Monday, 28 March 2011 19:42

Bull Raising

Rate this item
(1 Vote)

While the term bull refers to the male of several species of livestock (elephant, water buffalo and cattle) this article will deal specifically with the cattle industry. The National Traumatic Occupational Fatalities (NTOF) surveillance system in the United States, based on death certificates and maintained by the National Institute for Occupational Safety and Health (NIOSH), identified 199 fatalities from 1980 to 1992 associated with the agricultural production industry and inflicted by livestock. Of these, about 46% (92) were directly attributed to beef and dairy bull handling.

Cattle raisers have for centuries used castration of male animals as a means of producing docile males. Castrated males are generally passive, indicating that hormones (largely testosterone) are related to aggressive behaviour. Some cultures place high value on the fighting character of bulls, which is utilized in sports and social events. In this case, certain bloodlines are bred to maintain and enhance these fighting characteristics. In the United States, demand has increased for bulls used in rodeos as these entertainment events have increased in popularity. In Spain, Portugal, parts of France, Mexico and parts of South America, bullfighting has been popular for centuries. (See the article “Bullfighting and rodeos” in the chapter Entertainment and the Arts.)

The cattle industry can be divided into two major categories—dairy and beef—with some dual-purpose breeds. Most commercial beef operations purchase bulls from pure-bred producers, while dairy operations have moved more toward artificial insemination (AI). Thus, the pure-bred producer generally raises the bulls and then sells them when they are of breeding age (2 to 3 years of age). There are three systems of mating currently used in the cattle industry. Pasture mating allows bull to run with the herd and breed cows as they come into oestrus (heat). This can be for the entire year (historically) or for a specific breeding season. If specific breeding seasons are utilized, this necessitates separating the bull from the herd for periods of time. Hand mating keeps the bull isolated from the cows, except when a cow in oestrus is brought to the bull for mating. Generally, only a single mating is allowed, with the cow being removed after service. Finally, AI is the process of using proven sires, through the use of frozen semen, to be bred to many cows by AI technicians or the producer. This has the advantage of not having a bull at the ranch, which is a reduction of risk for the producer. However, there is still potential for human-animal interaction at the point of semen collection.

When a bull is removed from the herd for hand mating or kept isolated from the herd to establish a breeding season, he may become aggressive when he detects a cow in oestrus. Since he cannot respond naturally through mating, this can lead to the “mean bull” complex, which is an example of abnormal behaviour in bulls. Typical antagonistic or combative behaviour of bulls includes pawing the ground and bellowing. Furthermore, disposition often deteriorates with age. Old breeding stock can be cantankerous, deceptive, unpredictable and large enough to be dangerous.

Facilities

To ensure movement of animals through facilities, chutes should be curved so that the end cannot be seen when first entering, and the corral should be designed with a gap to the left or right so that animals do not sense that they are trapped. Putting rubber bumpers on metal items which create a loud noise when they close can help lessen the noise and reduce stress to the animal. Ideally, facilities should maximize the reduction of hazards due to physical contact between the bull and humans through use of barriers, overhead walkways and gates that can be manipulated from outside the enclosure. Animals are less likely to balk in chutes built with solid walls instead of fencing materials, since they would not be distracted by movement outside the chutes. Alleyways and chutes should be large enough so the animals can move through them, but not so wide they can turn around.

Guidelines for Handling

Male animals should be considered potentially dangerous at all times. When bulls are kept for breeding, injuries can be avoided by having adequate bull-confinement and restraint facilities. Extreme caution should be practised when handling male animals. Bulls may not purposefully hurt people, but their size and bulk make them potentially dangerous. All pens, chutes, gates, fences and loading ramps should be strong and work properly. Proper equipment and facilities are necessary to assure safety. Ideally, when working with bulls, having the handler physically separated from contact with the bull (outside the area and protected by chutes, walls, barriers and so on) greatly reduces the risk of injury. When handlers are with the animal, escape passages should be provided to allow handlers to escape from animals in an emergency. Animals should not be prodded when they have no place to go. Handlers should stay clear of animals that are frightened or “spooked” and be extra careful around strange animals. Solid wall chutes, instead of fencing, will lower the number of animals that balk in the chute. Since bulls see colours as different shades of black and white, facilities should be painted all in the same colour. Properly designed treatment stalls and appropriate animal-restraint equipment and facilities can reduce injuries during animal examination, medication, hoof trimming, dehorning and hand mating.

