Banner 17

Children categories

94. Education and Training Services

94. Education and Training Services (7)

Banner 17

 

94. Education and Training Services

Chapter Editor: Michael McCann


Table of Contents

Tables and Figures

E. Gelpi
 
Michael McCann
 
Gary Gibson
 
Susan Magor
 
Ted Rickard
 
Steven D. Stellman and Joshua E. Muscat
 
Susan Magor

Tables 

Click a link below to view table in article context.

1. Diseases affecting day-care workers & teachers
2. Hazards & precautions for particular classes
3. Summary of hazards in colleges & universities

Figures

Point to a thumbnail to see figure caption, click to see figure in article context.

EDS025F1EDS025F2

View items...
95. Emergency and Security Services

95. Emergency and Security Services (9)

Banner 17

 

95. Emergency and Security Services

Chapter Editor: Tee L. Guidotti


Table of Contents

Tables and Figures

Tee L. Guidotti
 
Alan D. Jones
 
Tee L. Guidotti
 
Jeremy Brown
 
Manfred Fischer
 
Joel C. Gaydos, Richard J. Thomas,David M. Sack and Relford Patterson
 
Timothy J. Ungs
 
John D. Meyer
 
M. Joseph Fedoruk

Tables

Click a link below to view table in article context.

1. Recommendations & criteria for compensation

Figures

Point to a thumbnail to see figure caption, click to see figure in article context.

EMR019F1EMR020F1EMR020F2EMR035F1EMR035F2EMR040F1EMR040F2

EMR050T2


Click to return to top of page

View items...
96. Entertainment and the Arts

96. Entertainment and the Arts (31)

Banner 17

 

96. Entertainment and the Arts

Chapter Editor: Michael McCann


Table of Contents

Tables and Figures

Arts and Crafts

Michael McCann 
Jack W. Snyder
Giuseppe Battista
David Richardson
Angela Babin
William E. Irwin
Gail Coningsby Barazani
Monona Rossol
Michael McCann
Tsun-Jen Cheng and Jung-Der Wang
Stephanie Knopp

Performing and Media Arts 

Itzhak Siev-Ner 
 
     Susan Harman
John P. Chong
Anat Keidar
    
     Jacqueline Nubé
Sandra Karen Richman
Clëes W. Englund
     Michael McCann
Michael McCann
Nancy Clark
Aidan White

Entertainment

Kathryn A. Makos
Ken Sims
Paul V. Lynch
William Avery
Michael McCann
Gordon Huie, Peter J. Bruno and W. Norman Scott
Priscilla Alexander
Angela Babin
Michael McCann
 

Tables

Click a link below to view table in article context.

1. Precautions associated with hazards
2. Hazards of art techniques
3. Hazards of common stones
4. Main risks associated with sculpture material
5. Description of fibre & textile crafts
6. Description of fibre & textile processes
7. Ingredients of ceramic bodies & glazes
8. Hazards & precautions of collection management
9. Hazards of collection objects

Figures

Point to a thumbnail to see figure caption, click to see the figure in the article context.

ENT030F2ENT060F1ENT060F2ENT070F1ENT080F1ENT090F1ENT090F3ENT090F2ENT100F3ENT100F1ENT100F2ENT130F1ENT180F1ENT220F1ENT230F1ENT230F4ENT230F3ENT236F2ENT260F1ENT280F1ENT280F2ENT280F3ENT280F4ENT285F2ENT285F1 ENT290F3ENT290F6ENT290F8


Click to return to top of page

View items...
97. Health Care Facilities and Services

97. Health Care Facilities and Services (25)

Banner 17

 

97. Health Care Facilities and Services

Chapter Editor: Annelee Yassi


Table of Contents

Tables and Figures

Health Care: Its Nature and Its Occupational Health Problems
Annalee Yassi and Leon J. Warshaw

Social Services
Susan Nobel

Home Care Workers: The New York City Experience
Lenora Colbert

Occupational Health and Safety Practice: The Russian Experience
Valery P. Kaptsov and Lyudmila P. Korotich

Ergonomics and Health Care

Hospital Ergonomics: A Review
Madeleine R. Estryn-Béhar

Strain in Health Care Work
Madeleine R. Estryn-Béhar

     Case Study: Human Error and Critical Tasks: Approaches for Improved System Performance

Work Schedules and Night Work in Health Care
Madeleine R. Estryn-Béhar

The Physical Environment and Health Care

Exposure to Physical Agents
Robert M. Lewy

Ergonomics of the Physical Work Environment
Madeleine R. Estryn-Béhar

Prevention and Management of Back Pain in Nurses
Ulrich Stössel

     Case Study: Treatment of Back Pain
     Leon J. Warshaw

Health Care Workers and Infectious Disease

Overview of Infectious Diseases
Friedrich Hofmann

Prevention of Occupational Transmission of Bloodborne Pathogens
Linda S. Martin, Robert J. Mullan and David M. Bell 

Tuberculosis Prevention, Control and Surveillance
Robert  J. Mullan

Chemicals in the Health Care Environment

Overview of Chemical Hazards in Health Care
Jeanne Mager Stellman 

Managing Chemical Hazards in Hospitals
Annalee Yassi

Waste Anaesthetic Gases
Xavier Guardino Solá

Health Care Workers and Latex Allergy
Leon J. Warshaw

The Hospital Environment

Buildings for Health Care Facilities
Cesare Catananti, Gianfranco Damiani and Giovanni Capelli

Hospitals: Environmental and Public Health Issues
M.P. Arias

Hospital Waste Management
M.P. Arias

Managing Hazardous Waste Disposal Under ISO 14000
Jerry Spiegel and John Reimer

Tables

Click a link below to view table in article context.

1. Examples of health care functions
2. 1995 integrated sound levels
3. Ergonomic noise reduction options
4. Total number of injuries (one hospital)
5. Distribution of nurses’ time
6. Number of separate nursing tasks
7. Distribution of nurses' time
8. Cognitive & affective strain & burn-out
9. Prevalence of work complaints by shift
10. Congenital abnormalities following rubella
11. Indications for vaccinations
12. Post-exposure prophylaxis
13. US Public Health Service recommendations
14. Chemicals’ categories used in health care
15. Chemicals cited HSDB
16. Properties of inhaled anaesthetics
17. Choice of materials: criteria & variables
18. Ventilation requirements
19. Infectious diseases & Group III wastes
20. HSC EMS documentation hierarchy
21. Role & responsibilities
22. Process inputs
23. List of activities

Figures

Point to a thumbnail to see figure caption, click to see the figure in the article context.

HCF020F1HCF020F2HCF020F3HCF020F4HCF020F5HCF020F6HCF020F7HCF020F8HCF020F9HCF20F10HCF060F5HCF060F4


Click to return to top of page

View items...
98. Hotels and Restaurants

98. Hotels and Restaurants (4)

Banner 17

 

98. Hotels and Restaurants

Chapter Editor: Pam Tau Lee


Table of Contents

Pam Tau Lee
 
 
Neil Dalhouse
 
 
Pam Tau Lee
 
 
Leon J. Warshaw
View items...
99. Office and Retail Trades

99. Office and Retail Trades (7)

Banner 17

 

99. Office and Retail Trades

Chapter Editor: Jonathan Rosen


Table of Contents

Tables and Figures

The Nature of Office and Clerical Work
Charles Levenstein, Beth Rosenberg and Ninica Howard

Professionals and Managers
Nona McQuay

Offices: A Hazard Summary
Wendy Horde

Bank Teller Safety: The Situation in Germany
Manfred Fischer

Telework
Jamie Tessler

The Retail Industry
Adrienne Markowitz

     Case Study: Outdoor Markets
     John G. Rodwan, Jr.

Tables 

Click a link below to view table in article context.

1. Standard professional jobs
2. Standard clerical jobs
3. Indoor air pollutants in office buildings
4. Labour statistics in the retail industry

Figures

Point to a thumbnail to see figure caption, click to see figure in article context.

OFR040F3OFR040F1OFR040F2

View items...
100. Personal and Community Services

100. Personal and Community Services (6)

Banner 17

 

100. Personal and Community Services

Chapter Editor: Angela Babin


Table of Contents

Tables and Figures

Indoor Cleaning Services
Karen Messing

Barbering and Cosmetology
Laura Stock and James Cone

Laundries, Garment and Dry Cleaning
Gary S. Earnest, Lynda M. Ewers and Avima M. Ruder

Funeral Services
Mary O. Brophy and Jonathan T. Haney

Domestic Workers
Angela Babin

     Case Study: Environmental Issues
     Michael McCann

Tables

Click a link below to view table in article context.

1. Postures observed during dusting in a hospital
2. Dangerous chemicals used in cleaning

Figures

Point to a thumbnail to see figure caption, click to see figure in article context.

PCS020F4PCS020F5PCS020F1PCS030F1

View items...
101. Public and Government Services

101. Public and Government Services (12)

Banner 17

 

101. Public and Government Services

Chapter Editor: David LeGrande


Table of Contents

Tables and Figurs

Occupational Health and Safety Hazards in Public and Governmental Services
David LeGrande

     Case Report: Violence and Urban Park Rangers in Ireland
     Daniel Murphy

Inspection Services
Jonathan Rosen

Postal Services
Roxanne Cabral

Telecommunications
David LeGrande

Hazards in Sewage (Waste) Treatment Plants
Mary O. Brophy

Domestic Waste Collection
Madeleine Bourdouxhe

Street Cleaning
J.C. Gunther, Jr.

Sewage Treatment
M. Agamennone

Municipal Recycling Industry
David E. Malter

Waste Disposal Operations
James W. Platner

The Generation and Transport of Hazardous Wastes: Social and Ethical Issues
Colin L. Soskolne

Tables

Click a link below to view table in article context.

1. Hazards of inspection services
2. Hazardous objects found in domestic waste
3. Accidents in domestic waste collection (Canada)
4. Injuries in the recycling industry

Figures

Point to a thumbnail to see figure caption, click to see figure in article context.

PGS040F2PGS040F1PGS065F1PGS065F3PGS065F2PGS100F1PGS100F2


Click to return to top of page

View items...
102. Transport Industry and Warehousing

102. Transport Industry and Warehousing (18)

Banner 17

 

102. Transport Industry and Warehousing

Chapter Editor: LaMont Byrd


Table of Contents

Tables and Figures

General Profile
LaMont Byrd  

     Case Study: Challenges to Workers’ Health and Safety in the Transportation and Warehousing Industry
     Leon J. Warshaw

Air Transport

Airport and Flight Control Operations
Christine Proctor, Edward A. Olmsted and E. Evrard

     Case Studies of Air Traffic Controllers in the United States and Italy
     Paul A. Landsbergis

Aircraft Maintenance Operations
Buck Cameron

Aircraft Flight Operations
Nancy Garcia and H. Gartmann

Aerospace Medicine: Effects of Gravity, Acceleration and Microgravity in the Aerospace Environment
Relford Patterson and Russell B. Rayman

Helicopters
David L. Huntzinger

Road Transport

Truck and Bus Driving
Bruce A. Millies

Ergonomics of Bus Driving
Alfons Grösbrink and Andreas Mahr

Motor Vehicle Fuelling and Servicing Operations
Richard S. Kraus

     Case Study: Violence in Gasoline Stations
     Leon J. Warshaw

Rail Transport

Rail Operations
Neil McManus

     Case Study: Subways
     George J. McDonald

Water Transport

Water Transportation and the Maritime Industries
Timothy J. Ungs and Michael Adess

Storage

Storage and Transportation of Crude Oil, Natural Gas, Liquid Petroleum Products and Other Chemicals
Richard S. Kraus

Warehousing
John Lund

     Case Study: US NIOSH Studies of Injuries among Grocery Order Selectors

Tables

Click a link below to view table in article context.

