Banner 17

 

Performing and Media Arts

Thursday, 24 March 2011 15:52

Dancers

Dance involves patterned and rhythmic body movements, usually performed to music, that serve as a form of expression or communication. There are many different types of dances, including ceremonial, folk, ballroom, classical ballet, modern dance, jazz, flamenco, tap and so forth. Each of these has its unique movements and physical demands. Audiences associate dance with grace and enjoyment, yet very few people regard dance as one of the most demanding and strenuous athletic activities. Sixty-five to 80% of dance-related injuries are in the lower limbs, out of which about 50% are in the foot and ankle (Arheim 1986). Most of the injuries are due to over-use (about 70%) and the rest are of the acute type (ankle sprain, fractures and so on).

Dance medicine is a multidisciplinary profession because causes of injuries are multifactorial and hence treatment should be comprehensive and take into consideration the specific needs of dancers as artists. The goal of the treatment should be to prevent potentially dangerous specific stresses, allowing the dancer to keep active, acquiring and perfecting physical creativity and psychological well-being.

Training should preferably start at an early age in order to develop strength and flexibility. However, incorrect training results in injury to young dancers. Proper technique is the main concern, as incorrect posture and other bad dancing habits and methods will cause permanent deformities and over-use injuries (Hardaker 1987). One of the most basic movements is the turn-out—opening of the lower limbs outwards. This should take place in the hip joints; if it is forced more than the anatomic external rotation these joints will allow, compensations occur. The most common compensations are rolling-in of the feet, internal flexing of the knees and hyperlordosis of the lower back. These positions contribute to deformities such as hallux valgus (displacement of the great toe towards the other toes). Inflammations of tendons such as the flexor hallucis longus (the tendon for the great toe) and others may also result (Hamilton 1988; Sammarco 1982).

Being cognizant of individual anatomic differences in addition to the unusual biomechanical loads, such as in point position (standing on the tip of the toes), allows one to take actions to prevent some of these undesired outcomes (Teitz, Harrington and Wiley 1985).

The environment of dancers has great influence on their well-being. A proper floor should be resilient and absorb shock to prevent cumulative trauma to the feet, legs and spine (Seals 1987). Temperature and humidity also influence performance. Diet is a major issue as dancers are always under pressure to keep slim and look light and pleasing (Calabrese, Kirkendal and Floyd 1983). Psychological maladjustment may lead to anorexia or bulimia.

Psychological stress may contribute to some hormonal disturbances, which may present as amenorrhoea. The incidence of stress fractures and osteoporosis may increase in hormonally imbalanced dancers (Warren, Brooks-Gunn and Hamilton 1986). Emotional stress due to competition between peers, and direct pressure from choreographers, teachers and directors may enhance psychological problems (Schnitt and Schnitt 1987).

A good screening method for both students and professional dancers should detect psychological and physical risk factors and avoid problems.

Any change in activity levels (whether return from a holiday, sickness or pregnancy), intensity of work (rehearsals before a premiere tour), choreographer, style or technique, or environment (such as floors, stages or even type of dance shoes) makes the dancer more vulnerable.

 

Back

Thursday, 24 March 2011 15:54

History of Performing Arts Medicine

While interest in the physiology of music making dates back to antiquity, the first real summary of the occupational diseases of performing artists is Bernardino Ramazzini’s 1713 treatise Diseases of Workers. Sporadic interest in arts medicine continued through the eighteenth and nineteenth centuries. In 1932 the English translation of Kurt Singer’s Diseases of the Music Profession: A Systematic Presentation of Their Causes, Symptoms and Methods of Treatment appeared. This was the first textbook to bring together all the current knowledge on performing arts medicine. After World War II, the medical literature began to feature case reports of injured artists. The musical literature also began to carry short items and letters. There was a parallel growth of awareness among dancers.

One of the catalysts for the development of performing arts medicine as a cross-disciplinary field was the Danube Symposium on Neurology, held in Vienna in 1972. The conference focused on music and led to the publication of Music and the Brain: Studies in the Neurology of Music, by MacDonald Critchley and R.A. Henson. Also in 1972 the first Care of the Professional Voice Symposium was organized by the Voice Foundation. This has become an annual conference, with proceedings appearing in the Journal of Voice.

While injured performers and the health professionals serving them began to cooperate more closely, the general public was unaware of these developments. In 1981 a New York Times article described the hand problems suffered by pianists Gary Graffman and Leon Fleisher, and their treatment at Massachusetts General Hospital. These were virtually the first well-known musicians to admit to physical problems, so the publicity generated by their cases brought forth a large, previously unknown group of injured artists.

Since then, the field of performing arts medicine has advanced rapidly, with conferences, publications, clinics and associations. In 1983 the first Medical Problems of Musicians and Dancers symposium was held, in conjunction with the Aspen Music Festival, in Aspen, Colorado. This has become an annual conference and is perhaps the most important in the field. Meetings such as these usually include lectures by health professionals as well as demonstrations and master classes by artists.

In 1986 the journal Medical Problems of Performing Artists was launched. This is the only journal completely dedicated to arts medicine, and it publishes many of the Aspen symposium presentations. Related journals include the Journal of Voice, Kinesiology and Medicine for Dance, and the International Journal of Arts-Medicine. In 1991 the Textbook of Performing Arts Medicine, edited by Robert Sataloff, Alice Brandfonbrener and Richard Lederman, became the first modern, comprehensive text on the subject.

As publishing grew and conferences continued, clinics serving the performing arts community were organized. Generally these clinics are in large cities that support an orchestra or dance company, such as New York, San Francisco and Chicago. There are now more than twenty such centres in the United States and several in various other countries.

Those active in the field of performing arts medicine have also founded associations to further research and education. The Performing Arts Medicine Association, set up in 1989, now co-sponsors the Aspen symposiums. Other organizations include the International Association for Dance Medicine and Science, the International Arts-Medicine Association and the Association of Medical Advisors to British Orchestras.

Research in performing arts medicine has grown from case reports and prevalence studies to sophisticated projects using advanced technology. New treatments, more responsive to the artists’ specific needs, are being developed and the emphasis is beginning to shift to prevention and education.

 

Back

Thursday, 24 March 2011 15:57

Musicians

The musician relies on the skilled use of the muscles, nerves and bones (neuromusculoskeletal system). Playing an instrument requires finely controlled repetitive motions and often entails working in unnatural postures for extended periods of practice and performance (figure 1). These demands on the body can result in specific types of health problems. In addition, adverse working conditions, such as excessive sound exposure levels, prolonged periods of performance without rest, and inadequate preparation for new and difficult repertoire or instruments may affect the health of musicians in all age groups and at all levels of performing ability. Recognition of these hazards, accurate diagnosis and early treatment will prevent occupational disabilities that may interfere with, interrupt or end careers.

Figure 1. Orchestra.

ENT180F1

Neuromusculoskeletal Problems

Studies from the United States, Australia and Canada suggest that around 60% of musicians will face career-threatening injuries during their working lifetime. Clinical cross-sectional studies have examined the prevalence of muscle-tendon disorders, of peripheral nerve entrapment syndromes and motor control problems. These studies have revealed several common diagnoses, which include various overuse syndromes, including strain of the muscles and connective tissue which control the bending and extending motions in the wrist and fingers. These syndromes result from the repetitive forceful movement of the muscle-tendon units. Other common diagnoses relate to pain in body parts which are involved in prolonged strain from awkward and imbalanced postures while playing musical instruments. Playing the instruments in the groups described below involves putting pressure on the branches of the nerves in the wrist and forearm, the shoulders, arm and neck. Occupational cramp or muscle spasms (focal dystonia) are also common problems which often can affect performers at the pinnacle of their careers.

String instruments: Violin, viola, cello, bass, harp, classical guitar and electric guitar

Health problems in musicians who play string instruments often are caused by the manner in which the musician supports the instrument and the posture assumed while sitting or standing and playing. For example, most violinists and violists support their instruments between the left shoulder and chin. Often the musician’s left shoulder will be elevated and the left chin and jaw will bear down in order to allow the left hand to move over the fingerboard. Elevating a joint and bearing down at the same time leads to a state of static contraction which promotes neck and shoulder pain, temporomandibular joint disorders involving the nerves and muscles of the jaw, and thoracic outlet syndrome, which can include pain or numbness in the neck, shoulder and upper chest area. Prolonged static sitting postures, particularly while assuming a bent posture, promote pain in the large muscle groups which support posture. Static twisting rotation of the spine is often required to play the string bass, harp and classical guitar. Heavy electric guitars are usually supported by a strap over the left neck and shoulder, contributing to pressure on the nerves of the shoulder and upper arm (the brachial plexus) and thus to pain. These problems of posture and support contribute to the development of strain and pressure of the nerves and muscles of the wrist and fingers by promoting their faulty alignment. For example, the left wrist may be used for excessive repetitive bending motions which result in strain of the extensor muscles of the wrist and fingers and the development of carpal tunnel syndrome. Pressure on the nerves of the shoulder and arm (lower trunks of the brachial plexus) may contribute to problems with the elbow, such as a double crush syndrome and ulnar neuropathy.

Keyboard instruments: Piano, harpsichord, organ, synthesizers and electronic keyboards

Playing a keyboard instrument requires assuming a similar posture to that of typing. Often the forward and downward orientation of the head to look at the keys and hands and repetitive upward movement to look at the music causes pain in the nerves and muscles of the neck and back. The shoulders will often be rounded, combined with a forward head poking posture and a shallow breathing pattern. A condition known as thoracic outlet syndrome can develop from chronic compression of the nerves and blood vessels that pass between the muscles in the neck, shoulder and rib cage. In addition, a musician’s tendency to bend the wrists and curl the fingers while keeping the hand/finger joints flat places excessive strain on the wrist and finger muscles in the forearm. Additionally, the repeated use of the thumb kept in a position under the hand strains the thumb muscles which extend and binds the finger extensor muscles across the back of the hand. The high repetitive force needed to play large chords or octaves may strain the capsule of the wrist joint and result in ganglion formation. Prolonged co-contraction of the muscles that turn and move the arms up and down can lead to nerve entrapment syndromes. Muscle spasms and cramps (focal dystonia) are common among this group of instrumentalists, sometimes requiring long periods of neuromuscular retraining to correct movement patterns which can lead to these difficulties.

