Saturday, 26 February 2011 17:45

Chlorine and Caustic Production

Rate this item
(5 votes)

The Chlorine Institute, Inc.

Electrolysis of salt brines produces chlorine and caustic. Sodium chloride (NaCl) is the primary salt used; it yields caustic soda (NaOH). However, the use of potassium chloride (KCl) produces caustic potash (KOH).

2 NaCl + 2 H2O → Cl2↑+ 2 NaOH + H2

salt + water → chlorine (gas) + caustic + hydrogen (gas)

Currently the diaphragm cell process is in greatest use for the commercial production of chlorine followed by the mercury cell process and then the membrane cell process. Due to economic, environmental and product quality issues, manufacturers now prefer the membrane cell process for new production facilities.

The Diaphragm Cell Process

A diaphragm cell (see figure 1) is fed saturated salt brine into a compartment containing a titanium anode coated with salts of ruthenium and other metals. A plastic cell head collects the hot, wet chlorine gas produced at this anode. Suction by a compressor then draws the chlorine into a collection header for further processing consisting of cooling, drying and compression. Water and unreacted brine percolate through a porous diaphragm separator into the cathode compartment where water reacts at a steel cathode to produce sodium hydroxide (caustic soda) and hydrogen. The diaphragm keeps the chlorine produced at the anode from the sodium hydroxide and hydrogen produced at the cathode. If these products combine, the result is sodium hypochlorite (bleach) or sodium chlorate. Commercial producers of sodium chlorate use cells that do not have separators. The most common diaphragm is a composite of asbestos and a fluorocarbon polymer. Modern diaphragm cell plants do not have the health or environmental problems historically associated with the use of asbestos diaphragms. Some plants do employ non-asbestos diaphragms, which are now commercially available. The diaphragm cell process produces a weak sodium hydroxide solution containing unreacted salt. An additional evaporation process concentrates the caustic and removes most of the salt to make a caustic of commercial quality.

Figure 1. Types of chloralkali cell processes

CMP030F1

The Mercury Cell Process

A mercury cell actually consists of two electrochemical cells. The reaction in the first cell at the anode is:

2 Cl → C12 + 2 e

chloride → chlorine + electrons

The reaction in the first cell at the cathode is:

Na+ + Hg + e → Na · Hg

sodium ion + mercury + electrons → sodium amalgam

Salt brine flows in an inclined steel trough with rubber-lined sides (see figure 4) Mercury, the cathode, flows under the brine. Anodes of coated titanium are suspended in the brine for the production of chlorine, which exits the cell to a collection and processing system. Sodium is electrolyzed in the cell and leaves the first cell amalgamated with the mercury. This amalgam flows into a second electrochemical cell called the decomposer. The decomposer is a cell with graphite as a cathode and the amalgam as the anode.

The reaction in the decomposer is:

2 Na•Hg + 2 H2O → 2 NaOH + 2 Hg + H2

The mercury cell process produces commercial (50%) NaOH directly from the cell.

The Membrane Cell Process

The electrochemical reactions in a membrane cell are the same as in the diaphragm cell. A cation-exchange membrane is used in place of the porous diaphragm (see figure 1). This membrane prevents the migration of chloride ions into the catholyte, thereby producing essentially salt free 30 to 35% caustic directly from the cell. The elimination of the need to remove salt makes the evaporation of the caustic to commercial 50% strength simpler, and it requires less investment and energy. Expensive nickel is used as the cathode in the membrane cell due to the stronger caustic.

Safety and Health Hazards

At ordinary temperatures, dry chlorine, either liquid or gas, does not corrode steel. Wet chlorine is highly corrosive because it forms hydrochloric and hypochlorous acids. Precautions should be taken to keep chlorine and chlorine equipment dry. Piping, valves and containers should be closed or capped when not in use to keep out atmospheric moisture. If water is used on a chlorine leak the resulting corrosive conditions will make the leak worse.

The volume of liquid chlorine increases with temperature. Precautions should be taken to avoid hydrostatic rupture of piping, vessels, containers or other equipment filled with liquid chlorine.

Hydrogen is a co-product of all chlorine manufactured by the electrolysis of aqueous brine solutions. Within a known concentration range, mixtures of chlorine and hydrogen are flammable and potentially explosive. The reaction of chlorine and hydrogen can be initiated by direct sunlight, other sources of ultraviolet light, static electricity or sharp impact.

Small quantities of nitrogen trichloride, an unstable and highly explosive compound, can be produced in the manufacturing of chlorine. When liquid chlorine containing nitrogen trichloride is evaporated, the nitrogen trichloride may reach hazardous concentrations in the remaining liquid chlorine.

Chlorine can react, at times explosively, with a number of organic materials such as oil and grease from sources such as air compressors, valves, pumps and oil-diaphragm instrumentation, as well as wood and rags from maintenance work.