1. Bus driver seat measurements
2. Illumination levels for service stations
3. Hazardous conditions & administration
4. Hazardous conditions & maintenance
5. Hazardous conditions & right of way
6. Hazard control in the Railway industry
7. Merchant vessel types
8. Health hazards common across vessel types
9. Notable hazards for specific vessel types
10. Vessel hazard control & risk-reduction
11. Typical approximate combustion properties
12. Comparison of compressed & liquified gas
13. Hazards involving order selectors
14. Job safety analysis: Fork-lift operator
15. Job safety analysis: Order selector

Figures

Point to a thumbnail to see figure caption, click to see figure in article context.

TRA010F1TRA010F2TRA110F1TRA015F1TRA025F1TRA025F2TRA032F1TRA032F3TRA032F4TRA035C1TRA035F2TRA040F2TRA040F3TRA060F1TRA060F2TRA070F2TRA070F1TRA050F2TRA050F3TRA050F4


Click to return to top of page

View items...
Monday, 21 March 2011 14:50

General Profile

Written by

Adapted from 3rd edition, “Encyclopaedia of Occupational Health and Safety”.

The scope of the teaching profession extends from the nursery school to the postgraduate institution. Teaching involves not only academic instruction but also scientific, artistic and technical training, in laboratories, art studios and workshops, and physical training on sports grounds and in gymnasia and swimming pools. In most countries almost everyone comes at some time under the influence of the profession, and the teachers themselves have backgrounds as diverse as the subjects taught. Many senior members of the profession also have administrative and managerial duties.

In addition, the development of policies and activities to promote life-long education necessitates a reassessment of the conventional concept of teachers within traditional establishments (schools, universities). Members of the teaching profession carry out their tasks using formal and informal educational methods, in basic and continuous training, in educational establishments and institutions as well as outside them.

Apart from pupils of school age and university students, new kinds of students and trainees are coming forward in ever-increasing numbers in a great many countries: young jobseekers, women wishing to return to the employment market, retired persons, migrant workers, the handicapped, community groups and so on. In particular, we find categories of persons who were formerly excluded from normal educational establishments: illiterates and the handicapped.

There is nothing new in the variety of apprenticeship facilities available, and private self-education has always existed; life-long education has always existed in one form or another. There is, however, one new factor: the growing development of formal life-long educational facilities in places not originally intended as places of education and through new means—for example, in factories, offices and leisure facilities and through associations, mass communication media and assisted self-education. This growth and spread of educational activities has resulted in an increasing number of persons engaged in teaching on a professional or voluntary basis.

Many types of activity falling within the field of education may overlap: teachers, instructors, lecturers, promoters and organizers of educational projects, educational and vocational guidance workers, career advisers, adult education specialists and administrators.

Regarding the membership of the teaching profession as represented in employment markets, one finds that in most countries they make up one of the most significant categories of the salaried workforce.

Recently, the importance of teachers’ trade unions has increased continuously, keeping pace with the ever-increasing number of teachers. The flexibility of their working hours has enabled teachers to play a significant role in the political life of many countries.

A new type of educator - those who are not exactly teachers in the previously held conception of the term - can now be found in many systems, where the school has become a centre for permanent or life-long educational facilities. These are professionals from various sectors, including handicrafts experts, artists and so on, who contribute permanently or occasionally to these educational activities.

Educational establishments are opening their doors to diverse groups and categories, turning more and more towards external and extramural activities. Two major tendencies can be observed in this connection: on the one hand, relations have been established with the industrial workforce, with industrial plants and processes; and on the other, a growing relation has been established with community development, and there is increasing interaction between institutional education and community education projects.

Universities and colleges endeavour to renew teachers’ initial training through refresher training. Apart from specifically pedagogical aspects and disciplines, they provide for educational sociology, economy and anthropology. A trend still facing many obstacles is to have future teachers acquire experience by doing training periods in community settings, in workplaces or in various educational and cultural establishments. The national service, which has become general in certain countries, is a useful experience in the field for future teachers.

The immense investments in communication and information are auspicious for different types of individual or collective self-teaching. The relation between self-teaching and teaching is an emerging problem. The change-over from the autodidactic training of those who had not attended school to the permanent self-teaching of young people and adults has not always been correctly appreciated by educational institutions.

These new educational policies and activities give rise to various problems such as hazards and their prevention. Permanent education, which is not limited to school experience, turns various places, such as the community, the workplace, the laboratory and the environment, into training premises. The teachers should be assisted in these activities, and insurance coverage should be provided. In order to prevent hazards, efforts should be made to adapt the various premises for educational activities. There are several instances where schools have been adapted to become open centres for the entire population and have been equipped so as to be not only educational institutions but also places for creative and productive activities and for meetings.

The relationship of teachers and instructors with these various periods in the lives of trainees and students, such as leisure time, working time, family life and the duration of apprenticeships, also requires a considerable effort as regards information, research and adaptation.

Relations between teachers and students’ families are also on the increase; sometimes members of families occasionally attend lectures or classes at the school. Dissimilarities between family models and educational models necessitate a great effort from teachers to reach mutual understanding from the psychological, sociological and anthropological standpoint. Family models influence the behaviour pattern of some students, who can experience sharp contradictions between family training and behavioural models and norms prevailing in the school.

However great the variety, all teaching has certain common characteristics: the teacher not only instructs in specific knowledge or skills but also seeks to convey a way of thought; he or she has to prepare the pupil for the next stage of development and stimulate the pupil’s interest and participation in the process of learning.

 

Back

Thursday, 24 March 2011 14:41

Entertainment and the Arts

Written by

Entertainment and the arts have been a part of human history ever since prehistoric people drew cave paintings of animals they hunted or acted out in song and dance the success of the hunt. Every culture from earliest times has had its own style of visual and performing arts, and decorated everyday objects like clothing, pottery and furniture. Modern technology and more leisure time has led to a major part of the world’s economy being devoted to satisfying the need for people to see or own beautiful objects and to be entertained.

The entertainment industry is a miscellaneous grouping of non-commercial institutions and commercial companies that provide these cultural, amusement and recreational activities for people. By contrast, artists and craftspeople are workers who create artwork or handicrafts for their own pleasure or for sale. They usually work alone or in groups of fewer than ten people, often organized around families.

The people who make this entertainment and art possible—artists and craftspeople, actors, musicians, circus performers, park attendants, museum conservators, professional sports players, technicians and others—often face occupational hazards that can result in injuries and illnesses. This chapter will discuss the nature of those occupational hazards. It will not discuss the hazards to people doing arts and crafts as hobbies or attending these entertainment events, although in many instances the hazards will be similar.

Entertainment and the arts can be thought of as a microcosm of all industry. The occupational hazards encountered are, in most instances, similar to those found in more conventional industries, and the same types of precautions can be used, although costs may be prohibitive factors for some engineering controls in the arts and crafts. In these instances, emphasis should be on substitution of safer materials and processes. Table 1 lists standard types of precautions associated with the various hazards found in the arts and entertainment industries.

Table 1. Precautions associated with hazards in the arts and entertainment industries.

Hazard

Precautions

Chemical hazards

General

Training in hazards and precautions

Substitution of safer materials

Engineering controls

Adequate storage and handling

No eating, drinking or smoking in work areas

Personal protective equipment

Spill and leak control procedures

Safe disposal of hazardous materials

Airborne contaminants

(vapours, gases, spray mists, fogs, dusts, fumes, smoke)

Enclosure

Dilution or local exhaust ventilation

Respiratory protection

Liquids

Cover containers

Gloves and other personal protective clothing

Splash goggles and face shields as needed

Eyewash fountain and emergency showers when needed

Powders

Purchasing in liquid or paste form

Glove boxes

Local exhaust ventilation

Wet mopping or vacuuming

Respiratory protection

Solids

Gloves

Physical hazards

Noise

Quieter machinery

Proper maintenance

Sound dampening

Isolation and enclosure

Hearing protectors

Ultraviolet radiation

Enclosure

Skin protection and UV goggles

Infrared radiation

Skin protection and infrared goggles

Lasers

Using lowest-power laser possible

Enclosure

Beam restrictions and proper emergency cutoffs

Laser goggles

Heat

Acclimatization

Light, loose clothing

Rest breaks in cool areas

Adequate liquid intake

Cold

Warm clothing

Rest breaks in heated areas

Electrical hazards

Adequate wiring

Properly grounded equipment

Ground fault circuit interrupters where needed

Insulated tools, gloves, etc.

Ergonomic hazards

Ergonomic tools, instruments, etc., of proper size

Properly designed work stations

Proper posture

Rest breaks

Safety hazards

Machinery

Machine guards

Accessible stop switch

Good maintenance

Flying particles (e.g., grinders)

Enclosure

Eye and face protection as needed

Slips and falls

Clean and dry walking and working surfaces

Fall protection for elevated work

Guardrails and toeboards on scaffolds, catwalks, etc.

Falling objects

Safety hats

Safety shoes

Fire hazards

Proper exit routes

Proper fire extinguishers, sprinklers, etc.

Fire drills

Removal of combustible debris

Fireproofing of exposed materials

Proper storage of flammable liquids and compressed gases

Grounding and bonding when dispensing flammable liquids

Removal of sources of ignition around flammables

Proper disposal of solvent- and oil-soaked rags

Biological hazards

Moulds

Humidity control

Removal of standing water

Cleanup after flooding

Bacteria, viruses

Vaccination where appropriate

Universal precautions

Disinfection of contaminated materials, surfaces

 

Arts and Crafts

Artists and craftspeople are usually self-employed, and the work is done in homes, studios or backyards, using small amounts of capital and equipment. Skills are often handed down from generation to generation in an informal apprenticeship system, particularly in developing countries (McCann 1996). In industrialized countries, artists and craftspeople often learn their trade in schools.

Today, arts and crafts involve millions of people across the world. In many countries, craftwork is a major part of the economy. However, few statistics are available on the number of artists and craftspeople. In the United States, estimates gathered from a variety of sources indicate there are at least 500,000 professional artists, craftspeople and art teachers. In Mexico, it has been estimated that there are 5,000 families involved in the home-based pottery industry alone. The Pan American Health Organization found that 24% of the workforce in Latin America from 1980 to 1990 were self-employed (PAHO 1994). Other studies of the informal sector have found similar or higher percentages (WHO 1976; Henao 1994). What percentage of these are artists and craftspeople is unknown.