Wind and brass instruments: Flute, clarinet, oboe, saxophone, bassoon, trumpet, french horn, trombone, tuba and bagpipes

A musician who plays one of these instruments will vary his or her posture according to the need to control airflow since posture will control the area from which diaphragmatic and intercostal breath is drawn. Playing these instruments depends on the way the mouthpiece is held (the embouchure) which is controlled by the facial and pharyngeal muscles. The embouchure controls sound production of vibrating reeds or the mouthpiece. Posture also affects how the musician supports the instrument while sitting or standing and in operating the keys or valves of the instrument that govern the pitch of the note played by the fingers. For example, the traditional French open-holed flute requires sustained adduction and flexion (bending forward) of the left shoulder, sustained abduction (drawing away) of the right shoulder and rotation of the head and neck to the left in slight movement. The left wrist is often held in an extremely bent position while the hand is also extended in order to support the instrument by the curled left index finger and both thumbs, counter balanced by the right little finger. This promotes strain of the forearm muscles and the muscles which permit extension of the fingers and thumbs. The tendency to project the head and neck forward and use shallow breathing increases the chances of developing thoracic outlet syndrome.

Percussion instruments: Drums, timpani, cymbals, xylophone, marimba, tabla and taiko

The use of sticks, mallets and bare hands to strike various percussion instruments results in rapid pulling back of the wrists and fingers at impact. The impulse vibration caused by striking the instrument is transmitted up the hand and arm and contributes to repetitive strain injuries of the muscle-tendon units and the peripheral nerves. Biomechanical factors, such as the amount of force used, the repetitive nature of the playing and static load placed on the muscles can add to the injuries. Carpal tunnel syndrome and nodule formation in tendon sheaths are common in this group of musicians.

Hearing Loss

The risk of hearing loss from music exposure depends on the intensity and duration of exposure. It is not uncommon to have exposure levels of 100 dB during a quiet passage of orchestral music, with peak values of 126 dB measured at the shoulder of an instrumentalist in the middle of the orchestra. At the position of the conductor or teacher, levels of 110 dB in an orchestra or band are common. Exposure levels for pop/rock and jazz musicians may be significantly higher, depending on the physical acoustics of the stage or pit, amplification system and placement of speakers or other instruments. The average duration of exposure may be approximately 40 hours per week, but many professional musicians will perform 60 to 80 hours per week on occasion. Hearing loss among musicians is far more common than expected, with approximately 89% of professional musicians who were found to have suffered musculoskeletal injuries also showing an abnormal hearing test result, with a hearing loss in the 3 to 6 KHz region.

Personal ear protection can be used but it must be adapted for each instrument type (Chasin and Chong 1992). By inserting an acoustic attenuator or filter into custom-moulded earplugs, the intensity of higher frequency sounds transmitted by ordinary earplugs is reduced to a flat attenuation as measured at the eardrum, which should be less damaging to the ear. The use of a tuned or adjustable vent in a custom earplug will allow the lower frequencies and some harmonic energy to pass through the earplug unattenuated. Earplugs can be designed to provide a slight amplification to alter perception of the singer’s voice, thus allowing the artist to reduce the risk of vocal strain. Depending on the psycho-acoustical nature of the instrument and surrounding music exposures, substantial reduction in risk for the development of hearing loss can be obtained. Improvement in the perception of the relative intensity of the musician’s own performance may reduce the risk of repetitive strain injuries by a relative reduction of the force of repetitive movements.

There are practical strategies for reducing the exposure of musicians that do not interfere with music production (Chasin and Chong 1995). Loudspeaker enclosures can be elevated above floor level, which results in minimal loss of low-frequency sound energy, while preserving sufficient loudness for the musician to perform at a lower intensity level. Musicians who play high-intensity, highly directional instruments such as trumpets and trombones should be on risers so that the sound passes above the other musicians, thereby lowering its impact. There should be 2 m of unobstructed floor space in front of the orchestra. Small stringed instruments should always have at least 2 m of unobstructed space above them.

 

Back

Thursday, 24 March 2011 19:13

Singers

The term singer applies to any person whose career, avocation or livelihood relies heavily on the use of his or her voice in a musical context rather than ordinary speech. Unlike percussionists, pianists or violinists, the singer is the instrument. Hence, the well-being of a singer depends not only on the health of his or her larynx (where the sound originates) or vocal tract (where the sound is modified), but also on proper functioning and maximal coordination of most mind and body systems.

Of the many styles of singing documented throughout the world, some reflect a unique liturgical, cultural, linguistic, ethnic or geo-political heritage, while others are more universal in nature. Among the common styles of singing in the United States and Western world are: traditional classical (including oratorio, opera, art songs and so on), barbershop, jazz, musical theatre (Broadway), choral, gospel, folk, country (and western), popular, rhythm and blues, rock ’n’ roll (including heavy metal, alternative rock and so on) and others. Each style of delivery has its typical settings, patterns, habits and associated risk factors.

Vocal Problems

Unlike non-singers, who may not be significantly hindered by vocal problems, for the classical singer, the effect of subtle vocal impairment can be devastating. Even within that category of trained singers, vocal impairment is much more debilitating for the higher voice classifications (sopranos and tenors) than for lower classifications (mezzo sopranos, altos, baritones and basses). On the other hand, some vocal performers (pop, gospel or rock, for example) go to great lengths to achieve a unique trademark and enhance their marketability by inducing vocal pathologies which often yield a breathy, husky, muffled diplophonic (simultaneous multiple pitches) quality. Owing, in part, to their impairment, they tend to sing with great effort, struggling particularly to produce the high notes. To many listeners, this struggle adds a dramatic effect, as if the singer is sacrificing his or her self while engaging in the artistic process.

The prevalence of occupation-related injuries in general, and voice disorders in particular, among singers is not well documented in the literature. This author estimates that on the average, between 10 and 20% of singers in the United States sustain some form of chronic voice disorder. However, the incidence of vocal injury varies significantly with many factors. Because many singers must adhere to specific artistic/aesthetic criteria, performance practices, popular (consumer) demands, financial constraints and social pressures, they often stretch their vocal capabilities and endurance to the limits. Furthermore, singers generally tend to deny, trivialize or ignore warning signs and even diagnoses of vocal injury (Bastian, Keidar and Verdolini-Marston 1990).

The most common problems among singers are benign mucosal disorders. The mucosa is the outer layer, or cover, of the vocal folds (commonly called vocal cords) (Zeitels 1995). Acute problems can include laryngitis and transient vocal fold swelling (oedema). Chronic mucosal lesions include vocal fold swellings, nodules (“calluses”), polyps, cysts, sub-mucosal haemorrhage (bleeding), capillary ectasia (widening), chronic laryngitis, leukoplakia (white spots or patches), mucosal tears and glottic sulci (deep furrows in the tissue). Although these disorders can be exacerbated by smoking and excessive alcohol consumption, it is important to note that these benign mucosal lesions are typically related to the amount and manner of voice use, and are the product of vibratory trauma (Bastian 1993).

Causes of Vocal Problems

In looking at the causes of vocal problems in singers, one should distinguish between intrinsic and extrinsic factors. Intrinsic factors are those related to personality, vocal behaviour (including speaking) on and off stage, vocal technique, and intake habits (primarily if substance abuse, improper medication, malnutrition and/or dehydration is involved). Extrinsic factors are related to environmental pollutants, allergies and so on. Based on clinical experience, intrinsic factors tend to be most important.

Vocal injury is usually a cumulative process of misuse and/or overuse during the singer’s productive (performance-related) and/or non-productive (domestic, social) activities. It is difficult to ascertain how much of the damage is attributable directly to the former versus the latter. Performance risk factors can include unreasonably long dress rehearsals requiring full-voice singing, performing with an upper-respiratory infection in the absence of a replacement and excessive singing. Most vocalists are advised not to sing for more than about 1.5 hours (net) per day. Unfortunately, many singers do not respect the limitations of their apparatus. Some tend to get caught up in the exploratory excitement of new technical skills, new means of artistic expression, new repertoire and so on, and practice 4, 5 or 6 hours daily. Even worse is the beating of the voice into shape when distress signals of injury (such as loss of high notes, inability to sing softly, breathy delay in sound initiation, unstable vibrato and increased phonatory effort) are manifested. The culpability of vocal overtaxing is shared with other taskmasters such as the booking agent who squeezes multiple performances into an impossible time frame, and the recording agent who leases the studio for 12 consecutive hours during which the singer is expected to record a complete CD sound track from start to finish.

Although every singer may encounter acute episodes of voice problems at some point in his or her career, it is generally believed that those singers who are musically literate and can adjust the musical score to their voice limitations, and those who have had proper voice training, are less likely to encounter severe problems of a chronic nature than their untrained peers, who often learn their repertoire by rote, repeatedly imitating or singing along with demo tapes or recordings of other performers. In doing so, they frequently sing in a key, range or style unsuitable for their voices. Singers who lend themselves to periodic tutelage and maintenance by proficient voice experts are less likely to resort to faulty compensatory vocal manoeuvres if confronted by physical impairment, and are more inclined to establish a reasonable balance between artistic demands and vocal longevity. A good teacher is aware of the normal (expected) capabilities of each instrument, can usually distinguish between technical and physical limitations, and often is the first to detect warning signs of vocal impairment.