As soon as there is any indication of a chlorine release, immediate steps must be taken to correct the condition. Chlorine leaks always get worse if they are not promptly corrected. When a chlorine leak occurs, authorized, trained personnel equipped with respiratory and other appropriate personal protective equipment (PPE) should investigate and take proper action. Personnel should not enter into atmospheres containing concentrations of chlorine in excess of the immediately dangerous to life and health (IDLH) concentration (10 ppm) without appropriate PPE and back-up personnel. Unnecessary personnel should be kept away and the hazard area should be isolated. Persons potentially affected by a chlorine release should be evacuated or sheltered in place as circumstances warrant.

Area chlorine monitors and wind direction indicators can supply timely information (e.g., escape routes) to help determine whether personnel are to be evacuated or sheltered in place.

When evacuation is utilized, potentially exposed persons should move to a point upwind of the leak. Because chlorine is heavier than air, higher elevations are preferable. To escape in the shortest time, persons already in a contaminated area should move crosswind.

When inside a building and sheltering in place is selected, shelter can be achieved by closing all windows, doors and other openings, and turning off air conditioners and air intake systems. Personnel should move to the side of the building furthest from the release.

Care must be taken not to position personnel without an escape route. A safe position may be made hazardous by a change in wind direction. New leaks may occur or the existing leak may get larger.

If fire is present or imminent, chlorine containers and equipment should be moved away from the fire, if possible. If a non-leaking container or equipment cannot be moved, it should be kept cool by applying water. Water should not be used directly on a chlorine leak. Chlorine and water react forming acids and the leak quickly will get worse. However, where several containers are involved and some are leaking, it may be prudent to use a water spray to help prevent overpressure of the non-leaking containers.

Whenever containers have been exposed to flames, cooling water should be applied until well after the fire is out and the containers are cooled. Containers exposed to fire should be isolated and the supplier should be contacted as soon as possible.

Sodium hydroxide solutions are corrosive, especially when concentrated. Workers at risk for exposure to spills and leaks should wear gloves, face shield and goggles and other protective clothing.

Acknowledgements: Dr. R.G. Smerko is acknowledged for making available the resources of the Chlorine Institute, Inc.

 

Back

Read 17349 times Last modified on Sunday, 04 September 2011 21:38
More in this category: Paint and Coating Manufacture »

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Chemical Processing References

Adams, WV, RR Dingman, and JC Parker. 1995. Dual gas sealing technology for pumps. Proceedings 12th International Pump Users Symposium. March, College Station, TX.

American Petroleum Institute (API). 1994. Shaft Sealing Systems for Centrifugal Pumps. API Standard 682. Washington, DC: API.

Auger, JE. 1995. Build a proper PSM program from the ground-up. Chemical Engineering Progress 91:47-53.

Bahner, M. 1996. Level-measurement tools keep tank contents where they belong. Environmental Engineering World 2:27-31.

Balzer, K. 1994. Strategies for developing biosafety programs in biotechnology facilities. Presented at the 3rd National Symposium on Biosafety, 1 March, Atlanta, GA.

Barletta, T, R Bayle, and K Kennelley. 1995. TAPS storage tank bottom: Fitted with improved connection. Oil & Gas Journal 93:89-94.

Bartknecht, W. 1989. Dust Explosions. New York: Springer-Verlag.

Basta, N. 1994. Technology lifts the VOC cloud. Chemical Engineering 101:43-48.

Bennett, AM. 1990. Health Hazards in Biotechnology. Salisbury, Wiltshire, UK: Division of Biologics, Public Health Laboratory Service, Centre for Applied Microbiology and Research.

Berufsgenossenschaftlices Institut für Arbeitssicherheit (BIA). 1997. Measurement of Hazardous Substances: Determination of Exposure to Chemical and Biological Agents. BIA Working Folder. Bielefeld: Erich Schmidt Verlag.

Bewanger, PC and RA Krecter. 1995. Making safety data “safe”. Chemical Engineering 102:62-66.

Boicourt, GW. 1995. Emergency relief system (ERS) design: An integrated approach using DIERS methodology. Process Safety Progress 14:93-106.

Carroll, LA and EN Ruddy. 1993. Select the best VOC control strategy. Chemical Engineering Progress 89:28-35.

Center for Chemical Process Safety (CCPS). 1988. Guidelines for Safe Storage and Handling of High Toxic Hazard Materials. New York: American Institute of Chemical Engineers.

—. 1993. Guidelines for Engineering Design for Process Safety. New York: American Institute of Chemical Engineers.
Cesana, C and R Siwek. 1995. Ignition behavior of dusts meaning and interpretation. Process Safety Progress 14:107-119.