People who work with animals recognize that animals can communicate despite being unable to speak. Handlers should be sensitive to warnings such as raised or pinned ears, raised tail, pawing the ground and bellowing. General information and guidelines for working with bulls are provided in the checklist and article on animal behaviour in this chapter.

Zoonoses

Handlers should also be concerned with zoonotic diseases. A livestock handler can contract zoonotic illnesses by handling an infected animal or animal products (hides), ingesting animal products (milk, undercooked meat) and disposing of infected tissues. Leptospirosis, rabies, brucellosis (undulant fever in humans), salmonellosis and ringworm are especially important. Tuberculosis, anthrax, Q fever and tularaemia are other illness that should be of concern. To reduce exposure to disease, basic hygiene and sanitation practices should be used, which include prompt treatment or proper disposal of infected animals, adequate disposal of infected tissues, proper cleaning of contaminated sites and proper use of personal protective equipment.

The most sanitary method of carcass disposal is burning it at the site of death, to avoid contamination of the surrounding ground. A hole of appropriate size should be dug, flammable materials of sufficient quantity placed inside and the carcass placed on top in order that it can be consumed in its entirety. However, the most common method of carcass disposal is burial. In this procedure, the carcass should be buried at least 4 feet deep and covered with quicklime in soil that is not susceptible to contamination by drainage and away from flowing streams.

 

Back

Read 5040 times Last modified on Tuesday, 28 June 2011 11:11

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Livestock Rearing References

Aldhous, P. 1996. Scrapie theory fed BSE complacency, now fears grow for unborn babies. New Scientist 150:4-5.

Ahlgren, GH. 1956. Forage Crops. New York: McGraw-Hill Book Co.

American Conference of Governmental Industrial Hygienists (ACGIH). 1994. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH: ACGIH.

Auty, JH. 1983. Draught animal power in Australia. Asian Livestock VIII:83-84.

Banwart, WC and JM Brenner. 1975. Identification of sulfur gases evolved from animal manures. J Environ Qual 4:363-366.

Baxter, PJ. 1991. Toxic marine and freshwater algae: An occupational hazard? Br J Ind Med 48(8):505-506.

Bell, RG, DB Wilson, and EJ Dew. 1976. Feedlot manure top dressing for irrigated pasture: Good agricultural practice or a health hazard? B Environ Contam Tox 16:536-540.

Benenson, AS. 1990. Control of Communicable Diseases in Man. Washington, DC: American Public Health Association.

—. 1995. Control of Communicable Diseases Manual. Washington, DC: American Public Health Association.

Brown, LR. 1995. Meat production takes a leap. In Vital Signs 1995: The Trends that are Shaping our Future, edited by LR Brown, N Lenssen, and H Kane. New York: WW Norton & Company.

Bursey, RG. 1992. New uses of dairy products. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture. Washington, DC: USDA.

Calandruccio, RA and JH Powers. 1949. Farm accidents: A clinical and statistical study covering twenty years. Am Surg (November):652-660.

Cameron, D and C Bishop. 1992. Farm accidents in adults. Br Med J 305:25-26.

Caras, RA. 1996. A Perfect Harmony: The Intertwining Lives of Animals and Humans throughout History. New York: Simon & Schuster.

Carstensen, O, J Lauritsen, and K Rasmussen. 1995. The West-Justland study on prevention of farm accidens, Phase 1: A study of work specific factors in 257 hospital-treated agricultural injuries. Journal of Agricultural Safety and Health 1:231-239.