Sound amplification can also create problems for singers. Many rock groups, for example, amplify not only the singer, but the entire band. When the noise level interferes with auditory feedback, the singer is often unaware that he or she is singing too loudly and using faulty technique. This may contribute significantly to the development and exacerbation of vocal pathology.

Non-performance factors can also be important. Singers must realize that they do not have separate laryngeal mechanisms for singing and speaking. Although most professional singers spend much more time talking than singing, speaking technique is commonly discarded or rejected, which can adversely affect their singing.

Many of today’s singers must travel regularly from one performance venue to another, on trains, tour buses or airplanes. Ongoing touring requires not only psychological adaptation, but also physical adjustments on many levels. In order for singers to function optimally, they must receive adequate quality and quantity of sleep. Radical rapid changes in time zones causes jet lag, which forces singers to remain awake and alert when their internal clock is cueing various body systems to shut down for sleep, and conversely, to sleep when their brain systems are aroused to plan and execute normal daytime activities. Such interruption may result in a host of debilitating symptoms, including chronic insomnia, headaches, sluggishness, dizziness, irritability and forgetfulness (Monk 1994). Aberrant sleep patterns are also a common problem among those singers who perform late at night. These abnormal sleep patterns are all too often mismanaged with alcohol or recreational, prescription or over-the-counter (OTC) drugs (most of which adversely affect the voice). Frequent and/or prolonged confinement to a closed cabin of a motor vehicle, train or aircraft may create additional problems. Inhalation of poorly filtered (often recycled), contaminated, dehumidified (dry) air (Feder 1984), according to many singers, can cause respiratory discomfort, tracheitis, bronchitis or laryngitis that may linger on for hours or even days following a trip.

Owing to environmental instability and hectic scheduling, many singers develop erratic, unhealthful eating habits. In addition to reliance on restaurant food and unpredictable changes in meal times, many singers eat the main meal of the day after their performance, usually late at night. Particularly for the overweight singer, and especially if spicy, greasy or acidic foods, alcohol or coffee were consumed, lying down soon after having filled the stomach is likely to result in gastroesophageal reflux. Reflux is the retrograde flow of acids from the stomach up the oesophagus and into the throat and larynx. The resulting symptoms can be devastating to the singer. Eating disorders are quite common among singers. In the operatic and classical realm, overeating and obesity are quite common. In the musical theatre and pop domain, particularly among young females, reportedly one-fifth of all singers have encountered some form of eating disorder, such as anorexia or bulimia. The latter involves various purging methods, of which vomiting is thought to be particularly hazardous to the voice.

A detrimental factor to voice production is exposure to pollutants, such as formaldehyde, solvents, paints and dusts, and allergens, such as tree, grass or weed pollens, dust, mould spores, animal danders and perfumes (Sataloff 1996). Such exposure may occur on and off stage. In their work milieu, singers can be exposed to these and other pollutants associated with vocal symptoms, including cigarette smoke and theatrical smoke and fog effects. Singers use a greater percentage of their vital capacity than ordinary speakers. Furthermore, during intense aerobic activity (such as dancing), the number of breathing cycles per minute increases, and mouth breathing prevails. This results in the inhalation of larger amounts of cigarette smoke and fogs during performances.

Treatment of Vocal Problems

Two major issues in the treatment of vocal problems of singers are self-medication and improper treatment by physicians who are not knowledgeable about the voice and its problems. Sataloff (1991, 1995) surveyed the potential side effects associated with medications commonly used by singers. Whether recreational, prescription, over the counter or food supplements, most drugs are likely to have some effect on phonatory function. In an attempt to control “allergies”, “phlegm” or “sinus congestion”, the self-medicating singer will ultimately ingest something that will damage the vocal system. Likewise, the physician who keeps prescribing steroids to reduce chronic inflammation caused by abusive vocal habits and ignores the underlying causes will eventually hurt the singer. Vocal dysfunction resulting from poorly indicated or ill-performed phonosurgery has been documented (Bastian 1996). To avoid injuries secondary to treatment, singers are advised to know their instruments, and consult only with health care professionals who understand and have experience and expertise managing the vocal problems of singers, and who possess the patience to educate and empower singers.

 

Back

Thursday, 24 March 2011 19:15

Performance Anxiety

Performance anxiety is, like fear, joy or grief, an emotion which includes physical and psychological components. Motor responses, autonomic reactions, memories, ideas and thoughts continuously interact. Performance anxiety is no longer thought of as an isolated symptom but rather as a syndrome comprising attitudes, traits and unconscious conflicts that become activated in particular circumstances.

Nearly every person must deal with performance anxiety in one form or another at one time or another. By the nature of their profession, however, performing artists, or those for whom public performance is an important part of their profession, have to deal with performance anxiety more frequently and often more intensely than do others. Even those with years of experience may still have a performance anxiety problem.

Performance anxiety is mainly characterized by an irrational situational anxiety accompanied by unwanted physical symptoms which can lead to dysfunction and/or uncontrolled behaviour. It occurs especially in those situations in which a task has to be done that could subject the performer to possible criticism from others. Examples of such situations include public speaking, giving a concert, writing exams, sexual performance, etc. Performance anxiety can cause a broad range of possible physical symptoms of distress, such as trembling hands, trembling lips, diarrhoea, sweating hands and palpitations of the heart. These symptoms can not only affect the quality of a performance but may also negatively influence the sufferer’s future and career.

Some experts believe that the causes of performance anxiety include improper practice and preparation habits, insufficient performance experience, having an inappropriate repertoire and so on. Other theories view performance anxiety as mainly caused by negative thoughts and poor self-esteem. Still others are of the opinion that the stress and fear of performance anxiety is closely related to so-called career stress, which includes feelings of inadequacy, anticipation of punishment or criticism and loss of status. Although there is no agreement as to the cause of performance anxiety, and the explanation cannot be simple, it is clear that the problem is widespread and that even world-famous artists such as Yehudi Menuhin or Pablo Casals are known to have suffered from performance anxiety and fear all their lives.

Personal traits are undoubtedly related to performance anxiety. A challenge for one person can be a catastrophe for another. The experience of performance anxiety depends to a great extent on the personal perception of a fearful situation. Some introverted individuals may, for example, be more prone to stressful events and thus more likely to suffer performance anxiety than others. For some people, success can also cause fear and performance anxiety. This in turn reduces and undermines the communicative and creative aspects of the performer.

To achieve an optimum performance a bit of fear and stress and a certain amount of nervousness may be unavoidable. The margin between the degree of (still) acceptable performance anxiety and the necessity of therapeutic intervention, however, can be set only by the performer.

Performance anxiety is a complex phenomenon; its various components lead to variable and changing reactions depending on the situation. Individual aspects, work situations, social factors, personal development and so on play a considerable role, making it difficult to give general rules.

Methods for diminishing performance anxiety include developing personal coping strategies or learning relaxation techniques such as biofeedback. Such approaches are directed towards transforming task-irrelevant negative thoughts and worrisome anticipations into task-relevant demands and the positive task-orientated self. Medical interventions, such as beta-blockers and tranquillizers are also commonly used (Nubé 1995). The taking of drugs however, remains controversial and should be done only under medical supervision due to possible side effects and contra-indications.

 

Back

Thursday, 24 March 2011 19:17

Actors

Acting involves placing your mind in the world of fantasy and bringing forth a character for a performance. Actors are involved in many arts and entertainment areas, including theatre, film, television, amusement and theme parks and so on. Hazards faced by actors include stress, physical hazards and chemical hazards. Stage fright (performance anxiety) is considered in a separate article.

Stress

Causes of stress include the fierce competition for scarce jobs, the pressure of performing shows daily or even more frequently (e.g., theme parks and matinee days), working at night, touring shows, filming deadlines, frequent retakes (especially while filming television commercials) and so on. There are also psychological pressures involved in adopting and maintaining a character role, including the pressure to express certain emotions upon demand, and the tactics often used by directors to obtain a given reaction from an actor. As a result, actors have higher rates of alcoholism and suicide. The solution to many of these causes of stress involves improved working and living conditions, especially when touring and on location. In addition, personal measures such as therapy and relaxation techniques can also help.

Costumes

Many costumes are a fire hazard near open flames or other ignition sources. Special effects costumes and masks can create problems of heat stress and excess weight.

The costumes of all actors working near open flames must be treated with an approved fire retardant. Actors wearing heavy costumes or costumes not suitable to the climate should be given adequate work breaks. With heavy metal or wood framework costumes, supplying cool air inside the costume might be necessary. Provision should also be made for easy escape from such costumes in case of emergency.

Theatrical Makeup

Theatrical makeup can cause allergic skin and eye reactions and irritation in some people. The widespread practice of sharing makeup or applying it to many people from the same container can create risks of transmitting bacterial infections. According to medical experts, transmission of the HIV and other viruses is not likely through shared makeup. The use of hair sprays and other spray products in unventilated dressing rooms is also a problem. Special effects makeup can involve the use of more hazardous materials such as polyurethane and silicone rubber resins and a variety of solvents.

Basic precautions when applying makeup include washing hands before and after; not using old makeup; no smoking, eating or drinking during application; using potable water and not saliva for moistening brushes; avoiding creation of airborne dust; and using pump sprays instead of aerosol sprays. Each performer should have his or her own makeup kit when practical. When applying makeup to several individuals, disposable sponges, brushes and individual applicators, individual lipsticks (or sliced and labelled lipsticks) and so on should be used. The least toxic materials possible should be used for special effects makeup. The dressing room should have a mirror, good lighting and comfortable chairs.

Stunts

A stunt can be defined as any action sequence that involves a greater than normal risk of injury to performers or others on the set. In many such situations, actors are doubled by stunt performers who have extensive experience and training in carrying out such action sequences. Examples of potentially hazardous stunts include falls, fights, helicopter scenes, car chases, fires and explosions. Careful preplanning and written safety procedures are necessary. See the article “Motion picture and television production” for detailed information on stunts.