Chemical and Engineering News. 1996. Facts and figures for the chemical industry. C&EN (24 June):38-79.

Chemical Manufacturers Association (CMA). 1985. Process Safety Management (Control of Acute Hazards). Washington, DC: CMA.

Committee on Recombinant DNA Molecules, Assembly of Life Sciences, National Research Council, National Academy of Sciences. 1974. Letter to the editor. Science 185:303.

Council of the European Communities. 1990a. Council Directive of 26 November 1990 on the protection of workers from risks related to exposure to biological agents at work. 90/679/EEC. Official Journal of the European Communities 50(374):1-12.

—. 1990b. Council Directive of 23 April 1990 on the deliberate release into the environment of genetically modified organisms. 90/220/EEC. Official Journal of the European Communities 50(117): 15-27.

Dow Chemical Company. 1994a. Dow’s Fire & Explosion Index Hazard Classification Guide, 7th edition. New York: American Institute of Chemical Engineers.

—. 1994b. Dow’s Chemical Exposure Index Guide. New York: American Institute of Chemical Engineers.

Ebadat, V. 1994. Testing to assess your powder’s fire and explosion hazards. Powder and Bulk Engineering 14:19-26.
Environmental Protection Agency (EPA). 1996. Proposed guidelines for ecological risk assessment. Federal Register 61.

Fone, CJ. 1995. The application of innovation and technology to the containment of shaft seals. Presented at the First European Conference on Controlling Fugitive Emissions from Valves, Pumps, and Flanges, 18-19 October, Antwerp.

Foudin, AS and C Gay. 1995. Introduction of genetically engineered microorganisms into the environment: Review under USDA, APHIS regulatory authority. In Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, edited by MA Levin and E Israeli. Boca Raton, FL:CRC Press.

Freifelder, D (ed.). 1978. The controversy. In Recombinant DNA. San Francisco, CA: WH Freeman.

Garzia, HW and JA Senecal. 1996. Explosion protection of pipe systems conveying combustible dusts or flammable gases. Presented at the 30th Loss Prevention Symposium, 27 February, New Orleans, LA.

Green, DW, JO Maloney, and RH Perry (eds.). 1984. Perry’s Chemical Engineer’s Handbook, 6th edition. New York: McGraw-Hill.

Hagen, T and R Rials. 1994. Leak-detection method ensures integrity of double bottom storage tanks. Oil & Gas Journal (14 November).

Ho, M-W. 1996. Are current transgenic technologies safe? Presented at the Workshop on Capacity Building in Biosafety for Developing Countries, 22-23 May, Stockholm.

Industrial Biotechnology Association. 1990. Biotechnology in Perspective. Cambridge, UK: Hobsons Publishing plc.

Industrial Risk Insurers (IRI). 1991. Plant Layout and Spacing for Oil and Chemical Plants. IRI Information Manual 2.5.2. Hartford, CT: IRI.

International Commission on Non-Ionizing Radiation Protection (ICNIRP). In press. Practical Guide for Safety in the Use of RF Dielectric Heaters and Sealers. Geneva: ILO.

Lee, SB and LP Ryan. 1996. Occupational health and safety in the biotechnology industry: A survey of practicing professionals. Am Ind Hyg Assoc J 57:381-386.

Legaspi, JA and C Zenz. 1994. Occupational health aspects of pesticides: Clinical and hygienic principles. In Occupational Medicine, 3rd edition, edited by C Zenz, OB Dickerson, and EP Horvath. St. Louis: Mosby-Year Book, Inc.

Lipton, S and JR Lynch. 1994. Handbook of Health Hazard Control in the Chemical Process Industry. New York: John Wiley & Sons.

Liberman, DF, AM Ducatman, and R Fink. 1990. Biotechnology: Is there a role for medical surveillance? In Bioprocessing Safety: Worker and Community Safety and Health Considerations. Philadelphia, PA: American Society for Testing and Materials.

Liberman, DF, L Wolfe, R Fink, and E Gilman. 1996. Biological safety considerations for environmental release of transgenic organisms and plants. In Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, edited by MA Levin and E Israeli. Boca Raton, FL: CRC Press.

Lichtenstein, N and K Quellmalz. 1984. Flüchtige Zersetzungsprodukte von Kunststoffen I: ABS-Polymere. Staub-Reinhalt 44(1):472-474.

—. 1986a. Flüchtige Zersetzungsprodukte von Kunststoffen II: Polyethylen. Staub-Reinhalt 46(1):11-13.

—. 1986b. Flüchtige Zersetzungsprodukte von Kunststoffen III: Polyamide. Staub-Reinhalt 46(1):197-198.

—. 1986c. Flüchtige Zersetzungsprodukte von Kunststoffen IV: Polycarbonate. Staub-Reinhalt 46(7/8):348-350.