Chatterjee, A, D Chattopadhyay, D Bhattacharya, Ak Dutta, and DN Sen Gupta. 1980. Some epidemiologic aspects of zoophilic dermatophytosis. International Journal of Zoonoses 7(1):19-33.

Cherry, JP, SH Fearirheller, TA Foglis, GJ Piazza, G Maerker, JH Woychik, and M Komanowski. 1992. Innovative uses of animal byproducts. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture. Washington, DC: USDA.

Crowley, M. 1995. Aquaculture trends and technology. National Fisherman 76:18-19.

Deere & Co. 1994. Farm and Ranch Safety Management. Moline, IL: Deere & Co.

DeFoliart, GR. 1992. Insects as human foods. Crop Protection 11:395-399.

Donham, KJ. 1985. Zoonotic diseases of occupational significance in agriculture: A review. International Journal of Zoonoses 12:163-191.

—. 1986. Hazardous agents in agricultural dusts and methods of evaluation. Am J Ind Med 10:205-220.

Donham, KJ and LW Knapp. 1982. Acute toxic exposure to gases from liquid manure. J Occup Med 24:142-145

Donham, KJ and SJ Reynolds. 1995. Respiratory dysfunction in swine production workers: Dose-response relationship of environmental exposures and pulmonary function. Am J Ind Med 27:405-418.

Donham, KJ and L Scallon. 1985. Characterization of dusts collected from swine confinement buildings. Am Ind Hyg Assoc J 46:658-661.

Donham, KJ and KM Thu. 1995. Agriculture medicine and enivronmental health: The missing component of the sustainable agricultural movement. In Agricultural health and safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock, and A Senthilselvan. Boca Raton, FL: CRC Press.

Donham, KJ, MJ Rubino, TD Thedell and J Kammenmeyer. 1977. Potential health hazards of workers in swine confinement buildings. J Occup Med 19:383-387.

Donham, KJ, J Yeggy, and RR Dauge. 1985. Chemical and physical parameters of liquid manure from swine confinement facilities: Health implications for workers, swine and the environment. Agricultural Wastes 14:97-113.

—. 1988. Production rates of toxic gases from liquid manure: Health implications for workers and animals in swine buildings. Bio Wastes 24:161-173.

Donham, KJ, DC Zavala, and JA Merchant. 1984. Acute effects of work environment on pulmonary functions of swine confinement workers. Am J Ind Med 5:367-375.

Dosman, JA, BL Graham, D Hall, P Pahwa, H McDuffie, M Lucewicz, and T To. 1988. Respiratory symptoms and alterations in pulmonary function tests in swine producers in Saskatchewan: Results of a survey of farmers. J Occ Med 30:715-720.

Douglas, JDM. 1995. Salmon farming: Occupational health in a new rural industry. Occup Med 45:89-92.

Douglas, JDM and AH Milne. 1991. Decompression sickness in fish farm workers: A new occupational hazard. Br Med J 302:1244-1245.

Durning, AT and HB Brough. 1992. Reforming the livestock economy. In State of the World, edited by LR Brown. London: WW Norton & Company.

Erlich, SM, TR Driscoll, JE Harrison, MS Frommer, and J Leight. 1993. Work-related agricultural fatalities in Australia, 1982-1984. Scand J Work Environ Health 19:162-167.

Feddes, JJR and EM Barber. 1994. Agricultural engineering solutions to problems of air contaminants in farm silos and animal buildings. In Agricultural Health and Safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock and A Senthilselvan. Boca Raton, FL: CRC Press.

Ferguson, IR and LRC Path. 1993. Rats, fish and Weil’s disease. Safety and Health Practitioner :12-16.

Food and Agriculture Organization (FAO) of the United Nations. 1965. Farm Implements for Arid and Tropical Regions. Rome: FAO.

—. 1995. The State of the World Fisheries and Aquaculture. Rome: FAO.

Fretz, P. 1989. Injuries from farm animals. In Principles of Health and Safety in Agriculture, edited by JA Dosman and DW Crockcroft. Boca Raton, FL: CRC Press.