Other Hazards

Other hazards to actors, especially on location, include environmental conditions (heat, cold, polluted water, etc.), water scenes with possible risk of hypothermia and special effects (fogs and smoke, pyrotechnics, etc.). Special consideration must be given to these factors before filming starts. In theatres, scenes with dirt, gravel, artificial snow and so on can create eye and respiratory irritation problems when hazardous materials are used, or when materials are swept up and reused, resulting in possible biological contamination. An additional hazard is the growing phenomenon of stalking of well-known actors, actresses and other celebrities, with resultant threats or actuality of violence.

Child Actors

The use of children in theatre and motion picture production can lead to exploitation unless careful procedures are enforced to ensure that children do not work long hours, are not placed in hazardous situations and receive adequate education. Concern has also been expressed about the psychological effects on children participating in theatre or motion picture scenes involving simulated violence. Child labour laws in many countries do not adequately protect child actors.

 

Back

Thursday, 24 March 2011 19:18

Theatre and Opera

Occupational safety and health in the theatre and opera comprises diverse aspects, including all the problems of industry in general plus specific artistic and cultural aspects. More than 125 different professions are involved in the process of making theatre or opera performances; these performances can take place in classrooms and small theatres, as well as large opera houses or convention halls. Very often theatre and opera companies tour around the country and abroad, performing in diverse buildings.

There are the artistic professions—artists, actors, singers (soloists and choirs), musicians, dancers, coaches, choreographers, conductors and directors; the technical and production professions—technical directors and managers, lighting manager, chief electrician, sound engineer, chief machinist, armourer, wigmaster, dyeing and wardrobe director, property maker, costume maker and others; and the administrative professions—chief accountant, personnel managers, house managers, catering managers, contracts managers, marketing personnel, box office personnel, advertising managers and so on.

The theatre and opera involve general industrial safety hazards such as lifting of heavy objects and accident risks as a result of irregular working hours, combined with factors specific to the theatre, such as the layout of the premises, complex technical arrangements, bad lighting, extreme temperatures and the need to work to tight schedules and meet deadlines. These risks are the same for artists and technical personnel.

A serious attitude towards occupational safety and health demands taking care of the hand of a violinist or the wrist of a ballet dancer, as well as a broader view of the situation of theatre employees as a whole, including both physical and psychological risks. Theatre buildings are also open to the public, and this aspect of safety and health must be taken care of.

Fire Safety

There are many types of potential fire hazards in theatres and opera houses. These include: general hazards such as blocked or locked exits, inadequate number and size of exits, lack of training in procedures in the event of fire; backstage hazards such as improper storage of paints and solvents, unsafe storage of scenery and other combustibles, welding in close proximity to combustible materials and lack of proper exits for dressing rooms; on-stage hazards such as pyrotechnics and open flames, lack of fireproofing of drapes, decorations, props and scenery, and lack of stage exits and sprinkler systems; and audience hazards such as permitting smoking, blocked aisles and exceeding the legal number of occupants. In case of a fire in the theatre building all aisles, passages and staircases must be kept entirely free from chairs or any other obstructions, to help evacuation. Fire escapes and emergency exits must be marked. The alarm bells, fire alarms, fire extinguishers, sprinkler systems, heat and smoke detectors and emergency lights must function. The fire curtain must be lowered and raised in the presence of each audience, unless a deluge sprinkler system is installed. When the audience must leave, whether in an emergency or at the end of a performance, all exit doors must be open.

Fire safety procedures must be established and fire drills held. One or more trained fire guards must be present at all performances unless the fire department assigns firefighters. All scenery, props, drapes and other combustible materials present on the stage must be fireproofed. If pyrotechnics or open flames are present, fire permits must be obtained when required and safe procedures established for their use. Stage and backstage lighting equipment and electrical systems must meet standards and be properly maintained. Combustible materials and other fire hazards should be removed. Smoking should not be allowed in any theatre except in properly designated areas.

Grids and Rigging

Theatre and opera stages have overhead grids from which lights are hung, and rigging systems to fly (raise and lower) scenery and sometimes performers. There are ladders and overhead catwalks for lighting technicians and others to work overhead. On the stage, discipline is required from both the artists and the technical staff because of all the hanging equipment above. Theatre scenery can be moved vertically and horizontally. Horizontal movement of scenery at the side of the stage can be done manually or mechanically through the ropes from the grids in the rope house. Safety routines are very important in rope and counterweight flying. There are different kinds of rigging systems, using hydraulic and electric power. Rigging should be done by trained and qualified personnel. Safety procedures for rigging include: inspection of all rigging equipment before use and after alterations; ensuring load capacities are not exceeded; following safe procedures when loading, unloading or operating rigging systems; maintaining visual contact with a moving piece at all times; warning everyone before moving any rigged object; and ensuring no one is underneath when moving scenery. The lighting crew must take appropriate safety measures while mounting, connecting and directing spotlights (figure 1). Lights should be fastened to the grid with safety chains. Safety shoes and helmets should be worn by personnel working on stage when any work is proceeding overhead.

Figure 1. Arranging lights in a lowered lighting grid.

ENT220F1

William Avery

Costumes and Makeup

Costumes

Costumes can be made in the theatres’ own ateliers by the wardrobe attendants. It is a heavy job, especially the handling and transportation of old classical costumes. Body aches, headaches, musculoskeletal strains and sprains and other injuries can result from operating sewing machines, dryers, irons, ironing boards and electrical equipment; dust from textiles is a health hazard. Cleaning and dying of costumes, wigs and shoes can use a variety of hazardous liquid solvents and aerosol sprays.

Wearing heavy costumes can be hot under stage lights. Frequent costume changes between scenes can be a source of stress. If flames are present, fireproofing of costumes is essential.

Precautions for wardrobe attendants include proper electrical safety; adequate lighting and ventilation for solvents and spraying; adequate adjustable chairs, work tables and ironing boards; and knowledge of textiles health hazards.

Makeup

Performers usually have to wear heavy layers of makeup for several hours for every performance. Application of makeup and hair styling is usually done by makeup and hair artists in commercial theatre and opera. Often the makeup artist has to work on several performers in a short period of time. Makeup can contain a wide variety of solvents, dyes and pigments, oils, waxes and other ingredients, many of which can cause skin or eye irritation or allergies. Special effects makeup can involve the use of hazardous adhesives and solvents. Eye injuries can result from abrasions during application of eye makeup. Shared makeup is a concern for transmission of bacterial contamination (but not hepatitis or HIV). The use of aerosol hair sprays in enclosed dressing rooms is an inhalation hazard. For makeup removal, large quantities of cold creams are used; solvents are also used for removing special effects makeup.

Precautions include washing off the makeup with soap after every performance, cleaning of brushes and sponges or using disposable ones, using individual applicators for makeup and keeping all makeup cold. The makeup room must have mirrors, flexible lighting and adequate chairs.

Setting Up and Striking Sets

Scenery at a theatre may require one standing set, which can be constructed of heavy materials; more frequently there can be several changes of scenery during a performance, requiring movability. Similarly, for a repertory theatre, changeable scenery can be constructed which is easily transportable. Scenery can be built on wheels, for mobility.

Stage crews risk injury when building, disassembling and moving scenery, and when moving counterbalances. Hazards include back, leg and arm injuries. Accidents often occur when breaking down (striking) the set when a show’s run is over, due to fatigue. Precautions include wearing hard hats and safety shoes, safe lifting procedures and equipment, banning of unnecessary personnel and not working when fatigued.

For scene decorators or painters painting, nailing and laying out backdrops, paint and other chemicals are also health hazards. For carpenters, unsafe worksites, noise and vibration as well as air contamination are all problems. Wig and mask makers generally have problems with working postures as well as health risks associated with the use of resins—for example, when working on bald heads and false noses. Health risks include toxic chemicals and possible allergies, skin irritation and asthmatic complaints.

Regulations

There are often national laws, for example, building codes, and local regulations for fire safety. For grids and rigging, directives from the European Economic Commission—for instance, on machinery (89/392 EEC) and on lifting appliances for persons—may influence national legislation. Other countries also have safety and health legislation that can affect theatres and opera houses.

 

Back

Thursday, 24 March 2011 19:22

Scenery Shops

Theatres, motion pictures, television, theme and amusement parks and similar entertainment enterprises all build and paint scenery and make props for their presentations. In many cases, these are made in-house. There are also commercial scenic shops that specialize in making large scenery which is then transported to the site. The major difference between making scenery backstage in a small theatre and building huge sets or even houses for a motion picture, for example, is the scale of the work and who does the work. In small theatres, there is little division of tasks, whereas in larger facilities, there would be a division of labour among carpenters, scenic painters, welders, prop makers and so on.

The scenery for a theatre play, motion picture set or television studio might look realistic, but is often an illusion. The walls of a room are usually not solid but are composed of lightweight flats (panels of painted canvas stretched on wooden frames). Background scenery often consists of backdrops (huge curtains painted to represent the background) which can be lowered and raised for different scenes. Other solid-looking props, such as trees, rocks, vases, mouldings, sculptures and so forth, might be made out of papier mâché, plaster, polyurethane foam or other materials. Today, a wide variety of materials are used to make scenery, including wood, metal, plastics, synthetic fabrics, paper and other modern industrial products. For scenery which performers will walk or climb on, the structures must be solid and meet proper safety standards.

The basic processes and chemicals used for making sets and props tend to be similar for the various types of entertainment facilities. Outdoor sets, however, can often use heavy construction materials such as cement on a large scale, which would be impractical inside due to smaller load-bearing capacities. The degree of hazard depends on the types and amounts of chemicals used, and the precautions taken. A theatre might use quarts of polyurethane foam resin for making small props, while the inside of a tunnel in a theme park set might use hundreds of gallons of the resin. Small in-house shops tend to have less awareness of the hazards, and overcrowding often creates additional hazards due to the proximity of incompatible processes such as welding and use of flammable solvents.