Arts and crafts evolve with the technology available and many artists and craftspeople adopt modern chemicals and processes for their work, including plastics, resins, lasers, photography and so on (McCann 1992a; Rossol 1994). Table 2 shows the range of physical and chemical hazards found in art processes.

Table 2. Hazards of art techniques

Technique

Material/process

Hazard

Airbrush

Pigments

Solvents

Lead, cadmium, manganese, cobalt, mercury, etc.

Mineral spirits, turpentine

Batik

Wax

Dyes

Fire, wax, decomposition fumes

See Dyeing

Ceramics

Clay dust

Glazes

Slip casting

Kiln firing

Silica

Silica, lead, cadmium and other toxic metals

Talc, asbestiform materials

Sulphur dioxide, carbon monoxide, fluorides, infrared radiation, burns

Commercial art

Rubber cement

Permanent markers

Spray adhesives

Airbrushing

Typography

Photostats, proofs

N-hexane, heptane, fire

Xylene, propyl alcohol

N-hexane, heptane, 1,1,1-trichloroethane, fire

See Airbrush

See Photography

Alkali, propyl alcohol

Computer art

Ergonomics

Video display

Carpal tunnel syndrome, tendinitis, poorly designed work stations

Glare, Elf radiation

Drawing

Spray fixatives

N-hexane, other solvents

Dyeing

Dyes

Mordants

Dyeing assistants

Fibre-reactive dyes, benzidine dyes, naphthol dyes, basic dyes, disperse dyes, vat dyes

Ammonium dichromate, copper sulphate, ferrous sulphate, oxalic acid, etc.

Acids, alkalis, sodium hydrosulphite

Electroplating

Gold, silver

Other metals

Cyanide salts, hydrogen cyanide, electrical hazards

Cyanide salts, acids, electrical hazards

Enamelling

Enamels

Kiln firing

Lead, cadmium, arsenic, cobalt, etc.

Infrared radiation, burns

Fibre arts

See also Batik, Weaving

Animal fibres

Synthetic fibres

Vegetable fibres

 

Anthrax and other infectious agents

Formaldehyde

Moulds, allergens, dust

Forging

Hammering

Hot forge

Noise

Carbon monoxide, polycyclic aromatic hydrocarbons, infrared radiation, burns

Glassblowing

Batch process

Furnaces

Colouring

Etching

Sandblasting

Lead, silica, arsenic, etc.

Heat, infrared radiation, burns

Metal fumes

Hydrofluoric acid, ammonium hydrogen fluoride

Silica

Holography

(see also Photography)

Lasers

Developing

Non-ionizing radiation, electrical hazards

Bromine, pyrogallol

Intaglio

Acid etching

Solvents

Aquatint

Photoetching

Hydrochloric and nitric acids, nitrogen dioxide, chlorine gas, potassium chlorate

Alcohol, mineral spirits, kerosene

Rosin dust, dust explosion

Glycol ethers, xylene

Jewellery

Silver soldering

Pickling baths

Gold reclaiming

Cadmium fumes, fluoride fluxes

Acids, sulphur oxides

Mercury, lead, cyanide

Lapidary

Quartz gemstones

Cutting, grinding

Silica

Noise, silica

Lithography

Solvents

Acids

Talc

Photolithography

Mineral spirits, isophorone, cyclohexanone, kerosene, gasoline, methylene chloride, etc.

Nitric, phosphoric, hydrofluoric, hydrochloric, etc.

Asbestiform materials

Dichromates, solvents

Lost wax casting

Investment

Wax burnout

Crucible furnace

Metal pouring

Sandblasting

Cristobalite

Wax decomposition fumes, carbon monoxide

Carbon monoxide, metal fumes

Metal fumes, infrared radiation, molten metal, burns

Silica

Painting

Pigments

Oil, alkyd

Acrylic

Lead, cadmium, mercury, cobalt, manganese compounds, etc.

Mineral spirits, turpentine

Trace amounts ammonia, formaldehyde

Papermaking

Fibre separation

Beaters

Bleaching

Additives

Boiling alkali

Noise, injuries, electrical

Chlorine bleach

Pigments, dyes, etc.

Pastels

Pigment dusts

See Painting Pigments

Photography

Developing bath

Stop bath

Fixing bath

Intensifier

Toning

Colour processes

Platinum printing

Hydroquinone, monomethyl-p-aminophenol sulphate, alkalis

Acetic acid

Sulphur dioxide, ammonia

Dichromates, hydrochloric acid

Selenium compounds, hydrogen sulphide, uranium nitrate, sulphur dioxide, gold salts

Formaldehyde, solvents, colour developers, sulphur dioxide

Platinum salts, lead, acids, oxalates

Relief printing

Solvents

Pigments

Mineral spirits

See Painting Pigments

Screen printing

Pigments

Solvents

Photoemulsions

Lead, cadmium, manganese and other pigments

Mineral spirits, toluene, xylene

Ammonium dichromate

Sculpture, clay

See Ceramics

 

Sculpture, lasers

Lasers

Non-ionizing radiation, electrical hazards

Sculpture, neon

Neon tubes

Mercury, cadmium phosphors, electrical hazards, ultraviolet radiation

Sculpture, plastics

Epoxy resin

Polyester resin

Polyurethane resins

Acrylic resins

Plastic fabrication

Amines, diglycidyl ethers

Styrene, methyl methacrylate, methyl ethyl ketone peroxide

Isocyanates, organotin compounds, amines, mineral spirits

Methyl methacrylate, benzoyl peroxide

Heat decomposition products (e.g., carbon monoxide, hydrogen chloride, hydrogen cyanide, etc.)

Sculpture, stone

Marble

Soapstone

Granite, sandstone

Pneumatic tools

Nuisance dust

Silica, talc, asbestiform materials

Silica

Vibration, noise

Stained glass

Lead came

Colourants

Soldering

Etching

Lead

Lead-based compounds

Lead, zinc chloride fumes

Hydrofluoric acid, ammonium hydrogen fluoride

Weaving

Looms

Dyes

Ergonomic problems

See Dyeing

Welding

General

Oxyacetylene

Arc

Metal fumes

Metal fumes, burns, sparks

Carbon monoxide, nitrogen oxides, compressed gases

Ozone, nitrogen dioxide, fluoride and other flux fumes, ultraviolet and infrared radiation, electrical hazards

Oxides of copper, zinc, lead, nickel, etc.

Woodworking

Machining

Glues

Paint strippers

Paints and finishes

Preservatives

Injuries, wood dust, noise, fire

Formaldehyde, epoxy, solvents

Methylene chloride, toluene, methyl alcohol, etc.

Mineral spirits, toluene, turpentine, ethyl alcohol, etc.

Chromated copper arsenate, pentachlorophenol, creosote

Source: Adapted from McCann 1992a.

The arts and crafts industry, like much of the informal sector, is almost completely unregulated and is often exempted from workers’ compensation laws and other occupational safety and health regulations. In many countries, government agencies responsible for occupational safety and health are unaware of the risks facing artists and craftspeople, and occupational health services do not reach out to this group of workers. Special attention is needed to find ways to educate artists and craftspeople about the hazards and precautions needed with their materials and processes, and to make occupational health services available to them.

Health problems and disease patterns

Few epidemiological studies have been done on workers in the visual arts. This is mostly due to the decentralized and often unregistered nature of most of these industries. Much of the data that are available come from individual case reports in the literature.

The traditional arts and crafts can result in the same occupational diseases and injuries found in larger-scale industry, as evidenced by such old terms as potter’s rot, weaver’s back and painter’s colic. The hazards of such crafts as pottery, metalworking and weaving were first described by Bernardino Ramazzini almost three centuries ago (Ramazzini 1713). Modern materials and processes also are causing occupational illnesses and injuries.

Lead poisoning is still one of the most common occupational illnesses among artists and craftspeople, with examples of lead poisoning being found in:

  • a stained-glass artist in the United States (Feldman and Sedman 1975)
  • potters and their families in Mexico (Ballestros, Zuniga and Cardenas 1983; Cornell 1988) and Barbados (Koplan et al. 1977)
  • families in Sri Lanka recovering gold and silver from jeweller’s waste using a molten lead procedure (Ramakrishna et al. 1982).

 

Other examples of occupational illnesses in the arts and crafts include:

  • chromium sensitization in a fibre artist (MMWR 1982)
  • neuropathy in a silk-screen artist (Prockup 1978)
  • heart attacks from methylene chloride in a furniture refinisher (Stewart and Hake 1976)
  • respiratory problems in photographers (Kipen and Lerman 1986)
  • mesothelioma in jewellers (Driscoll et al. 1988)
  • silicosis and other respiratory diseases in agate workers in India (Rastogi et al. 1991)
  • asthma from carving ivory from elephant tusks in Africa (Armstrong, Neill and Mossop 1988)
  • respiratory problems and ergonomic problems among carpet weavers in India (Das, Shukla and Ory 1992)
  • as many as 93 cases of peripheral neuropathy from the use of hexane-based adhesives in sandal-making in Japan in the late 1960s (Sofue et al. 1968)
  • paralysis in 44 apprentice shoemakers in Morocco due to glues containing tri-orthocresyl phosphate (Balafrej et al. 1984)
  • leg, arm and back pain and other occupational health problems in home-based workers making ready-made garments in India (Chaterjee 1990).

 

A major problem in the arts and crafts is the prevalent lack of knowledge of hazards, materials and processes and how to work safely. Individuals who do develop occupational diseases often do not realize the connection between their illness and their exposures to hazardous materials, and are less likely to obtain proper medical assistance. In addition, whole families can be at risk—not only those adults and children actively working with the materials, but also younger children and infants who are present, since these arts and crafts are commonly done in the home (McCann et al. 1986; Knishkowy and Baker 1986).

A proportionate mortality ratio (PMR) study of 1,746 White professional artists by the United States National Cancer Institute found significant elevations in deaths of painters, and to a lesser degree for other artists, from arteriosclerotic heart disease and from cancers of all sites combined. For male painters, rates of leukaemia and cancers of the bladder, kidney and colorectum were significantly elevated. Proportionate cancer mortality rates were also elevated, but to a lesser degree. A case control study of bladder cancer patients found an overall relative risk estimate of 2.5 for artistic painters, confirming the results found in the PMR study (Miller, Silverman and Blair 1986). For other male artists, PMRs for colorectal and kidney cancer were significantly elevated.

Performing and Media Arts

Traditionally, the performing arts include theatre, dance, opera, music, storytelling and other cultural events that people would come to see. With music, the type of performance and their venue can vary widely: individuals performing music on the street, in taverns and bars, or in formalized concert halls; small musical groups playing in small bars and clubs; and large orchestras performing in large concert halls. Theatre and dance companies can be of several types, including: small informal groups associated with schools or universities; non-commercial theatres, which are usually subsidized by governments or private sponsors; and commercial theatres. Performing arts groups may also tour from one location to another.

Modern technology has seen the growth of the media arts, such as the print media, radio, television, motion pictures, videotapes and so on, which enable the performing arts, stories and other events to be recorded or broadcast. Today the media arts are a multi-billion-dollar industry.