Froehlich, PA. 1995. Engineering Control Observations and Recommendations for Insect Rearing Facilities. Cincinnati, OH: NIOSH.

Gillespie, JR. 1997. Modern Livestock and Poultry Production. New York: Delmar Publishers.

Gorhe, DS. 1983. Draught animal power vs mechanization. Asian Livestock VIII:90-91.

Haglind, M and R Rylander. 1987. Occupational exposure and lung function measurements among workers in swine confinement buildings. J Occup Med 29:904-907.

Harries, MG and O Cromwell. 1982.Occupational allergy caused by allergy to pig’s urine. Br Med J 284:867.

Heederick, D, R Brouwer, K Biersteker, and J. Boleij. Relationship of airborne endotoxin and bacteria levels in pig farms with lung function and respiratory symptoms of farmers. Intl Arch Occup Health 62:595-601.

Hogan, DJ and P Lane. 1986. Dermatologic disorders in agriculture. Occup Med: State Art Rev 1:285-300.

Holness, DL, EL O’Glenis, A Sass-Kortsak, C Pilger, and J Nethercott. 1987. Respiratory effects and dust exposures in hog confinement farming. Am J Ind Med 11:571-580.

Holness, DL and JR Nethercott. 1994. Acute and chronic trauma in hog farmers. In Agricultural Health and Safety: Workplace, Environment, Sustainability, edited by HH McDuffie, JA Dosman, KM Semchuk, SA Olenchock, and A Senthilselvan. Boca Raton, FL: CRC Press.

Iowa Department of Public Health. 1995. Sentinel Project Research Agricultural Injury Notification System. Des Moines, IA: Iowa Department of Public Health.

Iverson, M, R Dahl, J. Korsgaard, T Hallas, and EJ Jensen. 1988. Respiratory symptoms in Danish farmers: An epidemiological study of risk factors. Thorax 48:872-877.

Johnson, SA. 1982. Silkworms. Minneapolis, MN: Lerner Publications.

Jones, W, K Morring, SA Olenchock, T Williams, and J. Hickey. 1984. Environmental study of poultry confinement buildings. Am Ind Hyg Assoc J 45:760-766.

Joshi, DD. 1983. Draught animal power for food production in Nepal. Asian Livestock VIII:86-87.

Ker, A. 1995. Farming Systems in the African Savanna. Ottawa,Canada: IDRC Books.

Khan, MH. 1983. Animal as power source in Asian agriculture. Asian Livestock VIII:78-79.

Kiefer, M. 1996. Florida Department of Agriculture and Consumer Services Division of Plant Industry, Gainesville, Florida. Cincinnati, OH: NIOSH.

Knoblauch, A, B Steiner, S Bachmann, G Trachsler, R Burgheer, and J Osterwalder. 1996. Accidents related to manure in eastern Switzerland: An epidemiological study. Occup Environ Med 53:577-582.

Kok, R, K Lomaliza, and US Shivhare. 1988. The design and performance of an insect farm/chemical reactor for human food production. Canadian Agricultural Engineering 30:307-317.

Kuo, C and MCM Beveridge. 1990. Mariculture: Biological and management problems, and possible engineering solutions. In Engineering for Offshore Fish Farming. London: Thomas Telford.

Layde, PM, DL Nordstrom, D Stueland, LB Wittman, MA Follen, and KA Olsen. 1996. Animal-related occupational injuries in farm residents. Journal of Agricultural Safety and Health 2:27-37.

Leistikow, B Donham, JA Merchant, and S Leonard. 1989. Assessment of U.S. poultry worker respiratory risk. Am J Ind Med 17:73-74.

Lenhart, SW. 1984. Sources of respiratory insult in the poultry processing industry. Am J Ind Med 6:89-96.

Lincoln, JM and ML Klatt. 1994. Preventing Drownings of Commercial Fishermen. Anchorage, AK: NIOSH.

MacDiarmid, SC. 1993. Risk analysis and the importation of animals and animal products. Rev Sci Tech 12:1093-1107.