Woodworking

Wood, plywood, particle board and Plexiglas are commonly used in constructing sets. Hazards include: accidents with woodworking machinery, power tools and hand tools; electrical shock; fire from combustible wood dust; and toxic effects from inhalation of wood dust, formaldehyde and methyl methacrylate decomposition products from machining plywood, particle board and Plexiglas, and solvents used with contact adhesives.

Precautions include machine guards, proper electrical safety, housekeeping and adequate storage to reduce fire hazards, dust collectors, adequate ventilation and eye protection.

Welding, Cutting and Brazing

Steel and aluminium frameworks are commonly used for the construction of sets. These are often welded using oxyacetylene torches and arc welders of various types. Injury hazards include fire from flying sparks, fire and explosion from compressed gases, and electrical shock from arc welders; health hazards include metal fumes, fluxes, welding gases (ozone, nitrogen oxides, carbon monoxide) and ultraviolet radiation.

Precautions include removal or protection of combustible materials, proper storage and handling of compressed gas cylinders, electrical safety, adequate ventilation and personal protective equipment.

Scenic Painting

Paints, lacquers, varnishes, dye solutions and other coatings are used for painting scenery flats and fabric drops. The paints and dye solutions can be either solvent based or water based. Powdered pigments and dyes are usually mixed in the shop, with the use of lead chromate pigments still being common. Large flats and drops are often sprayed. Solvents are used for dissolving dyes and resins, thinning, removing paint and other coatings and for cleaning tools, brushes and even hands. Hazards include skin contact with solvents and inhalation of solvent vapours, spray mists and powdered dyes and pigments. Solvents are also fire hazards, particularly when sprayed.

Precautions include elimination of lead pigments, using water-based paints and dyes, adequate ventilation for use of solvents, respiratory protection for spraying, proper storage and handling of flammable liquids and proper disposal of waste solvents and paints.

Plastic Resins

Polyurethane foam resins, epoxy resins, polyester resins and other resins are commonly used to make large sets and props. Spraying of polyurethane foam resins containing diphenylmethane diisocyanate (MDI) is particularly dangerous, with hazards of chemical pneumonia and asthma. Epoxy resins, polyester resins and solvents have skin, eye and inhalation hazards, and are fire hazards.

Precautions include substitution of safer materials (such as cement or celastic instead of spray polyurethane foams, or water-based materials to replace solvent-based types), local exhaust ventilation, proper storage and handling, proper disposal of waste materials and adequate personal protective equipment.

Props and Models

Plastic resins are also used to make body armour, face masks, breakaway glass and other props and models, as are wood, plaster, metal, plastics and so on. A variety of water-based and solvent-based adhesives are also used. Solvents are used in cleanup. Precautions are similar to those already discussed.

 

Back

Thursday, 24 March 2011 19:25

Motion Picture and Television Production

The motion picture and television industry is found throughout the world. Motion picture production can take place in fixed studios, on large commercial studio lots or on location anywhere. Film production companies range in size from large corporations’ own studios to small companies that rent space in commercial studios. The production of television shows, soap operas, videos and commercials has much in common with motion picture production.

Motion picture production involves many stages and a crew of interacting specialists. The planning stages include obtaining a finished script, determining the budget and schedule, choosing types of location and studios, designing the scene-by-scene appearance of the film, selecting costumes, planning sequence of action and camera locations and lighting schemes.

Once the planning is completed, the detailed process of choosing the location, building sets, gathering the props, arranging the lighting and hiring the actors, stunt performers, special effects operators and other needed support personnel begins. Filming follows the preproduction stage. The final step is film processing and editing, which is not discussed in this article.

Motion picture and television production can involve a wide variety of chemical, electrical and other hazards, many of which are unique to the film industry.

Hazards and Precautions

Filming location

Filming in a studio or on a studio lot has the advantage of permanent facilities and equipment, including ventilation systems, power, lighting, scene shops, costume shops and more control over environmental conditions. Studios can be very large in order to accommodate a variety of filming situations.

Filming on location, especially outdoors in remote locations, is more difficult and hazardous than in a studio because transportation, communications, power, food, water, medical services, living quarters and so on must be provided. Filming on location can expose the film crew and actors to a wide variety of hazardous conditions, including wild animals, poisonous reptiles and plants, civil unrest, climate extremes and adverse local weather conditions, communicable diseases, contaminated food and water, structurally unsafe buildings, and buildings contaminated with asbestos, lead, biological hazards and so on. Filming on water, in the mountains, in deserts and other dangerous locales poses obvious hazards.

The initial survey of possible filming locations should involve evaluating these and other potential hazards to determine the need for special precautions or alternative locations.

Fabricating scenery for motion pictures can involve constructing or modifying a building or buildings, building of indoor and outdoor sets and so on. These can be full size or scaled down. Stages and scenery should be strong enough to bear the loads under consideration (see “Scenery shops” in this chapter).

Life safety

Basic life safety includes ensuring adequate exits, keeping access routes and exits marked and clear of equipment and electrical cables and removal or proper storage and handling of combustible materials, flammable liquids and compressed gases. Dry vegetation around outdoor locations and combustible materials used in filming such as sawdust and tents must be removed or flame-proofed.

Automobiles, boats, helicopters and other means of transportation are common on film locations and a cause of many accidents and fatalities, both when used for transportation and while filming. It is essential that all drivers of vehicles and aircraft be fully qualified and obey all relevant laws and regulations.

Scaffolding and rigging

On location and in studios, lights are rigged to sets, scaffolding or permanent overhead grids, or are free standing. Rigging is also used to fly scenery or people for special effects. Hazards include collapsing scaffolds, falling lights and other equipment and failures of rigging systems.

Precautions for scaffolds include safe construction, guardrails and toeboards, proper supporting of rolling scaffolds and securing of all equipment. Construction, operation, maintenance, inspection and repair of rigging systems should be done only by properly trained and qualified persons. Only assigned personnel should have access to work areas such as scaffolds and catwalks.

Electrical and lighting equipment

Large amounts of power are usually needed for camera lights and everyday electrical needs on a set. In the past direct current (DC) power was used, but alternating current (AC) power is common today. Often, and especially on location, independent sources of power are used. Examples of electrical hazards include shorting of electrical wiring or equipment, inadequate wiring, deteriorated wiring or equipment, inadequate grounding of equipment and working in wet locations. Tie-ins to the power sources and un-ties at the end of filming are two of the most dangerous activities.

All electrical work should be done by licensed electricians and should follow standard electrical safety practices and codes. Safer direct current should be used around water when possible, or ground fault circuit interrupters installed.

Lighting can pose both electrical and health hazards. High-voltage gas discharge lamps such as neons, metal halide lamps and carbon arc lamps are especially hazardous and can pose electrical, ultraviolet radiation and toxic fume hazards.

Lighting equipment should be kept in good condition, regularly inspected and adequately secured to prevent lights from tipping or falling. It is particularly important to check high-voltage discharge lamps for lens cracks that could leak ultraviolet radiation.

Cameras

Camera crews can film in many hazardous situations, including shooting from a helicopter, moving vehicle, camera crane or side of a mountain. Basic types of camera mountings include fixed tripods, dollies for mobile cameras, camera cranes for high shots and insert camera cars for shots of moving vehicles. There have been several fatalities among camera operators while filming under unsafe conditions or near stunts and special effects.

Basic precautions for camera cranes include testing of lift controls, ensuring a stable surface for the crane base and pedestal; properly laid tracking surfaces, ensuring safe distances from high-tension electrical wires; and body harnesses where required.

Insert camera cars that have been engineered for mounting of cameras and towing of the vehicle to be filmed are recommended instead of mounting cameras on the outside of the vehicle being filmed. Special precautions include having a safety checklist, limiting the number of personnel on the car, rigging done by experts, abort procedures and having a dedicated radio communications procedure.

Actors, extras and stand-ins

See the article “Actors” in this chapter.

Costumes

Costumes are made and cared for by wardrobe attendants, who may be exposed to a wide variety of dyes and paints, hazardous solvents, aerosol sprays and so on, often without ventilation.

Hazardous chlorinated cleaning solvents should be replaced with safer solvents such as mineral spirits. Adequate local exhaust ventilation should be used when spraying dyes or using solvent-containing materials. Mixing of powders should be done in an enclosed glove box.

Special effects

A wide variety of special effects are used in motion picture production to simulate real events that would otherwise be too dangerous, impractical or expensive to execute. These include fogs, smoke, fire, pyrotechnics, firearms, snow, rain, wind, computer-generated effects and miniature or scaled-down sets. Many of these have significant hazards. Other hazardous special effects can involve the use of lasers, toxic chemicals such as mercury to give silvery effects, flying objects or people with rigging and electric hazards associated with rain and other water effects. Appropriate precautions would need to be taken with such special effects.

General precautions for hazardous special effects include adequate preplanning, having written safety procedures, using adequately trained and experienced operators and the least hazardous special effects possible, coordinating with the fire department and other emergency services, making everyone aware of the intended use of special effects (and being able to refuse to participate), not allowing children in the vicinity, running detailed rehearsals with testing of the effects, clearing the set of all but essential personnel, having a dedicated emergency communications system, minimizing the number of retakes and having procedures ready to abort production.

Pyrotechnics are used to create effects involving explosions, fires, light, smoke and sound concussions. Pyrotechnics materials are usually low explosives (mostly Class B), including flash powder, flash paper, gun cotton, black powder and smokeless powder. They are used in bullet hits (squibs), blank cartridges, flash pots, fuses, mortars, smoke pots and many more. Class A high explosives, such as dynamite, should not be used, although detonating cord is sometimes used. The major problems associated with pyrotechnics include premature triggering of the pyrotechnic effect; causing a fire by using larger quantities than needed; lack of adequate fire extinguishing capabilities; and having inadequately trained and experienced pyrotechnics operators.