Workers in the performing and media arts include the performers themselves—actors, musicians, dancers, reporters and others visible to the public. In addition, there are the technical crews and front office people—stage carpenters, scenic artists, electricians, special effects experts, motion picture or television camera crews, ticket sellers and others—who work backstage, behind the cameras and on other non-performing jobs.

Health effects and disease patterns

Actors, musicians, dancers, singers and other performers are also subject to occupational injuries and illnesses, which can include accidents, fire hazards, repetitive strain injuries, skin irritation and allergies, respiratory irritation, performance anxiety (stage fright) and stress. Many of these types of injuries are specific to particular groups of performers, and are discussed in separate articles. Even minor physical problems can often affect a performer’s peak performance capability, and subsequently end in lost time and even lost jobs. In recent years, the prevention, diagnosis and treatment of injuries to performers has led to the new field of arts medicine, originally an offshoot of sports medicine. (See “History of performing arts medicine” in this chapter.)

A PMR study of screen and stage actors found significant elevations for lung, oesophagus and bladder cancers in women, with the rate for stage actresses 3.8 times that of screen actresses (Depue and Kagey 1985). Male actors had significant PMR (but not proportionate cancer mortality ratio) increases for pancreatic and colon cancer; testicular cancer was twice the expected rate by both methods. PMRs for suicide and non–motor vehicle accidents were significantly elevated for both men and women, and the PMR for cirrhosis of the liver was elevated in men.

A recent survey of injuries among 313 performers in 23 Broadway shows in New York City found that 55.5% reported at least one injury, with a mean of 1.08 injuries per performer (Evans et al. 1996). For Broadway dancers, the most frequent sites of injury were the lower extremities (52%), back (22%) and neck (12%), with raked or slanted stages being a significant contributing factor. For actors, the most frequent sites of injuries were lower extremities (38%), the lower back (15%) and vocal cords (17%). The use of fogs and smoke on stage was listed as a major cause for the last.

In 1991, the United States National Institute for Occupational Safety and Health investigated the health effects of the use of smoke and fogs in four Broadway shows (Burr et al. 1994). All the shows used glycol-type fogs, although one also used mineral oil. A questionnaire survey of 134 actors in these shows with a control group of 90 actors in five shows not using fogs found significantly higher levels of symptoms in actors exposed to fogs, including upper-respiratory symptoms such as nasal symptoms and irritation of mucous membranes, and lower-respiratory symptoms such as coughing, wheezing, breathlessness and chest tightness. A follow-up study could not demonstrate a correlation between fog exposure and asthma, possibly due to the low number of responses.

The motion picture production industry has a high accident rate, and in California is classified as high risk, mostly as a result of stunts. During the 1980s, there were over 40 fatalities in American-produced motion pictures (McCann 1991). California statistics for 1980–1988 show an incidence of 1.5 fatalities per 1,000 injuries, compared to the California average of 0.5 for the same period.

A large number of studies have shown that dancers have high overuse and acute injury rates. Ballet dancers, for example, have high incidences of overuse syndrome (63%), stress fractures (26%) and major (51%) or minor (48%) problems during their professional careers (Hamilton and Hamilton 1991). One questionnaire study of 141 dancers (80 females), 18 to 37 years old, from seven professional ballet and modern dance companies in the United Kingdom, found that 118 (84%) of the dancers reported at least one dance-related injury that affected their dancing, 59 (42%) in the last six months (Bowling 1989). Seventy-four (53%) reported that they were suffering from at least one chronic injury that was giving them pain. The back, neck and ankles were the most common sites of injury.

As with dancers, musicians have a high incidence of overuse syndrome. A 1986 questionnaire survey by the International Conference of Symphony and Opera Musicians of 4,025 members from 48 American orchestras showed medical problems affecting performance in 76% of the 2,212 respondents, with severe medical problems in 36% (Fishbein 1988). The most common problem was overuse syndrome, reported by 78% of string players. A 1986 study of eight orchestras in Australia, the United States and England found a 64% occurrence of overuse syndrome, 42% of which involved a significant level of symptoms (Frye 1986).

Hearing loss among rock musicians has had significant press coverage. Hearing loss is also found, however, among classical musicians. In one study, sound level measurements at the Lyric Theatre and Concert Hall in Gothenberg, Sweden, averaged 83 to 89 dBA. Hearing tests of 139 male and female musicians from both theatres indicated that 59 musicians (43%) showed worse pure tone thresholds than would be expected for their age, with brass wind instrumentalists showing the greatest loss (Axelsson and Lindgren 1981).

A 1994-1996 study of sound level measurements in the orchestra pits of 9 Broadway shows in New York City showed average sound levels from 84 to 101 dBA, with a normal showtime of 2½ hours (Babin 1996).

The carpenters, scenic artists, electricians, camera crews and other technical support workers face, in addition to many safety hazards, a wide variety of chemical hazards from materials used in scene shops, prop shops and costume shops. Many of the same materials are used in the visual arts. However, there are no available injury or illness statistics on these workers.

Entertainment

The “Entertainment” section of the chapter covers a variety of entertainment industries that are not covered under “Arts and Crafts” and “Performing and Media Arts”, including: museums and art galleries; zoos and aquariums; parks and botanical gardens; circuses, amusement and theme parks; bullfighting and rodeos; professional sports; the sex industry; and nightlife entertainment.

Health effects and disease patterns

There are a wide variety of types of workers involved in the entertainment industry, including performers, technicians, museum conservators, animal handlers, park rangers, restaurant workers, cleaning and maintenance personnel and many more. Many of the hazards found in the arts and crafts and performing and media arts are also found among particular groups of entertainment workers. Additional hazards such as cleaning products, toxic plants, dangerous animals, AIDS, zoonoses, hazardous drugs, violence and so forth are also occupational hazards to particular groups of entertainment workers. Because of the disparateness of the various industries, there are no overall injury and illness statistics. The individual articles include relevant injury and illness statistics, where available.

 

Back

Wednesday, 02 March 2011 15:16

Hospital Ergonomics: A Review

Written by

Ergonomics is an applied science that deals with the adaptation of work and the workplace to the characteristics and capabilities of the worker so that he or she may perform the duties of the job effectively and safely. It addresses the worker’s physical capacities in relation to the physical requirements of the job (e.g., strength, endurance, dexterity, flexibility, ability to tolerate positions and postures, visual and auditory acuity) as well as his or her mental and emotional status in relation to the way the work is organized (e.g., work schedules, workload and work-related stress). Ideally, adaptations are made to the furniture, equipment and tools used by the worker and to the work environment to enable the worker to perform adequately without risk to himself/herself, co-workers and the public. Occasionally, it is necessary to improve the worker’s adaptation to the job through, for example, special training and the use of personal protective equipment.

Since the mid 1970s, the application of ergonomics to hospital workers has broadened. It is directed now at those involved in direct patient care (e.g., physicians and nurses), those involved in ancillary services (e.g., technicians, laboratory staff, pharmacists and social workers) and those providing support services (e.g., administrative and clerical personnel, food service staff, housekeeping staff, maintenance workers and security staff).

Extensive research has been conducted into the ergonomics of hospitalization, with most studies attempting to identify the extent to which hospital administrators should allow hospital personnel latitude in developing strategies to reconcile an acceptable workload with good quality of care. Participatory ergonomics has become increasingly widespread in hospitals in recent years. More specifically, wards have been reorganized on the basis of ergonomic analyses of activity undertaken in collaboration with medical and paramedical personnel, and participatory ergonomics has been used as the basis for the adaptation of equipment for use in health care.

In studies of hospital ergonomics, workstation analysis must extend at least to the departmental level—the distance between rooms and the amount and location of equipment are all crucial considerations.

Physical strain is one of the primary determinants of the health of HCWs and the quality of care that they dispense. This being said, the frequent interruptions that hinder care-giving and the effect of psychological factors associated with confrontations with serious illness, ageing and death must also be addressed. Accounting for all these factors is a difficult task, but approaches focusing only on single factors will fail to improve either working conditions or the quality of care. Similarly, patients’ perception of the quality of their hospital stay is determined by the effectiveness of the care they receive, their relationship with physicians and other personnel, the food and the architectural environment.

Basic to hospital ergonomics is study of the sum and interaction of personal factors (e.g., fatigue, fitness, age and training) and circumstantial factors (e.g., work organization, schedule, floor layout, furniture, equipment, communication and psychological support within the work team), which combine to affect the performance of work. Precise identification of the actual work performed by health care workers depends on ergonomic observation of entire workdays and collection of valid and objective information on the movements, postures, cognitive performance and emotional control called upon to satisfy work requirements. This helps to detect factors that may interfere with effective, safe, comfortable and healthy work. This approach also sheds light on the potential for workers’ suffering or taking pleasure in their work. Final recommendations must take the interdependence of the various professional and ancillary personnel attending the same patient into account.

These considerations lay the groundwork for further, specific research. Analysis of strain related to the use of basic equipment (e.g., beds, meal carts and mobile x-ray equipment) may help clarify the conditions of acceptable use. Measurements of lighting levels may be complemented by information on the size and contrast of medication labels, for example. Where alarms emitted by different intensive-care-unit equipment can be confused, analysis of their acoustic spectrum may prove useful. Computerization of patient charts should not be undertaken unless the formal and informal information-support structures have been analysed. The interdependence of the various elements of the work environment of any given caregiver should therefore always be borne in mind when analysing isolated factors.

Analysis of the interaction of different factors influencing care—physical strain, cognitive strain, affective strain, scheduling, ambience, architecture and hygiene protocols—is essential. It is important to adapt schedules and common work areas to the needs of the work team when attempting to improve overall patient management. Participatory ergonomics is a way of using specific information to bring about wide-ranging and relevant improvements to the quality of care and to working life. Involving all categories of personnel in key stages of the search for solution helps ensure that the modifications finally adopted will have their full support.

Working Postures

Epidemiological studies of joint and musculoskeletal disorders. Several epidemiological studies have indicated that inappropriate postures and handling techniques are associated with a doubling of the number of back, joint and muscle problems requiring treatment and time off the job. This phenomenon, discussed in greater detail elsewhere in this chapter and Encyclopaedia, is related to physical and cognitive strain.

Working conditions differ from country to country. Siegel et al. (1993) compared conditions in Germany and Norway and found that 51% of German nurses, but only 24% of Norwegian nurses, suffered lower-back pain on any given day. Working conditions in the two countries differed; however, in German hospitals, the patient-nurse ratio was twice as high and the number of adjustable-height beds half that in Norwegian hospitals, and fewer nurses had patient handling equipment (78% versus 87% in Norwegian hospitals).

Epidemiological studies of pregnancy and its outcome. Because the hospital workforce is usually predominantly female, the influence of work on pregnancy often becomes an important issue (see articles on pregnancy and work elsewhere in this Encyclopaedia). Saurel-Cubizolles et al. (1985) in France, for example, studied 621 women who returned to hospital work after giving birth and found that a higher rate of premature births were associated with heavy housekeeping chores (e.g., cleaning windows and floors), carrying heavy loads and long periods of standing. When these tasks were combined, the rate of premature births was increased: 6% when only one of these factors was involved and up to 21% when two or three were involved. These differences remained significant after adjustment for seniority, social and demographic characteristics and professional level. These factors were also associated with a higher frequency of contractions, more hospital admissions during pregnancy and, on average, longer sick leave.