Marx, J, J Twiggs, B Ault, J Merchant, and E Fernandez-Caldas. 1993. Inhaled aeroallergen and storage mite reactivity in a Wisconsin farmer nested case-control study. Am Rev Respir Dis 147:354-358.

Mathias, CGT. 1989. Epidemiology of occupational skin disease in agriculture. In Principles of Health and Safety in Aagriculture, edited by JA Dosman and DW Cockroft. Boca Raton, FL: CRC Press.

Meadows, R. 1995. Livestock legacy. Environ Health Persp 103:1096-1100.

Meyers, JR. 1997. Injuries among Farm Workers in the United States, 1993. DHHS (NIOSH) Publication No. 97-115. Cincinnati, OH: NIOSH.

Mullan, RJ and LI Murthy. 1991. Occupational sentinel health events: An up-dated list for physician recognition and public health surveillance. Am J Ind Med 19:775-799.

National Institute for Occupational Safety and Health (NIOSH). 1993. Injuries among Farm Workers in the United states. Cincinnati, OH: NIOSH.

—. 1994. Request for Assistance in Preventing Organic Dust Toxic Syndrome. Washington, DC: GPO.

National Institutes of Health (NIH). 1988. Institutional Administrator’s Manual for Laboratory Animal Care and Use. Washington, DC: GPO.

National Research Council (NRC). 1989. Alternative Agriculture: Committee on the Role of Alternative Farming Methods in Modern Production Agriculture. Washington, DC: National Academy Press.

National Safety Council. 1982. Accident Facts. Chicago, IL: National Safety Council.

—. 1985. Electrofishing. NSC data sheet I-696-85. Chicago, IL: National Safety Council.

Nesheim, MC, RE Austic, and LE Card. 1979. Poultry Production. Philadelphia, PA: Lea and Febiger.

Olenchock, S, J May, D Pratt, L Piacitelli, and J Parker. 1990. Presence of endotoxins in different agricultural environments. Am J Ind Med 18:279-284.

O’Toole, C. 1995. Alien Empire. New York: Harper Collins Publishers.

Orlic, M and RA Leng. 1992. Prelimenary Proposal to Assist Bangladesh to Improve Ruminant Livestock Productivity and Reduce Methane Emissions. Washington, DC: US Environmental Protection Agency, Global Change Division.

Panti, NK and SP Clark. 1991. Transient hazardous conditions in animal building due to manure gas release during slurry mixing. Applied Engineering in Agriculture 7:478-484.

Platt, AE. 1995. Aquaculture boosts fish catch. In Vital Signs 1995: The Trends that Are Shaping our Future, edited by LR Brown, N Lenssen, and H Kane. New York: WW Norton & Company.

Pursel, VG, CE Rexroad, and RJ Wall. 1992. Barnyard biotchnology may soon produce new medical therapeutics. In New Crops, New Uses, New Markets: Industrial and Commercial Products from U.S. Agriculture: 1992 Yearbook of Agriculture Washington, DC: USDA.

Ramaswami, NS and GL Narasimhan. 1982. A case for building up draught animal power. Kurushetra (India’s Journal for Rural Development) 30:4.

Reynolds, SJ, KJ Donham, P Whitten, JA Merchant, LF Burmeister, and WJ Popendorf. 1996. A longitudinal evaluation of dose-response relationships for environmental exposures and pulmonary function in swine production workers. Am J Ind Med 29:33-40.

Robertson, MH, IR Clarke, JD Coghlan, and ON Gill. 1981. Leptospirosis in trout farmers. Lancet: 2(8247)626-627.

Robertson, TD, SA Ribeiro, S Zodrow, and JV Breman. 1994. Assessment of Strategic Livestock Feed Supplementation as an Opportunity for Generating Income for Small Scale Dairy Producers and Reducing Methane Emissions in Bangladesh. Washington, DC: US Environmental Protection Agency.

Rylander, R. 1994. Symptoms and mechanisms: Inflammation of the lung. Am J Ind Med 25:19-24.