In addition to the general precautions, special precautions for explosives used in pyrotechnics include proper storage, the use of appropriate type and in smallest amounts necessary to achieve the effect, and testing them in the absence of spectators. When pyrotechnics are used smoking should be banned and firefighting equipment and trained personnel should be on hand. The materials should be set off by electronic firing controls and adequate ventilation is needed.

The uses of fire effects range from ordinary gas stoves and fireplaces to the destructive fires involved in burning cars, houses, forests and even people (figure 1). In some cases, fires can be simulated by flickering lights and other electronic effects. Materials used to create fire effects include propane gas burners, rubber cement, gasoline and kerosene. They are often used in conjunction with pyrotechnic special effects. Hazards are directly related to the fire getting out of control and the heat they generate. Poor maintenance of fire generating equipment and the excessive use of flammable materials or the presence of other unintended combustible materials, and improper storage of combustible and flammable liquids and gases are all risks. Inexperienced special effects operators can also be a cause of accidents as well.

Figure 1. Fire special effect

ENT230F1

William Avery

Special precautions are similar to those needed for pyrotechnics, such as replacing gasoline, rubber cement and other flammable substances with the safer combustible gels and liquid fuels which have been developed in recent years. All materials in the fire area should be non-combustible or flame-proofed. This precaution includes flame-proofed costumes for actors in the vicinity.

Fogs and smoke effects are common in filming. Dry ice (carbon dioxide), liquid nitrogen, petroleum distillates, zinc chloride smoke generators (which might also contain chlorinated hydrocarbons), ammonium chloride, mineral oil, glycol fogs and water mists are common fog-generating substances. Some materials used, such as petroleum distillates and zinc chloride, are severe respiratory irritants and can cause chemical pneumonia. Dry ice, liquid nitrogen and water mists represent the least chemical hazards, although they can displace oxygen in enclosed areas, possibly making the air unfit for supporting life, especially in enclosed areas. Microbiological contamination can be a problem associated with water-mist generating systems. Some evidence is forthcoming that respiratory irritation is possible from those fogs and smokes that were thought to be safest, such as mineral oil and glycols.

Special precautions include eliminating the most hazardous fogs and smoke; using a fog with the machine designed for it; limiting duration of use, including limiting the number of retakes; and avoiding use in enclosed spaces. Fogs should be exhausted as soon as possible. Respiratory protection for the camera crew should be provided.

Firearms are common in films. All types of firearms are used, ranging from antique firearms to shotguns and machine guns. In many countries (not including the United States) live ammunition is banned. However, blank ammunition, which is commonly used in conjunction with live bullet hits in order to simulate actual bullet impacts, has caused many injuries and fatalities. Blank ammunition used to consist of a metal casing with a percussion primer and smokeless powder topped with a paper wad, which could be ejected at high velocity when fired. Some modern safety blanks use special plastic inserts with a primer and flash powder, giving only a flash and noise. Blank ammunition is commonly used in conjunction with bullet hits (squibs), consisting of a plastic-cased detonator imbedded in the object to be struck by the bullet to simulate actual bullet impacts. Hazards, besides the use of live ammunition, include the effects of use of blanks at close range, mixing up live and blank ammunition or using the wrong ammunition in a firearm. Improperly modified firearms can be dangerous, as can the lack of adequate training in the use of blank-firing firearms.

Live ammunition and unmodified firearms should be banned from a set and non-firing facsimile weapons used whenever possible. Firearms that can actually fire a bullet should not be used, only proper safety blanks. Firearms should be checked regularly by the property master or other firearms expert. Firearms should be locked away, as should all ammunition. Guns should never be pointed at actors in a scene, and the camera crew and others in close proximity to the set should be protected with shields from blanks fired from weapons.

Stunts

A stunt can be defined as any action sequence that involves a greater than normal risk of injury to performers or others on the set. With increasing demands for realism in films, stunts have become very common. Examples of potentially hazardous stunts include high falls, fights, helicopter scenes, car chases, fires and explosions. About half the fatalities occurring during filming are stunt-related, often also involving special effects.

Stunts can endanger not only the stunt performer but often the camera crew and other performers may be injured as well. Most of the general precautions described for special effects also apply to stunts. In addition, the stunt performer should be experienced in the type of stunt being filmed. A stunt coordinator should be in charge of all stunts since a person cannot perform a stunt and be in adequate control of safety, especially when there are several stunt performers.

Aircraft, especially helicopters, have been involved in the most serious multiple fatality accidents in motion picture production. Pilots are often not adequately qualified for stunt flying. Acrobatic manoeuvres, hovering close to the ground, flying too close to sets using pyrotechnics and filming from helicopters with open doors or from the pontoons without adequate fall protection are some of the most dangerous situations. See the article “Helicopters” elsewhere in the Encyclopaedia.

One precaution is to employ an independent aviation consultant, in addition to the pilot, to recommend and oversee safety procedures. Restriction of personnel within 50 feet of grounded aircraft and clear written procedures for filming on ground near aircraft with their engines running or during aircraft landings or takeoffs are other safety measures. Coordination with any pyrotechnics or other hazardous special effects operators is essential, as are procedures to ensure the safety of camera operators filming from aircraft. Procedures for aborting an operation are needed.

Vehicle action sequences have also been a source of many accidents and fatalities. Special effects, such as explosions, crashes, driving into rivers and car chase scenes with multiple cars, are the most common cause of accidents. Motorcycle scenes can be even more hazardous than automobiles because the operator of the motorcycle suffers from the lack of personal protection.

Special precautions include using camera cars. Using stunt drivers for all cars in a stunt scene can lower the accident rate, as can special training for non-stunt passengers. Other safety rules include proper safety equipment, inspection of all ramps and other equipment to be used during a stunt, using dummies in cars during crashes, explosions and other extremely high risk sequences and not driving cars directly towards cameras if there is a camera operator behind the camera. See figure 2 for an example of using dummies in a roller coaster stunt. Adequate ventilation is needed for automobiles that are being filmed indoors with engines running. Stunt motorcycles should be equipped with a deadman switch so that the motor shuts off when the rider separates from the motorcycle.

Figure 2. Using dummies for a roller coaster stunt.

ENT230F4

William Avery

Stunts using fire and explosion place performers at higher risk and require special precautions beyond those used just for the special effects. Protection for stunt performers directly exposed to flames includes wearing a protective barrier gel (e.g., Zel Jel) on the hair, the skin, clothing and so on. Proper protective clothing, including fireproof suits under costumes; flame-resistant gloves and boots; and sometimes hidden oxygen tanks, should be supplied. Specially trained personnel equipped with carbon dioxide fire extinguishers should be on hand in case of an emergency.

Fight scenes can involve performers in fistfights or other unarmed combat or the use of knives, swords, firearms and other combat equipment. Many film and stage fights do not involve the use of stunt performers, thus increasing the risk of injury because of the lack of training.

Simulated weapons, such as knives and swords with retractable blades, are one safeguard. Weapons should be stored carefully. Training is key. The performer should know how to fall and how to use specific weapons. Adequate choreography and rehearsals of the fights is needed, as is proper protective clothing and equipment. A blow should never be aimed directly at an actor. If a fight involves a high degree of hazard, such as falling down a flight of stairs or crashing through a window, a professional stunt double should be used.

Falls in stunts can range from falling down a flight of stairs to falling off a horse, being thrown through the air by a trampoline or ratchet catapult system, or a high fall off a cliff or building (figure 3). There have been many injuries and fatalities from poorly prepared falls.

Figure 3. High fall stunt.

ENT230F3

Only experienced stunt performers should attempt fall stunts. When possible, the fall should be simulated. For example, falling down a flight of stairs can be filmed a few stairs at a time so the stunt performer is never out of control, or a fall off a tall building simulated by a fall of a few feet onto a net and using a dummy for the rest of the fall. Precautions for high falls involve a high fall coordinator and a specialized fall/arrest system for safe deceleration. Falls of more than 15 feet require two safety spotters. Other precautions for falls include airbags, crash pads of canvas filled with sponge rubber, sand pits and so on, depending on the type of fall. Testing of all equipment is crucial.

Animal scenes are potentially very hazardous because of the unpredictability of animals. Some animals, such as large cats, can attack if startled. Large animals like horses can be a hazard just because of their size. Dangerous, untrained or unhealthy animals should not be used on sets. Venomous reptiles such as rattlesnakes are particularly hazardous. In addition to the hazards to personnel, the health and safety of the animals should be considered.

Only trained animal handlers should be allowed to work with animals. Adequate conditions for the animals are needed, as is basic animal safety equipment, such as fire extinguishers, fire hoses, nets and tranquilizing equipment. Animals should be allowed adequate time to become familiar with the set, and only required personnel should be permitted on the set. Conditions that could upset animals should be eliminated and animals kept from exposure to loud noises or light flashes whenever possible, thus ensuring the animals will not be injured and will not become unmanageable. Certain situations—for example, those using venomous reptiles or large numbers of horses—will require special precautions.

Water stunts can include diving, filming in fast-moving water, speedboat stunts and sea battles. Hazards include drowning, hypothermia in cold water, underwater obstructions and contaminated water. Emergency teams, including certified safety divers, should be on hand for all water stunts. Diver certification for all performers or camera operators using self-contained underwater breathing apparatus (SCUBA) and provision of standby breathing equipment are other precautions. Emergency decompression procedures for dives over 10 m should be in place. Safety pickup boats for rescue and proper safety equipment, such as use of nets and ropes in fast-moving water, are needed.