In Sri Lanka, Senevirane and Fernando (1994) compared 130 pregnancies borne by 100 nursing officers and 126 by clerical workers whose jobs presumably were more sedentary; socio-economic backgrounds and use of prenatal care were similar for both groups. Odds-ratios for complications of pregnancy (2.18) and preterm delivery (5.64) were high among nursing officers.

Ergonomic Observation of Workdays

The effect of physical strain on health care workers has been demonstrated through continuous observation of workdays. Research in Belgium (Malchaire 1992), France (Estryn-Béhar and Fouillot 1990a) and Czechoslovakia (Hubacova, Borsky and Strelka 1992) has shown that health care workers spend 60 to 80% of their workday standing (see table 1). Belgian nurses were observed to spend approximately 10% of their workday bent over; Czechoslovakian nurses spent 11% of their workday positioning patients; and French nurses spent 16 to 24% of their workday in uncomfortable positions, such as stooping or squatting, or with their arms raised or loaded.

Table 1. Distribution of nurses’ time in three studies

 

Czechoslovakia

Belgium

France

Authors

Hubacova, Borsky and Strelka 1992*

Malchaire 1992**

Estryn-Béhar and
Fouillot 1990a***

Departments

5 medical and surgical departments

Cardiovascular surgery

10 medical and
surgical departments

Average time for the main postures and total distance walked by nurses:

Per cent working
hours standing and
walking

76%

Morning 61%
Afternoon 77%
Night 58%

Morning 74%
Afternoon 82%
Night 66%

Including stooping,
squatting, arms
raised, loaded

11%

 

Morning 16%
Afternoon 30%
Night 24%

Standing flexed

 

Morning 11%
Afternoon 9%
Night 8%

 

Distance walked

 

Morning 4 km
Afternoon 4 km
Night 7 km

Morning 7 km
Afternoon 6 km
Night 5 km

Per cent working
hours with patients

Three shifts: 47%

Morning 38%
Afternoon 31%
Night 26%

Morning 24%
Afternoon 30%
Night 27%

Number of observations per shift:*   74 observations on 3 shifts. **  Morning: 10 observations (8 h); afternoon: 10 observations (8 h); night: 10 observations (11 h). *** Morning: 8 observations (8 h); afternoon: 10 observations (8 h); night: 9 observations (10-12 h).

In France, night-shift nurses spent somewhat more time sitting, but they end their shift by making beds and dispensing care, both of which involve work in uncomfortable positions. They are assisted in this by a nurses’ aide, but this should be contrasted with the situation during the morning shift, where these tasks are usually performed by two nurses’ aides. In general, nurses working day shifts spend less time in uncomfortable positions. Nurses’ aides were on their feet constantly, and uncomfortable positions, due largely to inadequate equipment, accounted for 31% (afternoon shift) to 46% (morning shift) of their time. Patient facilities in these French and Belgian teaching hospitals were spread out over large areas and consisted of rooms containing one to three beds. Nurses in these wards walked an average of 4 to 7 km per day.

Detailed ergonomic observation of entire workdays (Estryn-Béhar and Hakim-Serfaty 1990) is useful in revealing the interaction of the factors that determine quality of care and the manner in which work is performed. Consider the very different situations in a paediatric intensive care unit and a rheumatology ward. In paediatric resuscitation units, the nurse spends 71% of her time in patients’ rooms, and each patient’s equipment is kept on individual carts stocked by nurses’ aides. The nurses in this ward change location only 32 times per shift, walking a total of 2.5 km. They are able to communicate with physicians and other nurses in the adjoining lounge or nurses’ station through intercoms which have been installed in all the patients’ rooms.

By contrast, the nursing station in the rheumatology ward is very far from patients’ rooms, and care preparation is lengthy (38% of shift time). As a result, the nurses spend only 21% of their time in patients’ rooms and change location 128 times per shift, walking a total of 17 km. This clearly illustrates the interrelationship between physical strain, back problems and organizational and psychological factors. Because they need to move rapidly and get equipment and information, nurses only have time for hallway consultations—there is no time to sit while dispensing care, listen to patients and give patients personalized and integrated responses.

Continuous observation of 18 Dutch nurses in long-term-stay wards revealed that they spent 60% of their time performing physically demanding work with no direct contact with their patients (Engels, Senden and Hertog 1993). Housekeeping and preparation account for most of the 20% of the time described as spent in “slightly hazardous” activities. In all, 0.2% of shift time was spent in postures requiring immediate modification and 1.5% of shift time in postures requiring rapid modification. Contact with patients was the type of activity most frequently associated with these hazardous postures. The authors recommend modifying patient-handling practices and other less hazardous but more frequent tasks.

Given the physiological strain of the work of nurses’ aides, continuous measurement of heart rate is a useful complement to observation. Raffray (1994) used this technique to identify arduous housekeeping tasks and recommended not restricting personnel to this type of task for the whole day.

Electro-myographical (EMG) fatigue analysis is also interesting when body posture must remain more or less static—for example, during operations using an endoscope (Luttman et al. 1996).

Influence of architecture, equipment and organization

The inadequacy of nursing equipment, particularly beds, in 40 Japanese hospitals was demonstrated by Shindo (1992). In addition, patients’ rooms, both those lodging six to eight patients and single rooms reserved for the very ill, were poorly laid out and extremely small. Matsuda (1992) reported that these observations should lead to improvements in the comfort, safety and efficiency of nursing work.

In a French study (Saurel 1993), the size of patient rooms was problematic in 45 of 75 medium- and long-term-stay wards. The most common problems were:

  • lack of space (30 wards)
  • difficulty in manoeuvring patient-transfer gurneys (17)
  • inadequate space for furniture (13)
  • the need to take beds out of the room to transfer patients (12)
  • difficult access and poor furniture layout (10)
  • doors that were too small (8)
  • difficulty moving between beds (8).

 

The mean available area per bed for patients and nurses is at the root of these problems and decreases as the number of beds per room increases: 12.98 m2, 9.84 m2, 9.60 m2, 8.49 m2 and 7.25 m2 for rooms with one, two, three, four and more than four beds. A more accurate index of the useful area available to personnel is obtained by subtracting the area occupied by the beds themselves (1.8 to 2.0 m2) and by other equipment. The French Department of Health prescribes a useful surface area of 16 m2 for single rooms and 22 m2 for double rooms. The Quebec Department of Health recommends 17.8 m2 and 36 m2, respectively.

Turning to factors favouring the development of back problems, variable-height mechanisms were present on 55.1% of the 7,237 beds examined; of these, only 10.3% had electric controls. Patient-transfer systems, which reduce lifting, were rare. These systems were systematically used by 18.2% of the 55 responding wards, with over half the wards reporting using them “rarely” or “never”. “Poor” or “rather poor” manoeuvrability of meal carts was reported by 58.5% of 65 responding wards. There was no periodic maintenance of mobile equipment in 73.3% of 72 responding wards.

In almost half the responding wards, there were no rooms with seats that nurses could use. In many cases, this appears to have been due to the small size of the patient rooms. Sitting was usually possible only in the lounges—in 10 units, the nursing station itself had no seats. However, 13 units reported having no lounge and 4 units used the pantry for this purpose. In 30 wards, there were no seats in this room.

According to statistics for 1992 provided by the Confederation of Employees of the Health Services Employees of the United Kingdom (COHSE), 68.2% of nurses felt that there were not enough mechanical patient lifts and handling aides and 74.5% felt that they were expected to accept back problems as a normal part of their work.

In Quebec, the Joint Sectoral Association, Social Affairs Sector (Association pour la santé et la sécurité du travail, secteur afffaires sociales, ASSTAS) initiated its “Prevention-Planning-Renovation-Construction” project in 1993 (Villeneuve 1994). Over 18 months, funding for almost 100 bipartite projects, some costing several million dollars, was requested. This programme’s goal is to maximize investments in prevention by addressing health and safety concerns early in the design stage of planning, renovation and design projects.

The association completed the modification of the design specifications for patient rooms in long-term-care units in 1995. After noting that three-quarters of occupational accidents involving nurses occur in patient rooms, the association proposed new dimensions for patients’ rooms, and new rooms must now provide a minimum amount of free space around beds and accommodate patient lifts. Measuring 4.05 by 4.95 m, the rooms are more square than the older, rectangular rooms. To improve performance, ceiling-mounted patient lifts were installed, in collaboration with the manufacturer.

The association is also working on the modification of construction standards for washrooms, where many occupational accidents also occur, although to a lesser extent than in the rooms themselves. Finally, the feasibility of applying anti-skid coatings (with a coefficient of friction above the minimum standard of 0.50) on floors is being studied, since patient autonomy is best promoted by providing a non-skid surface on which neither they nor nurses can slip.

Evaluation of equipment that reduces physical strain

Proposals for improving beds (Teyssier-Cotte, Rocher and Mereau 1987) and meal carts (Bouhnik et al. 1989) have been formulated, but their impact is too limited. Tintori et al. (1994) studied adjustable-height beds with electric trunk-lifts and mechanical mattress-lifts. The trunk-lifts were judged satisfactory by the staff and patients, but the mattress-lifts were very unsatisfactory, since adjusting the beds required more than eight pedal strokes, each of which exceeded standards for foot force. Pushing a button located close to the patient’s head while talking to her or him is clearly preferable to pumping a pedal eight times from the foot of the bed (see figure 1).  Because of time constraints, the mattress lift was often simply not used.

Figure 1. Electronically-operated trunk-lifts on beds effectively reduce lifting accidents

HCF060F5

B. Floret

Van der Star and Voogd (1992) studied health care workers caring for 30 patients in a new prototype of bed over a period of six weeks. Observations of the workers’ positions, the height of work surfaces, physical interaction between nurses and patients and the size of the work space were compared to data collected on the same ward over a seven-week period prior to the introduction of the prototype. Use of the prototypes reduced the total time spent in uncomfortable positions while washing patients from 40% to 20%; for bed-making the figures were 35% and 5%. Patients also enjoyed greater autonomy and often changed positions on their own, raising their trunks or legs by means of electric control buttons.

In Swedish hospitals, each double room is equipped with ceiling-mounted patient lifts (Ljungberg, Kilbom and Goran 1989). Rigorous programmes such as the April Project evaluate the interrelation of working conditions, work organization, the establishment of a back school and the improvement of physical fitness (Öhling and Estlund 1995).

In Quebec, ASSTAS developed a global approach to the analysis of working conditions causing back problems in hospitals (Villeneuve 1992). Between 1988 and 1991, this approach led to modifications of the work environment and equipment used in 120 wards and a 30% reduction in the frequency and severity of occupational injuries. In 1994, a cost-benefit analysis performed by the association demonstrated that the systematic implementation of ceiling-mounted patient lifts would reduce occupational accidents and increase productivity, compared to the continued use of mobile, ground-based lifts (see figure 2).

