans, and quaterphenyls in toxic rice-bran oil and PCBs in the blood of patients with PCB poisoning in Taiwan. Am J Ind Med 5:133-145.


Coburn, A and R Spence. 1992. Earthquake Protection. Chichester: Wiley.


Council of the European Communities (CEC). 1982. Council Directive of 24 June on the major accident hazards of certain industrial activities (82/501/EEC). Off J Eur Communities L230:1-17.


—. 1987. Council Directive of 19 March amending Directive 82/501/EEC on the major accident hazards of certain industrial activities (87/216/EEC). Off J Eur Communities L85:36-39.


Das, JJ. 1985a. Aftermath of Bhopal tragedy. J Indian Med Assoc 83:361-362.


—. 1985b. The Bhopal tragedy. J Indian Med Assoc 83:72-75.


Dew, MA and EJ Bromet. 1993. Predictors of temporal patterns of psychiatric distress during ten years following the nuclear accident at Three Mile Island. Social Psych Psychiatric Epidemiol 28:49-55.


Federal Emergency Management Agency (FEMA). 1990. Seismic considerations: Health care facilities. Earthquake Hazard Reduction Series, No. 35. Washington, DC: FEMA.


Frazier, K. 1979. The Violent Face of Nature: Severe Phenomena and Natural Disasters. Floods. New York: William Morrow & Co.


Freidrich Naumann Foundation. 1987. Industrial Hazards in Transnational Work: Risk, Equity and Empowerment. New York: Council on International and Public Affairs.


French, J and K Holt. 1989. Floods: Public Health Consequences of Disasters. Centers for Disease Control Monograph. Atlanta: CDC.


French, J, R Ing, S Von Allman, and R Wood. 1983. Mortality from flash floods: A review of National Weather Service reports, 1969-1981. Publ Health Rep 6(November/December):584-588.


Fuller, M. 1991. Forest Fires. New York: John Wiley.


Gilsanz, V, J Lopez Alverez, S Serrano, and J Simon. 1984. Evolution of the alimentary toxic oil syndrome due to ingestion of denatured rapeseed oil. Arch Int Med 144:254-256.


Glass, RI, RB Craven, and DJ Bregman. 1980. Injuries from the Wichita Falls tornado: Implications for prevention. Science 207:734-738.


Grant, CC. 1993. Triangle fire stirs outrage and reform. NFPA J 87(3):72-82.


Grant, CC and TJ Klem. 1994. Toy factory fire in Thailand kills 188 workers. NFPA J 88(1):42-49.


Greene, WAJ. 1954. Psychological factors and reticuloendothelial disease: Preliminary observations on a group of males with lymphoma and leukemia. Psychosom Med:16-20.


Grisham, JW. 1986. Health Aspects of the Disposal of Waste Chemicals. New York: Pergamon Press.


Herbert, P and G Taylor. 1979. Everything you always wanted to know about hurricanes: Part 1. Weatherwise (April).


High, D, JT Blodgett, EJ Croce, EO Horne, JW McKoan, and CS Whelan. 1956. Medical aspects of the Worcester tornado disaster. New Engl J Med 254:267-271.


Holden, C. 1980. Love Canal residents under stress. Science 208:1242-1244.


Homberger, E, G Reggiani, J Sambeth, and HK Wipf. 1979. The Seveso accident: Its nature, extent and consequences. Ann Occup Hyg 22:327-370.


Hunter, D. 1978. The Diseases of Occupations. London: Hodder & Stoughton.


International Atomic Energy Agency (IAEA). 1988. Basic Safety Principles for Nuclear Power Plants INSAG-3. Safety Series, No. 75. Vienna: IAEA.


—. 1989a. L’accident radiologique de Goiânia. Vienna: IAEA.


—. 1989b. A large-scale Co-60 contamination case: Mexico 1984. In Emergency Planning and Preparedness for Accidents Involving Radioactive Materials Used in Medicine, Industry, Research and Teaching. Vienna: IAEA.


—. 1990. Recommendations for the Safe Use and Regulation of Radiation Sources in Industry, Medicine, Reasearch and Teaching. Safety Series, No. 102. Vienna: IAEA.


—. 1991. The International Chernobyl Project. Technical report, assessment of radiological consequences and evaluation of protective measures, report by an International Advisory Committee. Vienna: IAEA.


—. 1994. Intervention Criteria in a Nuclear or Radiation Emergency. Safety Series, No. 109. Vienna: IAEA.


International Commission on Radiological Protection (ICRP). 1991. Annals of the ICRP. ICRP Publication No. 60. Oxford: Pergamon Press.


International Federation of Red Cross and Red Crescent Societies (IFRCRCS). 1993. The World Disaster Report. Dordrecht: Martinus Nijhoff.


International Labour Organization (ILO). 1988. Major Hazard Control. A Practical Manual. Geneva: ILO.


—. 1991. Prevention of Major Industrial Accidents. Geneva: ILO.


—. 1993. Prevention of Major Industrial Accidents Convention, 1993 (No. 174). Geneva: ILO.