Massachusetts Biotechnology Council Community Relations Committee. 1993. Unpublished statistics.

Mecklenburgh, JC. 1985. Process Plant Layout. New York: John Wiley & Sons.

Miller, H. 1983. Report on the World Health Organization Working Group on Health Implications of Biotechnology. Recombinant DNA Technical Bulletin 6:65-66.

Miller, HI, MA Tart and TS Bozzo. 1994. Manufacturing new biotech products: Gains and growing pains. J Chem Technol Biotechnol 59:3-7.

Moretti, EC and N Mukhopadhyay. 1993. VOC control: Current practices and future trends. Chemical Engineering Progress 89:20-26.

Mowrer, DS. 1995. Use quantitative analysis to manage fire risk. Hydrocarbon Processing 74:52-56.

Murphy, MR. 1994. Prepare for EPA’s risk management program rule. Chemical Engineering Progress 90:77-82.

National Fire Protection Association (NFPA). 1990. Flammable and Combustible Liquid. NFPA 30. Quincy, MA: NFPA.

National Institute for Occupational Safety and Health (NIOSH). 1984. Recommendations for Control of Occupational Safety and Health Hazards. Manufacture of Paint and Allied Coating Products. DHSS (NIOSH) Publication No. 84-115. Cincinnati, OH: NIOSH.

National Institute of Health (Japan). 1996. Personal communication.

National Institutes of Health (NIH). 1976. Recombinant DNA research. Federal Register 41:27902-27905.

—. 1991. Recombinant DNA research actions under the guidelines. Federal Register 56:138.

—. 1996. Guidelines for research involving recombinant DNA molecules. Federal Register 61:10004.

Netzel, JP. 1996. Seal technology: A control for industrial pollution. Presented at the 45th Society of Tribologists and Lubrication Engineers Annual Meetings. 7-10 May, Denver.

Nordlee, JA, SL Taylor, JA Townsend, LA Thomas, and RK Bush. 1996. Identification of a Brazil-nut allergen in transgenic soybeans. New Engl J Med 334 (11):688-692.

Occupational Safety and Health Administration (OSHA). 1984. 50 FR 14468. Washington, DC: OSHA.

—. 1994. CFR 1910.06. Washington, DC:OSHA.

Office of Science and Technology Policy (OSTP). 1986. Coordinated Framework for Biotechnology Regulation. FR 23303. Washington, DC: OSTP.

Openshaw, PJ, WH Alwan, AH Cherrie, and FM Record. 1991. Accidental infection of laboratory worker with recombinant vaccinia virus. Lancet 338.(8764):459.

Parliament of the European Communities. 1987. Treaty Establishing a Single Council and a Single Commission of the European Communities. Official Journal of the European Communities 50(152):2.

Pennington, RL. 1996. VOC and HAP control operations. Separations and Filtration Systems Magazine 2:18-24.

Pratt, D and J May. 1994. Agricultural occupational medicine. In Occupational Medicine, 3rd edition, edited by C Zenz, OB Dickerson, and EP Horvath. St. Louis: Mosby-Year Book, Inc.

Reutsch, C-J and TR Broderick. 1996. New biotechnology legislation in the European Community and Federal Republic of Germany. Biotechnology.

Sattelle, D. 1991. Biotechnology in perspective. Lancet 338:9,28.

Scheff, PA and RA Wadden. 1987. Engineering Design for Control of Workplace Hazards. New York: McGraw-Hill.

Siegell, JH. 1996. Exploring VOC control options. Chemical Engineering 103:92-96.

Society of Tribologists and Lubrication Engineers (STLE). 1994. Guidelines for Meeting Emission Regulations for Rotating Machinery with Mechanical Seals. STLE Special Publication SP-30. Park Ridge, IL: STLE.

Sutton, IS. 1995. Integrated management systems improve plant reliability. Hydrocarbon Processing 74:63-66.

Swiss Interdisciplinary Committee for Biosafety in Research and Technology (SCBS). 1995. Guidelines for Work with Genetically Modified Organisms. Zurich: SCBS.

Thomas, JA and LA Myers (eds.). 1993. Biotechnology and Safety Assessment. New York: Raven Press.

Van Houten, J and DO Flemming. 1993. Comparative analysis of current US and EC biosafety regulations and their impact on the industry. Journal of Industrial Microbiology 11:209-215.

Watrud, LS, SG Metz, and DA Fishoff. 1996. Engineered plants in the environment. In Engineered Organisms in Environmental Settings: Biotechnological and Agricultural Applications, edited by M Levin and E Israeli. Boca Raton, FL: CRC Press.

Woods, DR. 1995. Process Design and Engineering Practice. Englewood Cliffs, NJ: Prentice Hall.