Health and Safety Programmes

Most major film studios have a full-time health and safety officer to oversee the health and safety programme. Problems of responsibility and authority can occur, however, when a studio rents facilities to a production company, as is increasingly common. Most production companies do not have a health and safety programme. A health and safety officer, with authority to establish safety procedures and to ensure they are carried out, is essential. There is a need to coordinate the activities of others charged with production planning, such as stunt coordinators, special effects operators, firearms experts and the key grip (who is usually the individual most responsible for the safety of sets, cameras, scaffolding, etc.), each of whom has specialized safety knowledge and experience. A health and safety committee that meets regularly with representatives from all departments and unions can provide a conduit between the management and employees. Many unions have an independent health and safety committee which can be a source of health and safety expertise.

Medical services

Both non-emergency and emergency medical services are essential during film production. Many film studios have a permanent medical department, but most production companies do not. The first step in determining the degree of on-location medical services to be provided is a needs assessment, to identify potential medical risks, including the need for vaccination in certain countries, possible local endemic diseases, evaluation of local environmental and climate conditions, and an evaluation of the quality of local medical resources. The second, pre-planning stage involves a detailed analysis of major risks and availability of adequate emergency and other medical care in order to determine what type of emergency planning is essential. In situations where there are high risks and/or remote locations, trained emergency physicians would be needed on location. Where there is quick access to adequate emergency facilities, paramedics or emergency medical technicians with advanced training would suffice. In addition, adequate emergency transportation should be arranged beforehand. There have been several fatalities due to the lack of adequate emergency transportation (Carlson 1989; McCann 1989).

Standards

There are few occupational safety and health regulations aimed specifically at the film production industry. However, many general regulations, such as those affecting fire safety, electrical hazards, scaffolding, lifts, welding and so on, are applicable. Local fire departments generally require special fire permits for filming and may require that standby fire personnel be present on filming sites.

Many productions have special requirements for the licensing of certain special effects operators, such as pyrotechnicians, laser operators and firearms users. There can be regulations and permits required for specific situations, such as the sale, storage and use of pyrotechnics, and the use of firearms.

 

Back

Thursday, 24 March 2011 19:38

Radio and Television Broadcasting

The production of television and radio broadcasts involves camera shoots and recordings on location and in the studio, video- and audiotape editing, transmitting and receiving broadcasts, managing electronic information and graphics, and maintenance of equipment and tape. Broadcast engineers and technicians produce pre-taped and live broadcasts for major network and cable companies, local stations and production companies. Major occupations include: camera operator, sound person, tape editor, computer operator, maintenance engineer, news broadcaster and other television and radio artists.

Broadcasting and its support activities can take place in remote locations, in the studio or in various maintenance and specialty shops. Employees can be exposed to many hazards typical of the technological workplace, including poor indoor air quality, poor workplace design and low-frequency electromagnetic radiation (since microwave technology is used to transmit and receive broadcasts, and the density of electronic equipment produces relatively high levels of low-frequency energy fields). Proper shielding and placement of equipment are prudent measures to protect operators from these fields.

Hazards and Precautions

Remote locations

Roving camera and audio crews cover news and special events for networks and local stations. Crews carry to the site everything needed for the broadcast, including camera, sound recorder, lights, tripod and electrical cords. Since the advent of lightweight cameras equipped with sound recorders, a single person may be assigned to operate the equipment. The hazards can include trips, slips and falls and musculoskeletal stress. Violence in riots and wars can lead to injuries and fatalities. Bad weather, crowds, environmental disasters and rough terrain increase the potential for serious injuries and illnesses among the crew.

The danger can be reduced through assessing the location for the potential for violence and the securing of safe operating locations. Personal protective equipment, such as bullet-proof vests and helmets, may also be needed. Adequate staffing and material-handling equipment and safe lifting practices can reduce musculoskeletal stresses.

News and traffic reports are frequently recorded or aired from helicopters. Broadcast personnel have been killed and injured in crashes and unplanned landings. Strict adherence to proper training and certification of pilots, preventive maintenance of equipment and prohibition of unsafe flying practices (such as flying too close to other helicopters or to structures) are crucial for protecting these employees. See the article “Heliocopters” elsewhere in this volume.

Sporting events, such as golf tournaments and car races, and other special events are often shot from elevated platforms and scaffolds. Motorized lifts and cranes are also used to position equipment and personnel. These structures and machines are typical of those used in general building construction and motion picture production, and one may encounter the same hazards, such as falling off the structure, being struck by falling objects, being struck by lightning in open areas and being electrocuted from contact with overhead power lines and live electrical equipment.

Proper inspection and erection of platforms, full guardrails with toe boards to prevent objects from falling, access ladders, grounding and guarding of electrical equipment and observance of weather alerts, as in construction work, are some appropriate precautions to be taken.

Studio productions

Studio productions have the advantages of familiar surroundings where employees operate cameras, sound equipment and special effects equipment. The hazards are similar to those described in motion picture production and include: musculoskeletal stresses, electrical hazards, noise (especially in rock radio studios) and exposure to theatrical smokes and fogs. Appropriate ergonomic design of work spaces and equipment, electrical safeguards, control of sound levels, careful selection of smokes and fogs and adequate ventilation are all possible preventive measures.

Film editing, handling and storage

Before being broadcast, video- and audiotapes must be edited. The conditions will depend on the size of the facility, but it is not uncommon for several editing operations to be going on at the same time. Editing work requires close attention to the material, and editing rooms can be noisy, overcrowded and poorly lit, with poor indoor air quality and electrical hazards. The space and the equipment can have poor ergonomic design; tasks may be repetitive. There may be noise and fire hazards. Proper workspace design including space, lighting and ventilation, soundproofing and electrical safeguards are all necessary. Special inspection and handling procedures are required for old film storage. Some production companies have libraries that contain old cellulose nitrate (nitrocellulose) films. These films are no longer made, but those that are in storage are severe fire and life hazards. Nitrocellulose can combust and explode readily.

Computer graphics are common in taped programmes and require long hours at visual display units. Working conditions vary based on the size and layout of the facility. Workspace design requirements are similar to other computer workstations.

Maintenance Shops

Technicians and engineers maintain cameras, recorders, editing machines and other broadcasting equipment, and their working conditions resemble those of their industrial counterparts. Low-residue organic solvents, such as freons, acetone, methanol, methyl ethyl ketone and methylene chloride are used to clean electronic parts and electrical contacts. Metal components are repaired using welding, soldering and power tools. The hazards can include inhalation of solvent vapours and metal fumes, skin contact with solvents, fire and machine hazards. The substitution of safer materials, local exhaust ventilation for solvent vapours and fumes from welding and soldering, as well as machine guards, are all possible safeguards.

 

Back

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Entertainment and the Arts References

American Academy of Orthopedic Surgeons. 1991. Protective equipment. In Athletic Training and Sports Medicine. Park Ridge, IL: APOS.

Arheim, DD. 1986. Dance Injuries: Their Prevention and Care. St. Louis, MO: CV Mosby Co.

Armstrong, RA, P Neill, and R Mossop. 1988. Asthma induced by ivory dust: A new occupational cause. Thorax 43(9):737-738.

Axelsson, A and F Lindgren. 1981. Hearing in classical musicians. Acta Oto-Larynogologica 92 Suppl. 377:3-74.

Babin, A 1996. Orchestra pit sound level measurements in Broadway shows. Presented at the 26th Annual Meeting of the American Public Health Association. New York, 20 November.

Baker, EL, WA Peterson, JL Holtz, C Coleman, and PJ Landrigan. 1979. Subacute cadmium intoxication in jewellery workers: an evaluation of diagnostic procedures. Arch Environ Health 34:173-177.

Balafrej, A, J Bellakhdar, M El Haitem, and H Khadri. 1984. Paralysis due to glue in young apprentice shoemakers in the medina of Fez. Rev Pediatrie 20(1):43-47.

Ballesteros, M, CMA Zuniga, and OA Cardenas. 1983. Lead concentrations in the blood of children from pottery-making families exposed to lead salts in a Mexican village. B Pan Am Health Organ 17(1):35-41.

Bastian, RW. 1993. Benign mucosal and saccular disorders; benign laryngeal tumors. In Otolaryngology-Head and Neck Surgery, edited by CW Cumming. St. Louis, MO: CV Mosby Co.

—. 1996. Vocal fold microsurgery in singers. Journal of Voice 10(4):389-404

Bastian, R, A Keidar, and K Verdolini-Marston. 1990. Simple vocal tasks for detecting vocal fold swelling. Journal of Voice 4(2):172-183.

Bowling, A. 1989. Injuries to dancers: Prevalence, treatment and perception of causes. British Medical Journal 6675:731-734.

Bruno, PJ, WN Scott, and G Huie. 1995. Basketball. In The Team Physicians’s Handbook, edited by MB Mellion, WM Walsh and GL Shelton. Philadelphia, PA: Mosby Yearbook.

Burr, GA, TJ Van Gilder, DB Trout, TG Wilcox, and R Friscoll. 1994. Health Hazard Evaluation Report: Actors’ Equity Association/The League of American Theaters and Producers, Inc. Doc. HETA 90-355-2449. Cincinnati, OH: US National Institute for Occupational Safety and Health.

Calabrese, LH, DT Kirkendal, and M Floyd. 1983. Menstrual abnormalities, nutritional patterns and body composition in female classical ballet dancers. Phys Sports Med 11:86-98.

Cardullo, AC, AM Ruszkowski, and VA DeLeo. 1989. Allergic contact dermatitis resulting from sensitivity to citrus peel, geriniol, and citral. J Am Acad Dermatol 21(2):395-397.

Carlson, T. 1989. Lights! Camera! Tragedy. TV Guide (26 August):8-11.

Chasin, M and JP Chong. 1992. A clinically efficient hearing protection program for musicians. Med Prob Perform Artists 7(2):40-43.

—. 1995. Four environmental techniques to reduce the effect of music exposure on hearing. Med Prob Perform Artists 10(2):66-69.

Chaterjee, M. 1990. Ready-made garment workers in Ahmedabad. B Occup Health Safety 19:2-5.

Clare, PR. 1990. Football. In The Team Physicians’s Handbook, edited by MB Mellion, WM Walsh, and GL Shelton. St. Louis, MO: CV Mosby Co.