Rylander, R, KJ Donham, C Hjort, R Brouwer, and D Heederik. 1989. Effects of exposure to dust in swine confinement buildings: A working group report. Scand J Work Environ Health 15:309-312.

Rylander, R and N Essle. 1990. Bronchial hyperactivity among pig and dairy farmers. Am J Ind Med 17:66-69.

Rylander, R, Y Peterson, and KJ Donman. 1990. Questionnaire evaluating organic dust exposure. Am J Ind Med 17:121-128.

Rylander, R and R Jacobs. 1994. Organic Dusts: Exposure, Effects and Prevention. Chicago, IL: Lewis Publishing.
Safina, C. 1995. The world’s imperiled fish. Sci Am 272:46-53.

Scherf, BD. 1995. World Watch List for Domestic Animal Diversity. Rome: FAO.

Schmidt, MJ. 1997. Working elephants. Sci Am 279:82-87.

Schmidt, JO. 1992. Allergy to venomous insects. In The Hive and the Honey Bee, edited by JM Graham. Hamilton: DaDant & Sons.

Shumacher, MJ and NB Egen. 1995. Significance of Africanized bees on public health. Arch Int Med 155:2038-2043.

Sherson, D, I Hansen, and T Sigsgaard. 1989. Occupationally related respiratory symptoms in trout-processing workers. Allergy 44:336-341.

Stem, C, DD Joshi, and M Orlic. 1995. Reducing Methane Emissions from Ruminant Livestock: Nepal prefeasibility Study. Washington, DC: US Environmental Protection Agency, Global Change Division.

Sweeten, JM. 1995. Odor measurement technology and applications: A state-of-the-art review. In Seventh International Symposium on Agricultural and Food Processing Wastes: Proceedings of the 7th International Symposium, edited by CC Ross. American Society of Agricultural Engineering.

Tannahill, R. 1973. Food in History. New York: Stein and Day.

Thorne, PS, KJ Donham, J Dosman, P Jagielo, JA Merchant, and S Von Essen. 1996. Occupational health. In Understanding the Impacts of Large-scale Swine Production, edited by KM Thu, D Mcmillan, and J Venzke. Iowa City, IA: University of Iowa.

Turner, F and PJ Nichols. 1995. Role of the epithelium in the response of the airways. Abstract for the 19th Cotton and Other Organic Dust Research Conference, 6-7 January, San antonio, TX.

United Nations Development Programme (UNDP). 1996. Urban Agriculture: Food, Jobs, and Sustainable Cities. New York: UNDP.

US Department of Agriculture (USDA). 1992. Agricultural Waste Management Field Handbook. Washington, DC: USDA Soil Conservation Service.

—. 1996a. Livestock and Poultry: World Markets and Trade. Circular Series FL&P 1-96. Washington DC: USDA Foreign Agricultural Service.

—. 1996b. Dairy: World Markets and Trade. Circular Series FD 1-96. Washington DC: USDA Foreign Agricultural Service.

—. 1997. Poultry Production and Value, 1996 Summary. Washington, DC: National Agricultural Statistics Service.

van Hage-Hamsten, M, S Johansson, and S Hogland. 1985. Storage mite allergy is common in a farming population. Clin Allergy 15:555-564.

Vivian, J. 1986. Keeping Bees. Charlotte, VT: Williamson Publishing.

Waller, JA. 1992. Injuries to farmers and farm families in a dairy state. J Occup Med 34:414-421.

Yang, N. 1995. Research and development of buffalo draught power for farming in China. Asian Livestock XX:20-24.

Zhou, C and JM Roseman. 1995. Agriculture-related residual injuries: Prevalence, type, and associated factors among Alabama farm operators, 1990. Journal of Rural Health 11:251-258.

Zuehlke, RL, CF Mutel, and KJ Donham. 1980. Diseases of Agricultural Workers. Iowa City, IA: Department of Preventive Medicine and Environmental Health, University of Iowa.