Figure 2. Using ceiling-mounted patient lifts to reduce lifting accidents

HCF060F4

Accounting for individual variation and facilitating activity

The female population in France is generally not very physically active. Of 1,505 nurses studied by Estryn-Béhar et al. (1992), 68% participated in no athletic activity, with inactivity more pronounced among mothers and unskilled personnel. In Sweden, fitness programmes for hospital personnel have been reported to be useful (Wigaeus Hjelm, Hagberg and Hellstrom 1993), but are feasible only if potential participants do not end their work day too tired to participate.

The adoption of better work postures is also conditioned by the possibility of wearing appropriate clothing (Lempereur 1992). The quality of shoes is particularly important. Hard soles are to be avoided. Anti-skid soles prevent occupational accidents caused by slips and falls, which in many countries are the second-leading cause of accidents leading to work absence. Ill-fitting overshoes or boots worn by operating room personnel to minimize the build-up of static electricity may be a hazard for falls.

Slips on level floors can be prevented by using low-slip floor surfaces that require no waxing. The risk of slips, particularly at doorways, can also be reduced by using techniques that do not leave the floor wet for long. The use of one mop per room, recommended by hygiene departments, is one such technique and has the additional advantage of reducing the handling of buckets of water.

In Vasteras County (Sweden), the implementation of several practical measures reduced painful syndromes and absenteeism by at least 25% (Modig 1992). In the archives (e.g., record or file rooms), ground- and ceiling-level shelves were eliminated, and an adjustable sliding board on which personnel can take notes while consulting the archives was installed. A reception office equipped with movable filing units, a computer and a telephone was also constructed. The height of the filing units is adjustable, allowing employees to adjust them to their own needs and facilitating the transition from sitting to standing during work.

Importance of “anti-lifting”

Manual patient-handling techniques designed to prevent back injuries have been proposed in many countries. Given the poor results of these techniques that have been reported to date (Dehlin et al. 1981; Stubbs, Buckle and Hudson 1983), more work in this area is needed.

The department of kinesiology of the University of Groningen (Netherlands) has developed an integrated patient-handling programme (Landewe and Schröer 1993) consisting of:

  • recognition of the relationship between patient-handling and back strain
  • demonstration of the value of the “anti-lifting” approach
  • sensitization of nursing students throughout their studies to the importance of avoiding back strain
  • the use of problem-resolution techniques
  • attention to implementation and evaluation.

 

In the “anti-lifting” approach, the resolution of problems associated with patient transfers is based on the systematic analysis of all aspects of transfers, especially those related to patients, nurses, transfer equipment, teamwork, general working conditions and environmental and psychological barriers to the use of patient lifts (Friele and Knibbe 1993).

The application of European standard EN 90/269 of 29 May 1990 on back problems is an example of an excellent starting point for this approach. Besides requiring employers to implement appropriate work organization structures or other appropriate means, particularly mechanical equipment, to avoid manual handling of loads by workers, it also emphasizes the importance of “no-risk” handling policies that incorporate training. In practice, the adoption of appropriate postures and handling practices depends on the amount of functional space, presence of appropriate furniture and equipment, good collaboration on work organization and quality of care, good physical fitness and comfortable work clothing. The net effect of these factors is improved prevention of back problems.

 

Back

Thursday, 31 March 2011 17:02

Airport and Flight Control Operations

Written by

Some text was adapted from the 3rd edition Encyclopaedia article “Aviation - ground personnel” authored by E. Evrard.

Commercial air transport involves the interaction of several groups including governments, airport operators, aircraft operators and aircraft manufacturers. Governments are generally involved in overall air transport regulation, oversight of aircraft operators (including maintenance and operations), manufacturing certification and oversight, air traffic control, airport facilities and security. Airport operators can either be local governments or commercial entities. They are usually responsible for the general operation of the airport. Types of aircraft operators include general airlines and commercial transport (either privately or publicly owned), cargo carriers, corporations and individual aircraft owners. Aircraft operators in general are responsible for operation and maintenance of the aircraft, training of personnel and operation of ticketing and boarding operations. Responsibility for security can vary; in some countries the aircraft operators are responsible, and in others the government or airport operators are responsible. Manufacturers are responsible for design, manufacturing and testing, and for aircraft support and improvement. There are also international agreements con- cerning international flights.

This article deals with the personnel involved with all aspects of flight control (i.e., those who control commercial aircraft from takeoff to landing and who maintain the radar towers and other facilities used for flight control) and with those airport personnel who perform maintenance on and load aircraft, handle baggage and air freight and provide passenger services. Such personnel are divided into the following categories:

  • air traffic controllers
  • airways facilities and radar towers maintenance personnel
  • ground crews
  • baggage handlers
  • passenger service agents.

 

Flight Control Operations

Government aviation authorities such as the Federal Aviation Administration (FAA) in the United States maintain flight control over commercial aircraft from takeoff to landing. Their primary mission involves the handling of airplanes using radar and other surveillance equipment to keep aircraft separated and on course. Flight control personnel work at airports, terminal radar approach control facilities (Tracons) and regional long-distance centres, and consist of air traffic controllers and airways facilities maintenance personnel. Airways facilities maintenance personnel maintain the airport control towers, air traffic Tracons and regional centres, radio beacons, radar towers and radar equipment, and consist of electronics technicians, engineers, electricians and facilities maintenance workers. The guidance of planes using instruments is accomplished following instrument flight rules (IFR). Planes are tracked using the General National Air Space System (GNAS) by air traffic controllers working at airport control towers, Tracons and regional centres. Air traffic controllers keep planes separated and on course. As a plane moves from one jurisdiction to another, responsibility for the plane is handed from one type of controller to another.

Regional centres, terminal radar approach control and airport control towers

Regional centres direct planes after they have reached high altitudes. A centre is the largest of the aviation authority’s facilities. Regional centre controllers hand off and receive planes to and from Tracons or other regional control centres and use radio and radar to maintain communication with aircraft. A plane flying across a country will always be under surveillance by a regional centre and passed along from one regional centre to the next.

The regional centres all overlap each other in the surveillance range and receive radar information from long-range radar facilities. Radar information is sent to these facilities via microwave links and telephone lines, thus providing a redundancy of information so that if one form of communication is lost, the other is available. Oceanic air traffic, which cannot be seen by radar, is handled by the regional centres via radio. Technicians and engineers maintain the electronic surveillance equipment and the uninterrupted power systems, which includes emergency generators and large banks of back-up batteries.

Air traffic controllers at Tracons handle planes flying at low altitudes and within 80 km of airports, using radio and radar to maintain communication with aircraft. Tracons receive radar tracking information from the airport surveillance radar (ASR). The radar tracking system identifies the plane moving in space but also queries the plane beacon and identifies the plane and its flight information. Personnel and work tasks at Tracons are similar to those at the regional centres.

Regional and approach control systems exist in two variants: non-automated or manual systems and automated systems.

With manual air traffic control systems, radio communications between controller and pilot are supplemented by information from primary or secondary radar equipment. The trace of the aeroplane can be followed as a mobile echo on display screens formed by cathode-ray tubes (see figure 1). Manual systems have been replaced by automated systems in most countries.

Figure 1. Air traffic controller at a manual local control centre radar screen.

TRA015F1

With automated air traffic control systems, information on the aeroplane is still based on the flight plan and primary and secondary radar, but computers make it possible to present in alphanumeric form on the display screen all data concerning each aeroplane and to follow its route. Computers are also used to anticipate conflict between two or more aircraft on identical or converging routes on the basis of the flight plans and standard separations. Automation relieves the controller of many of the activities he or she carries out in a manual system, leaving more time for taking decisions.

Conditions of work are different in manual and automated control centre systems. In the manual system the screen is horizontal or sloping, and the operator leans forward in an uncomfortable position with his or her face between 30 and 50 cm from it. The perception of mobile echoes in the form of spots depends on their brightness and their contrast with the illuminance of the screen. As some mobile echoes have a very low luminous intensity, the working environment must be very weakly illuminated to ensure the greatest possible visual sensitivity to contrast.

In the automated system the electronic data display screens are vertical or almost vertical, and the operator can work in a normal sitting position with a greater reading distance. The operator has horizontally arranged keyboards within reach to regulate the presentation of the characters and symbols conveying the various types of information and can alter the shape and brightness of the characters. The lighting of the room can approach the intensity of daylight, for contrast remains highly satisfactory at 160 lux. These features of the automated system place the operator in a much better position to increase efficiency and reduce visual and mental fatigue.

Work is carried out in a huge, artificially lighted room without windows, which is filled with display screens. This closed environment, often far from the airports, allows little social contact during the work, which calls for great concentration and powers of decision. The comparative isolation is mental as well as physical, and there is hardly any opportunity of diversion. All this has been held to produce stress.

Each airport has a control tower. Controllers at airport control towers direct planes in and out of the airport, using radar, radio and binoculars to maintain communication with aircraft both while taxiing and while taking off and landing. Airport tower controllers hand off to or receive planes from controllers at Tracons. Most of the radar and other surveillance systems are located at the airports. These systems are maintained by technicians and engineers.

The walls of the tower room are transparent, for there must be perfect visibility. The working environment is thus completely different from that of regional or approach control. The air traffic controllers have a direct view of aircraft movements and other activities. They meet some of the pilots and take part in the life of the airport. The atmosphere is no longer that of a closed environment, and it offers a greater variety of interest.

Airways facilities maintenance personnel

Airways facilities and radar towers maintenance personnel consist of radar technicians, navigational and communication technicians and environmental technicians.

Radar technicians maintain and operate the radar systems, including airport and long-range radar systems. The work involves electronic equipment maintenance, calibration and troubleshooting.

Navigational and communication technicians maintain and operate the radio communications equipment and other related navigational equipment used in controlling air traffic. The work involves electronic equipment maintenance, calibration and troubleshooting.

Environmental technicians maintain and operate the aviation authority buildings (regional centres, Tracons and airport facilities, including the control towers) and equipment. The work requires running heating, ventilation and air-conditioning equipment and maintaining emergency generators, airport lighting systems, large banks of batteries in uninterrupted power supply (UPS) equipment and related electrical power equipment.

The occupational hazards for all three jobs include: noise exposure; working on or near live electrical parts including exposure to high voltage, x-ray exposure from klystron and magnitron tubes, fall hazards while working on elevated radar towers or using climbing poles and ladders to access towers and radio antenna and possibly PCBs exposure when handling older capacitors and working on utility transformers. Workers may also be exposed to microwave and radio-frequency exposure. According to a study of a group of radar workers in Australia (Joyner and Bangay 1986), personnel are not generally exposed to levels of microwave radiation exceeding 10 W/m2 unless they are working on open waveguides (microwave cables) and components utilizing waveguide slots, or working within transmitter cabinets when high-voltage arcing is occurring. The environmental technicians also work with chemicals related to building maintenance, including boiler and other related water treatment chemicals, asbestos, paints, diesel fuel and battery acid. Many of the electrical and utility cables at airports are underground. Inspection and repair work on these systems often involves confined space entry and exposure to confined space hazards—noxious or asphyxiating atmospheres, falls, electrocution and engulfment.