Janerich, DT, AD Stark, P Greenwald, WS Bryant, HI Jacobson, and J McCusker. 1981. Increased leukemia, lymphoma and spontaneous abortion in Western New York following a disaster. Publ Health Rep 96:350-356.


Jeyaratnam, J. 1985. 1984 and occupational health in developing countries. Scand J Work Environ Health 11:229-234.


Jovel, JR. 1991. Los efectos económicos y sociales de los desastres naturales en América Latina y el Caribe. Santiago, Chile: Document presented at the First Regional UNDP/UNDRO Disaster Management Training Program in Bogota, Colombia.


Kilbourne, EM, JG Rigau-Perez, J Heath CW, MM Zack, H Falk, M Martin-Marcos, and A De Carlos. 1983. Clinical epidemiology of toxic-oil syndrome. New Engl J Med 83:1408-1414.


Klem, TJ. 1992. 25 die in food plant fire. NFPA J 86(1):29-35.


Klem, TJ and CC Grant. 1993. Three Workers Die in Electrical Power Plant Fire. NFPA J 87(2):44-47.


Krasnyuk, EP, VI Chernyuk, and VA Stezhka. 1993. Work conditions and health status of operators of agricultural machines in areas being under control due to the Chernobyl accident (in Russian). In abstracts Chernobyl and Human Health Conference, 20-22 April.


Krishna Murti, CR. 1987. Prevention and control of chemical accidents: Problems of developing countries. In Istituto Superiore Sanita’, World Health Organization, International Programme On Chemical Safety. Edinburgh: CEP Consultants.


Lancet. 1983. Toxic oil syndrome. 1:1257-1258.


Lechat, MF. 1990. The epidemiology of health effects of disasters. Epidemiol Rev 12:192.


Logue, JN. 1972. Long term effects of a major natural disaster: The Hurricane Agnes flood in the Wyoming Valley of Pennsylvania, June 1972. Ph.D. Dissertation, Columbia Univ. School of Public Health.


Logue, JN and HA Hansen. 1980. A case control study of hypertensive women in a post-disaster community: Wyoming Valley, Pennsylvania. J Hum Stress 2:28-34.


Logue, JN, ME Melick, and H Hansen. 1981. Research issues and directions in the epidemiology of health effects of disasters. Epidemiol Rev 3:140.


Loshchilov, NA, VA Kashparov, YB Yudin, VP Proshchak, and VI Yushchenko. 1993. Inhalation intake of radionuclides during agricultural works in the areas contaminated by radionuclides due to the Chernobyl accident (in Russian). Gigiena i sanitarija (Moscow) 7:115-117.


Mandlebaum, I, D Nahrwold, and DW Boyer. 1966. Management of tornado casualties. J Trauma 6:353-361.


Marrero, J. 1979. Danger: Flash floods—the number one killer of the 70’s. Weatherwise (February):34-37.


Masuda, Y and H Yoshimura. 1984. Polychlorinated biphenyls and dibenzofurans in patients with Yusho and their toxicological significance: A review. Am J Ind Med 5:31-44.


Melick, MF. 1976. Social, psychological and medical aspects of stress related illness in the recovery period of a natural disaster. Dissertation, Albany, State Univ. of New York.


Mogil, M, J Monro, and H Groper. 1978. NWS’s flash flood warning and disaster preparedness programs. B Am Meteorol Soc :59-66.


Morrison, AS. 1985. Screening in Chronic Disease. Oxford: OUP.


National Fire Protection Association (NFPA). 1993. National Fire Alarm Code. NFPA No. 72. Quincy, Mass: NFPA.


—. 1994. Standard for the Installation of Sprinkler Systems. NFPA No. 13. Quincy, Mass: NFPA.


—. 1994. Life Safety Code. NFPA No. 101. Quincy, Mass: NFPA.


—. 1995. Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems. NFPA No. 25. Quincy, Mass: NFPA.


Nénot, JC. 1993. Les surexpositions accidentelles. CEA, Institut de Protection et de Sûreté Nucléaire. Rapport DPHD/93-04.a, 1993, 3-11.


Nuclear Energy Agency. 1987. The Radiological Impact of the Chernobyl Accident in OECD Countries. Paris: Nuclear Energy Agency.


Otake, M and WJ Schull. 1992. Radiation-related Small Head Sizes among Prenatally Exposed Atomic Bomb Survivors. Technical Report Series, RERF 6-92.


Otake, M, WJ Schull, and H Yoshimura. 1989. A Review of Radiation-related Damage in the Prenatally Exposed Atomic Bomb Survivors. Commentary Review Series, RERF CR 4-89.


Pan American Health Organization (PAHO). 1989. Analysis of PAHO’s Emergency Preparedness and Disaster Relief Program. Executive Committee document SPP12/7. Washington, DC: PAHO.


—. 1987. Crónicas de desastre: terremoto en México. Washington, DC: PAHO.