Cornell, C. 1988. Potters, lead and health—Occupational safety in a Mexican village (meeting abstract). Abstr Pap Am Chem S 196:14.

Council on Scientific Affairs of the American Medical Association. 1983. Brain injury in boxing. JAMA 249:254-257.

Das, PK, KP Shukla, and FG Ory. 1992. An occupational health programme for adults and children in the carpet weaving industry, Mirzapur, India: A case study in the informal sector. Soc Sci Med 35(10):1293-1302.

Delacoste, F and P Alexander. 1987. Sex Work: Writings by Women in the Sex Industry. San Francisco, CA: Cleis Press.

Depue, RH and BT Kagey. 1985. A proportionate mortality study of the acting profession. Am J Ind Med 8:57-66.

Dominguez, R, JR DeJuanes Paardo, M Garcia Padros, and F Rodriguez Artalejo. 1987. Antitetanic vaccination in a high-risk population. Med Segur Trab 34:50-56.

Driscoll, RJ, WJ Mulligan, D Schultz, and A Candelaria. 1988. Malignant mesothelioma: a cluster in a Native American population. New Engl J Med 318:1437-1438.

Estébanez, P, K Fitch, and Nájera 1993. HIV and female sex workers. Bull WHO 71(3/4):397-412.

Evans, RW, RI Evans, S Carjaval, and S Perry. 1996. A survey of injuries among Broadway performers. Am J Public Health 86:77-80.

Feder, RJ. 1984. The professional voice and airline flight. Otolaryngology-Head and Neck Surgery, 92(3):251-254.

Feldman, R and T Sedman. 1975. Hobbyists working with lead. New Engl J Med 292:929.

Fishbein, M. 1988. Medical problems among ICSOM musicians. Med Prob Perform Artists 3:1-14.

Fisher, AA. 1976. “Blackjack disease” and other chromate puzzles. Cutis 18(1):21-22.

Frye, HJH. 1986. Incidence of overuse syndrome in the symphony orchestra. Med Prob Perform Artists 1:51-55.

Garrick, JM. 1977. The frequency of injury, mechanism of injury and epidemiology of ankle sprains. Am J Sports Med 5:241-242.

Griffin, R, KD Peterson, J Halseth, and B Reynolds. 1989. Radiographic study of elbow injuries in professional rodeo cowboys. Phys Sports Med 17:85-96.

Hamilton, LH and WG Hamilton. 1991. Classical ballet: Balancing the costs of artistry and athleticism. Med Prob Perform Artists 6:39-44.

Hamilton, WG. 1988. Foot and ankle injuries in dancers. In Sports Clinics of North America, edited by L Yokum. Philadelphia, PA: Williams and Wilkins.

Hardaker, WTJ. 1987. Medical considerations in dance training for children. Am Fam Phys 35(5):93-99.

Henao, S. 1994. Health Conditions of Latin American Workers. Washington, DC: American Public Health Association.

Huie, G and EB Hershman. 1994. The team clinician’s bag. Am Acad Phys Asst 7:403-405.

Huie, G and WN Scott. 1995. Assessment of ankle sprains in athletes. Phys Assist J 19(10):23-24.

Kipen, HM and Y Lerman. 1986. Respiratory abnormalities among photographic developers: A report of 3 cases. Am J Ind Med 9:341-347.

Knishkowy, B and EL Baker. 1986. Transmission of occupational disease to family contacts. Am J Ind Med 9:543-550.

Koplan, JP, AV Wells, HJP Diggory, EL Baker, and J Liddle. 1977. Lead absorption in a community of potters in Barbados. Int J Epidemiol 6:225-229.

Malhotra, HL. 1984. Fire safety in assembly buildings. Fire Safety J 7(3):285-291.

Maloy, E. 1978. Projection booth safety: New findings and new dangers. Int Assoc Electr Inspect News 50(4):20-21.

McCann, M. 1989. 5 dead in movie heliocopter crash. Art Hazards News 12:1.

—. 1991. Lights! Camera! Safety! A Health and Safety Manual for Motion Picture and Television Production. New York: Center for Safety in the Arts.

—. 1992a. Artist Beware. New York: Lyons and Burford.

—. 1992b. Art Safety Procedures: A Health and Safety Manual for Art Schools and Art Departments. New York: Center for Safety in the Arts.

—. 1996. Hazards in cottage industries in developing countries. Am J Ind Med 30:125-129.

McCann, M, N Hall, R Klarnet, and PA Peltz. 1986. Reproductive hazards in the arts and crafts. Presented at the Annual Conference of the Society for Occupational and Environmental Health Conference on Reproductive Hazards in the Environment and Workplace, Bethesda, MD, 26 April.

Miller, AB, DT Silverman, and A Blair. 1986. Cancer risk among artistic painters. Am J Ind Med 9:281-287.

MMWR. 1982. Chromium sensitization in an artist’s workshop. Morb Mort Weekly Rep 31:111.

—. 1996. Bull riding-related brain and spinal cord injuries—Louisiana, 1994-1995. Morb and Mort Weekly Rep 45:3-5.

Monk, TH. 1994. Circadian rhythms in subjective activation, mood, and performance efficiency. In Principles and Practice of Sleep Medicine, 2nd edition, edited by M. Kryger and WC. Roth. Philadelphia, PA: WB Saunders.

National Institute for Occupational Safety and Health (NIOSH). 1991. Environmental Tobacco Smoke in the Workplace: NIOSH Current Intelligence Bulletin 54. Cincinnati, OH: NIOSH.

Norris, RN. 1990. Physical disorders of visual artists. Art Hazards News 13(2):1.

Nubé, J. 1995. Beta Blockers and Performing Musicians. Doctoral thesis. Amsterdam: University of Amsterdam.

O’Donoghue, DH. 1950. Surgical treatment of fresh injuries to major ligaments of the knee. J Bone Joint Surg 32:721-738.

Olkinuora, M. 1984. Alcoholism and occupation. Scand J Work Environ Health 10(6):511-515.

—. 1976. Injuries to the knee. In Treatment of Injuries to Athletes, edited by DH O’Donoghue. Philadelphia, PA: WB Saunders.

Pan American Health Organization, (PAHO). 1994. Health Conditions in the Americas. Vol. 1. Washington, DC: PAHO.

Pheterson, G. 1989. The Vindication of the Rights of Whores. Seattle, WA: Seal Press.

Prockup, L. 1978. Neuropathy in an artist. Hosp Pract (November):89.

Qualley, CA. 1986. Safety in the Artroom. Worcester, MA: Davis Publications.

Ramakrishna, RS, P Muthuthamby, RR Brooks, and DE Ryan. 1982. Blood lead levels in Sri Lankan families recovering gold and silver from jewellers’ waste. Arch Environ Health 37(2):118-120.

Ramazzini, B. 1713. De morbis artificum (Diseases of Workers). Chicago, IL: University of Chicago Press.

Rastogi, SK, BN Gupta, H Chandra, N Mathur, PN Mahendra, and T Husain. 1991. A study of the prevalence of respiratory morbidity among agate workers. Int Arch Occup Environ Health 63(1):21-26.

Rossol, M. 1994. The Artist’s Complete Health and Safety Guide. New York: Allworth Press.

Sachare, A.(ed.). 1994a. Rule #2. Section IIC. In The Official NBA Basketball Encyclopedia. New York: Villard Books.

—. 1994b. Basic Principle P: Guidelines for infection control. In The Official NBA Basketball Encyclopedia. New York: Villard Books.

Sammarco, GJ. 1982. The foot and ankle in classical ballet and modern dance. In Disorders of the Foot, edited by MH Jahss. Philadelphia, PA: WB Saunders.

Sataloff, RT. 1991. Professional Voice: The Science and Art of Clinical Care. New York: Raven Press.

—. 1995. Medications and their effect on the voice. Journal of Singing 52(1):47-52.

—. 1996. Pollution: Consequences for singers. Journal of Singing 52(3):59-64.

Schall, EL, CH Powell, GA Gellin, and MM Key. 1969. Hazards to go-go dancers to exposures to “black” light from fluorescent bulbs. Am Ind Hyg Assoc J 30:413-416.

Schnitt, JM and D Schnitt. 1987. Psychological aspects of dance. In The Science of Dance Training, edited by P Clarkson and M Skrinar. Champaign, IL: Human Kinetics Press.

Seals, J. 1987. Dance surfaces. In Dance Medicine: A Comprehensive Guide, edited by A Ryan and RE Stephens. Chicago, IL: Pluribus Press.

Sofue, I, Y Yamamura, K Ando, M Iida, and T Takayanagi. 1968. N-hexane polyneuropathy. Clin Neurol 8:393-403.

Stewart, R and C Hake. 1976. Paint remover hazard. JAMA 235:398.

Tan, TC, HC Tsang, and LL Wong. 1990. Noise surveys in discotheques in Hong Kong. Ind Health 28(1):37-40.

Teitz, C, RM Harrington, and H Wiley. 1985. Pressure on the foot in point shoes. Foot Ankle 5:216-221.

VanderGriend, RA, FH Savoie, and JL Hughes. 1991. Fracture of the ankle. In Rockwood and Green’s Fractures in Adults, edited by CA Rockwood, DP Green, and RW Bucholz. Philadelphia, PA: JB Lippincott Co.

Warren, M, J Brooks-Gunn, and L Hamilton. 1986. Scoliosis and fracture in young ballet dancers: Relationship to delayed menarcheal age and amenorrhea. New Engl J Med 314:1338-1353.

World Health Organization (WHO). 1976. Meeting on Organization of Health Care in Small Industries. Geneva: WHO.

Zeitels, S. 1995. Premalignant epithelium and microinvasive cancer of the vocal fold: the evolution of phonomicrosurgical management. Laryngoscope 105(3):1-51.