Airways facilities maintenance workers and other ground crews in the airport operating area are frequently exposed to jet exhaust. Several airport studies where sampling of jet engine exhaust has been conducted demonstrated similar results (Eisenhardt and Olmsted 1996; Miyamoto 1986; Decker 1994): the presence of aldehydes including butyraldehyde, acetaldehyde, acrolein, methacrolein, isobutyraldehyde, propionaldehyde, croton-aldehyde and formaldehyde. Formaldehyde was present at significantly higher concentrations then the other aldehydes, followed by acetaldehyde. The authors of these studies have concluded that the formaldehyde in the exhaust was probably the main causative factor in the eye and respiratory irritation reported by exposed persons. Depending on the study, nitrogen oxides either were not detected or were present in concentrations below 1 part per million (ppm) in the exhaust stream. They concluded that neither nitrogen oxides nor other oxides play a major role in the irritation. Jet exhaust was also found to contain 70 different hydrocarbon species with up to 13 consisting mostly of olefins (alkenes). Heavy-metal exposure from jet exhaust has been shown not to pose a health hazard for areas surrounding airports.

Radar towers should be equipped with standard railings around the stairs and platforms to prevent falls and with interlocks to prevent access to the radar dish while it is operating. Workers accessing towers and radio antennas should use approved devices for ladder climbing and personal fall protection.

Personnel work on both de-energized and energized electrical systems and equipment. Protection from electrical hazards should involve training in safe work practices, lockout/tagout procedures and the use of personal protective equipment (PPE).

The radar microwave is generated by high-voltage equipment using a klystron tube. The klystron tube generates x rays and can be a source of exposure when the panel is opened, allowing personnel to come in close proximity to it to work on it. The panel should always remain in place except when servicing the klystron tube, and work time should be kept to a minimum.

Personnel should wear the appropriate hearing protection (e.g., ear plugs and/or ear muffs) when working around noise sources such as jet planes and emergency generators.

Other controls involve training in materials handling, vehicle safety, emergency response equipment and evacuation procedures and confined space entry procedures equipment (including direct-reading air monitors, blowers and mechanical retrieval systems).

Air traffic controllers and flight services personnel

Air traffic controllers work in regional control centres, Tracons and airport control towers. This work generally involves working at a console tracking planes on radar scopes and communicating with pilots by radio. Flight services personnel provide weather information for pilots.

The hazards to air traffic controllers include possible visual problems, noise, stress and ergonomic problems. At one time there was concern about x-ray emissions from the radar screens. This, however, has not turned out to be a problem at the operating voltages used.

Standards of fitness for air traffic controllers have been recommended by the International Civil Aviation Organization (ICAO), and detailed standards are set out in national military and civil regulations, those relating to sight and hearing being particularly precise.

Visual problems

The broad, transparent surfaces of air traffic control towers at airports sometimes result in dazzling by the sun, and reflection from surrounding sand or concrete can increase the luminosity. This strain on the eyes may produce headaches, though often of a temporary nature. It may be prevented by surrounding the control tower with grass and avoiding concrete, asphalt or gravel and by giving a green tint to the transparent walls of the room. If the colour is not too strong, visual acuity and colour perception remain adequate while the excess radiation that causes dazzle is absorbed.

Until about 1960 there was a good deal of disagreement among authors on the frequency of eyestrain among controllers from viewing radar screens, but it does seem to have been high. Since then, attention given to visual refractive errors in the selection of radar controllers, their correction among serving controllers and the constant improvement of working conditions at the screen have helped to lower it considerably. Sometimes, however, eyestrain appears among controllers with excellent sight. This may be attributed to too low a level of lighting in the room, irregular illumination of the screen, the brightness of the echoes themselves and, in particular, flickering of the image. Progress in viewing conditions and insistence on higher technical specifications for new equipment are leading to a marked reduction in this source of eyestrain, or even its elimination. Strain in accommodation has also been considered until recently to be a possible cause of eyestrain among operators who have worked very close to the screen for an hour without interruption. Visual problems are becoming much less frequent and are likely to disappear or to occur only very occasionally in the automated radar system, for example, when there is a fault in a scope or where the rhythm of the images is badly adjusted.

A rational arrangement of the premises is mainly one that facilitates the adaptation of the scope readers to the intensity of the ambient lighting. In a non-automated radar station, adaptation to the semi-darkness of the scope room is achieved by spending 15 to 20 minutes in another dimly lighted room. The general lighting of the scope room, the luminous intensity of the scopes and the brightness of the spots must all be studied with care. In the automated system the signs and symbols are read under an ambient lighting of from 160 to 200 lux, and the disadvantages of the dark environment of the non-automated system are avoided. With regard to noise, despite modern sound-insulating techniques, the problem remains acute in control towers installed near the runways.

Readers of radar screens and electronic display screens are sensitive to changes in the ambient lighting. In the non-automated system the controllers must wear glasses absorbing 80% of the light for between 20 and 30 minutes before entering their workplace. In the automated system special glasses for adaptation are no longer essential, but persons particularly sensitive to the contrast between the lighting of the symbols on the display screen and that of the working environment find that glasses of medium absorptive power add to the comfort of their eyes. There is also a reduction in eyestrain. Runway controllers are well advised to wear glasses absorbing 80% of the light when they are exposed to strong sunlight.

Stress

The most serious occupational hazard for air traffic controllers is stress. The chief duty of the controller is to make decisions on the movements of aircraft in the sector he or she is responsible for: flight levels, routes, changes of course when there is conflict with the course of another aircraft or when congestion in one sector leads to delays, air traffic and so on. In non-automated systems the controller must also prepare, classify and organize the information his or her decision is based on. The data available are comparatively crude and must first be digested. In highly automated systems the instruments can help the controller in taking decisions, and he or she may then only have to analyse data produced by teamwork and presented in rational form by these instruments. Although the work may be greatly facilitated, the responsibility for approving the decision proposed to the controller remains the controller’s, and his or her activities still give rise to stress. The responsibilities of the job, pressure of work at certain hours of dense or complex traffic, increasingly crowded air space, sustained concentration, rotating shift work and awareness of the catastrophe that may result from an error all create a situation of continuous tension, which may lead to stress reactions. The fatigue of the controller may assume the three classic forms of acute fatigue, chronic fatigue or overstrain and nervous exhaustion. (See also the article “Case Studies of Air Traffic Controllers in the United States and Italy”.)

Air traffic control calls for an uninterrupted service 24 hours a day, all year long. The conditions of work of controllers thus include shift work, an irregular rhythm of work and rest and periods of work when most other people are enjoying holidays. Periods of concentration and of relaxation during working hours and days of rest during a week of work are indispensable to the avoidance of operational fatigue. Unfortunately, this principle cannot be embodied in general rules, for the arrangement of work in shifts is influenced by variables that may be legal (maximum number of consecutive hours of work authorized) or purely professional (workload depending on the hour of the day or the night), and by many other factors based on social or family considerations. With regard to the most suitable length for periods of sustained concentration during work, experiments show that there should be short breaks of at least a few minutes after periods of uninterrupted work of from half an hour to an hour-and-a-half, but that there is no need to be bound by rigid patterns to achieve the desired aim: the maintenance of the level of concentration and the prevention of operational fatigue. What is essential is to be able to interrupt the periods of work at the screen with periods of rest without interrupting the continuity of the shift work. Further study is necessary to establish the most suitable length of the periods of sustained concentration and of relaxation during work and the best rhythm for weekly and annual rest periods and holidays, with a view to drawing up more unified standards.

Other hazards

There are also ergonomic issues while working at the consoles similar to those of computer operators, and there may be indoor air quality problems. Air traffic controllers also experience tone incidents. Tone incidents are loud tones coming into the headsets. The tones are of short duration (a few seconds) and have sound levels up to 115 dBA.

In flight services work, there are hazards associated with lasers, which are used in ceilorometer equipment used to measure cloud ceiling height, as well as ergonomic and indoor air quality issues.

Other flight control services personnel

Other flight control services personnel include flight standards, security, airport facilities renovation and construction, administrative support and medical personnel.

Flight standards personnel are aviation inspectors who conduct airline maintenance and flight inspections. Flight standards personnel verify the airworthiness of the commercial airlines. They often inspect airplane maintenance hangers and other airport facilities, and they ride in the cockpits of commercial flights. They also investigate plane crashes, incidents or other aviation-related mishaps.

The hazards of the job include noise exposure from aircraft, jet fuel and jet exhaust while working in hangers and other airport areas, and potential exposure to hazardous materials and blood-borne pathogens while investigating aircraft crashes. Flight standards personnel face many of the same hazards as airport ground crews, and thus many of the same precautions apply.

Security personnel include sky marshals. Sky marshals provide internal security on airplanes and external security at airport ramps. They are essentially police and investigate criminal activities related to aircraft and airports.

Airport facilities renovation and construction personnel approve all plans for airport modifications or new construction. The personnel are usually engineers, and their work largely involves office work.

Administrative workers include personnel in accounting, management systems and logistics. Medical personnel in the flight surgeon’s office provide occupational medical services to aviation authority workers.

Air traffic controllers, flight services personnel and personnel who work in office environments should have ergonomic training on proper sitting postures and on emergency response equipment and evacuation procedures.

Airport Operations

Airport ground crews conduct maintenance on and load aircraft. Baggage handlers handle passenger baggage and air freight, whereas passenger service agents register passengers and check passenger baggage.

All loading operations (passengers, baggage, freight, fuel, supplies and so on) are controlled and integrated by a supervisor who prepares the loading plan. This plan is given to the pilot prior to take-off. When all operations have been completed and any checks or inspections considered necessary by the pilot have been made, the airport controller gives authorization for take-off.

Ground crews

Aircraft maintenance and servicing

Every aircraft is serviced every time it lands. Ground crews performing routine turnaround maintenance; conduct visual inspections, including checking the oils; perform equipment checks, minor repairs and internal and external cleaning; and refuel and restock the aircraft. As soon as the aircraft lands and arrives in the unloading bays, a team of mechanics begins a series of maintenance checks and operations which vary with the type of aircraft. These mechanics refuel the aircraft, check a number of safety systems which must be inspected after each landing, investigate the logbook for any reports or defects the flight crew may have noticed during the flight and, where necessary, make repairs. (See also the article “Aircraft Maintenance Operations” in this chapter.) In cold weather, the mechanics may have to perform additional tasks, such as de-icing of wings, landing gear, flaps and so on. In hot climates special attention is paid to the condition of the aircraft’s tyres. Once this work has been completed, the mechanics can declare the aircraft flightworthy.

More thorough maintenance inspections and aircraft overhauls are performed at specific intervals of flying hours for each aircraft.

Fuelling aircraft is one of the most potentially hazardous servicing operations. The amount of fuel to be loaded is determined on the basis of such factors as flight duration, take-off weight, flight path, weather and possible diversions.