Parrish, RG, H Falk, and JM Melius. 1987. Industrial disasters: Classification, investigation, and prevention. In Recent Advances in Occupational Health, edited by JM Harrington. Edinburgh: Churchill Livingstone.


Peisert, M comp, RE Cross, and LM Riggs. 1984. The Hospital’s Role in Emergency Medical Services Systems. Chicago: American Hospital Publishing.


Pesatori, AC. 1995. Dioxin contamination in Seveso: The social tragedy and the scientific challenge. Med Lavoro 86:111-124.


Peter, RU, O Braun-Falco, and A Birioukov. 1994. Chronic cutaneous damage after accidental exposure to ionizing radiation: The Chernobyl experience. J Am Acad Dermatol 30:719-723.


Pocchiari, F, A DiDomenico, V Silano, and G Zapponi. 1983. Environmental impact of the accidental release of tetrachlorodibenzo-p-dioxin(TCDD) at Seveso. In Accidental Exposure to Dioxins: Human Health Aspects, edited by F Coulston and F Pocchiari. New York: Academic Press.


—. 1986. The Seveso accident and its aftermath. In Insuring and Managing Hazardous Risks: From Seveso to Bhopal and Beyond, edited by PR Kleindorfer and HC Kunreuther. Berlin: Springer-Verlag.


Rodrigues de Oliveira, A. 1987. Un répertoire des accidents radiologiques 1945-1985. Radioprotection 22(2):89-135.


Sainani, GS, VR Joshi, PJ Mehta, and P Abraham. 1985. Bhopal tragedy -A year later. J Assoc Phys India 33:755-756.


Salzmann, JJ. 1987. ìSchweizerhalleî and Its Consequences. Edinburgh: CEP Consultants.


Shore, RE. 1992. Issues and epidemiological evidences regarding radiation-induced thyroid cancer. Rad Res 131:98-111.


Spurzem, JR and JE Lockey. 1984. Toxic oil syndrome. Arch Int Med 144:249-250.


Stsjazhko, VA, AF Tsyb, ND Tronko, G Souchkevitch, and KF Baverstock. 1995. Childhood thyroid cancer since accidents at Chernobyl. Brit Med J 310:801.


Tachakra, SS. 1987. The Bhopal Disaster. Edinburgh: CEP Consultants.


Thierry, D, P Gourmelon, C Parmentier, and JC Nenot. 1995. Hematopoietic growth factors in the treatment of therapeutic and accidental irradiation-induced aplasia. Int J Rad Biol (in press).


Understanding Science and Nature: Weather and Climate. 1992. Alexandria, Va: Time-Life.


United Nations Disaster Relief Coordinator Office (UNDRO). 1990. Iran earthquake. UNDRO News 4 (September).


United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). 1988. Sources, Effects and Risks of Ionizing Radiation. New York: UNSCEAR.


—. 1993. Sources and Effects of Ionizing Radiation. New York: UNSCEAR.


—. 1994. Sources and Effects of Ionizing Radiation. New York: UNSCEAR.


Ursano, RJ, BG McCaughey, and CS Fullerton. 1994. Individual and Community Responses to Trauma and Disaster: The Structure of Human Chaos. Cambridge: Cambridge Univ. Press.


US Agency for International Development, (USAID). 1989. Soviet Union: Earthquake. OFDA/AID Annual Report, FY1989. Arlington, Va: USAID.


Walker, P. 1995. World Disaster Report. Geneva: International Federation of Red Cross and Red Crescent Societies.


Wall Street J. 1993 Thailand fire shows region cuts corners on safety to boost profits, 13 May.


Weiss, B and TW Clarkson. 1986. Toxic chemical disaster and the implication of Bhopal for technology transfer. Milbank Q 64:216.


Whitlow, J. 1979. Disasters: The Anatomy of Environmental Hazards. Athens, Ga: Univ. of Georgia Press.


Williams, D, A Pinchera, A Karaoglou, and KH Chadwick. 1993. Thyroid Cancer in Children Living Near Chernobyl. Expert panel report on the consequences of the Chernobyl accident, EUR 15248 EN. Brussels: Commission of the European Communities (CEC).


World Health Organization (WHO). 1984. Toxic Oil Syndrome. Mass Food Poisoning in Spain. Copenhagen: WHO Regional office for Europe.


Wyllie, L and M Durkin. 1986. The Chile earthquake of March 3, 1985: Casualties and effects on the health care system. Earthquake Spec 2(2):489-495.


Zeballos, JL. 1993a. Los desastres quimicos, capacidad de respuesta de los paises en vias de desarrollo. Washington, DC: Pan American Health Organization (PAHO).


—. 1993b. Effects of natural disasters on the health infrastructure: Lessons from a medical perspective. Bull Pan Am Health Organ 27: 389-396.


Zerbib, JC. 1993. Les accidents radiologiques survenus lors d’usages industriels de sources radioactives ou de générateurs électirques de rayonnement. In Sécurité des sources radioactives scellées et des générateurs électriques de rayonnement. Paris: Société française de radioprotection.