A cleaning team cleans and services the aircraft cabins, replacing dirty or damaged material (cushions, blankets and so on), empties the toilets and refills the water tanks. This team may also disinfect or disinfest the aircraft under the supervision of public health authorities.

Another team stocks the aircraft with food and drink, emergency equipment and supplies needed for passenger comfort. Meals are prepared under high standards of hygiene to eliminate the risk of food poisoning, particularly among the flight crew. Certain meals are deep frozen to –40ºC, stored at –29ºC and reheated in flight.

Ground service work includes the use of motorized and non-motorized equipment.

Baggage and air cargo loading

Baggage and cargo handlers move passenger baggage and air freight. Freight can range from fresh fruits and vegetables and live animals to radioisotopes and machinery. Because baggage and cargo handling requires physical effort and the use of mechanized equipment, workers may be more at risk for injuries and ergonomic problems.

Ground crews and baggage and freight handlers are exposed to many of the same hazards. These hazards include working outdoors in all types of weather, exposure to potential airborne contaminants from jet fuel and jet engine exhaust and exposure to prop wash and jet blast. Prop wash and jet blast can slam doors shut, knock people or unsecured equipment over, cause turboprop propellers to rotate and blow debris into engines or onto people. Ground crews are also exposed to noise hazards. A study in China showed ground crews were exposed to noise at aircraft engine hatches that exceeds 115 dBA (Wu et al. 1989). Vehicle traffic on the airport ramps and apron is very heavy, and the risk of accidents and collision is high. Fuelling operations are very hazardous, and workers may be exposed to fuel spills, leaks, fires and explosions. Workers on lifting devices, aerial baskets, platforms or access stands are at risk of falling. Job hazards also include rotating shift work carried out under pressure of time.

Strict regulations must be implemented and enforced for vehicle movement and driver training. Driver training should emphasize complying with speed limits, obeying off-limit areas and ensuring that there is adequate room for planes to manoeuvre. There should be good maintenance of ramp surfaces and efficient control of ground traffic. All vehicles authorized to operate on the airfield should be conspicuously marked so they can be readily identified by air traffic controllers. All equipment used by the ground crews should be regularly inspected and maintained. Workers on lifting devices, aerial baskets, platforms or access stands must be protected from falls either through the use of guardrails or personal fall protection equipment. Hearing protection equipment (earplugs and earmuffs) must be used for protection against noise hazards. Other PPE includes suitable work clothing depending on the weather, non-slip reinforced-toe-cap foot protection and appropriate eye, face, glove and body protection when applying de-icing fluids. Rigorous fire prevention and protection measures including bonding and grounding and prevention of electric sparking, smoking, open flames and the presence of other vehicles within 15 m of aircraft, must be implemented for refuelling operations. Fire-fighting equipment should be maintained and located in the area. Training on procedures to follow in the event of a fuel spill or fire should be conducted regularly.

Baggage and freight handlers should store and stack cargo securely and should receive training on proper lifting techniques and back postures. Extreme care should be used when entering and leaving aircraft cargo areas from carts and tractors. Appropriate protective clothing should be worn, depending on the type of cargo or baggage (such as gloves when handling live animal cargo). Baggage and freight conveyors, carousels and dispensers should have emergency shut-offs and built-in guards.

Passenger service agents

Passenger service agents issue tickets, register and check in passengers and passenger baggage. These agents may also guide passengers when boarding. Passenger service agents who sell airline tickets and check in passengers may spend all day on their feet using a video display unit (VDU). Precautions against these ergonomic hazards include resilient floor mats and seats for relief from standing, work breaks and ergonomic and anti-glare measures for the VDUs. In addition, dealing with passengers can be a source of stress, particularly when there are delays in flights or problems with making flight connections and so on. Breakdowns in the computerized airline reservations systems can also be a major source of stress.

Baggage check-in and weigh-in facilities should minimize the need for employees and passengers to lift and handle bags, and baggage conveyors, carousels and dispensers should have emergency shut-offs and built-in guards. Agents should also receive training on proper lifting techniques and back postures.

Baggage inspection systems use fluoroscopic equipment to examine baggage and other carry-on items. Shielding protects workers and the public from x-ray emissions, and if the shielding is not properly positioned, interlocks prevent the system from operating. According to an early study by the US National Institute for Occupational Safety and Health (NIOSH) and the Air Transport Association at five US airports, maximum documented whole-body x-ray exposures were considerably lower than maximum levels set by the US Food and Drug Administration (FDA) and the Occupational Safety and Health Administration (OSHA) (NIOSH 1976). Workers should wear whole-body monitoring devices to measure radiation exposures. NIOSH recommended periodic maintenance programmes to check effectiveness of shielding.

Passenger service agents and other airport personnel must be thoroughly familiar with the airport emergency evacuation plan and procedures.

 

Back

Monday, 21 March 2011 14:59

Elementary and Secondary Schools

Written by

Elementary and secondary schools employ many different types of personnel, including teachers, teachers’ aides, administrators, clerical personnel, maintenance personnel, cafeteria personnel, nurses and many others required to keep a school functioning. In general, school personnel face all the potential hazards found in normal indoor and office environments, including indoor air pollution, poor lighting, inadequate heating or cooling, use of office machines, slips and falls, ergonomics problems from poorly designed office furniture and fire hazards. Precautions are the standard ones developed for this type of indoor environment, although building and fire codes usually have specific requirements for schools because of the large number of children present. Other general concerns found in schools include asbestos (especially among custodial and maintenance workers), chipping lead paint, pesticides and herbicides, radon and electromagnetic fields (especially for schools built near high-voltage transmission power lines). Eye and respiratory complaints related to the painting of rooms and the tarring of school roofs while the building is occupied are also a common problem. Painting and tarring should be done when the building is not occupied.

Basic academic duties required of all teachers include: lesson preparation, which can include the development of learning strategies, copying of lecture notes and the making of visual aids such as illustrations, graphs and the like; lecturing, which requires presenting information in an organized fashion that arouses the attention and concentration of students, and can involve the use of blackboards, film projectors, overhead projectors and computers; writing, giving and grading examinations; and individual counselling of students. Most of this instruction takes place in classrooms. In addition, teachers with specialities in science, arts, vocational education, physical education and other areas will conduct much of their teaching in facilities such as laboratories, art studios, theatres, gymnasiums and the like. Teachers may also take students on class trips outside the school to locations such as museums and zoos.

Teachers also have special duties, which can include supervision of students in hallways and the cafeteria; attending meetings with administrators, parents and others; organization and supervision of after-school leisure and other activities; and other administrative duties. In addition, teachers attend conferences and other educational events in order to keep current with their field and advance their career.

There are specific hazards facing all teachers. Infectious diseases such as tuberculosis, measles and chicken pox can easily spread throughout a school. Vaccinations (both of students and teachers), tuberculosis testing and other standard public health measures are essential (see table 1). Overcrowded classrooms, classroom noise, overloaded schedules, inadequate facilities, career advancement questions, job security and general lack of control over working conditions contribute to major stress problems, absenteeism and burnout in teachers. Solutions include both institutional changes to improve working conditions and stress reduction programmes where possible. A growing problem, especially in urban environments, is violence against teachers by students and, sometimes, intruders. In the United States, many secondary-level students, especially in urban schools, carry weapons, including guns. In schools where violence is a problem, organized violence-prevention programmes are essential. Teachers’ aides face many of the same hazards.

Table 1Infectious diseases affecting day-care workers and teachers.

 Disease

 Where found

 Mode of  transmission

 Comments

 Amoebiasis

 Especially  tropics and  subtropics

 Water and food  contaminated  with infected faeces

 Use good food and water sanitation.

 Chicken pox

 Worldwide

 Generally person-  to-person direct  contact, but also  possible by  airborne respiratory  droplets

 Chicken pox is more serious in adults than  children; risk of birth defects; reportable  disease in most countries.

 Cytomegalovirus  (CMV)

 Worldwide

 Airborne  respiratory  droplets; contact  with urine, saliva or  blood

 Highly contagious; risk of birth defects.

 Erythema  infectiosum  (Parvovirus-B-  19)

 Worldwide

 Direct person-to-  person contact or  airborne  respiratory droplets

 Mildly contagious; risk to foetus during  pregnancy.

 Gastroenteritis,  bacterial  (Salmonella,  Shigella,  Campylobacter)

 Worldwide

 Person-to-person  transmission, food  or water via faecal-  oral route

 Use good food and water sanitation;  require strict handwashing procedures;  reportable disease in most countries.

 Gastroenteritis,  viral  (Rotaviruses)

 Worldwide

 Person-to-person  transmission, food  or water via faecal-  oral route; also by  inhalation of dust  containing virus

 Use good food and water sanitation.

 German  measles (rubella)

 Worldwide

 Airborne  respiratory  droplets; direct  contact with  infected people

 Risk of birth defects; all children and  employees should be vaccinated;  reportable disease in most countries.

 Giardiasis  (intestinal  parasite)

 Worldwide,  but especially  tropics  and  subtropics

 Contaminated food  and water; also  possible by person-  to-person  transmission

 Use good food and water sanitation;  reportable disease in most countries.

 Hepatitis A virus

 Worldwide,  but especially

 Mediterranean  areas and  developing  countries

 Faecal-oral  transmission,  especially  contaminated food  and water; also  possible by direct  person-to-person  contact

 Risk of spontaneous abortions and  stillbirths; use good food  and water  sanitation; reportable disease in most  countries.

 Hepatitis B virus

 Worldwide,  especially  Asia and  Africa

 Sexual contact,  contact of broken  skin or mucous  membranes with  blood or other body  fluids

 Higher incidence in institutionalized  children (e.g., developmentally disabled);  vaccination recommended in high-risk  situations; use universal precautions for  all exposures to blood and other body  fluids; reportable disease in most  countries.

 Herpes Simplex  Type I and II

 Worldwide

 Contact with mucous  membranes

 extremely contagious; common in adults  and age group 10 to 20 years.

 Human Immune  Deficiency Virus  (HIV) infection

 Worldwide

 Sexual contact,  contact of broken  skin or mucous  membranes with  blood or other body  fluids

 Leads to Acquired Immune Deficiency  Syndrome (AIDS); use universal  precautions for all exposures to blood and  body fluids (e.g., nosebleeds); anonymous  reporting of disease required in most  countries.

 Infectious  mononucleosis  Epstein-Barr  virus)

 Worldwide

 Airborne respiratory  droplets; direct  contact with saliva

 Especially common in age group 10 to 20  years.

 Influenza

 Worldwide

 Airborne respiratory  droplets

 Highly contagious; high-risk individuals  should get immunization shots.

 Measles

 Worldwide

 Airborne respiratory  droplets

 Highly contagious, but for adults mostly a  risk to non-immunized individuals working  with unvaccinated children; reportable  disease in most countries.

 Meningococcus  meningitis  bacterial)

 Mostly tropical  Africa and  Brazil

 Airborne respiratory  droplets, especially close contact

 Reportable disease in most countries.

 Mumps

 Worldwide

 Airborne respiratory  droplets and contact  with saliva

 Highly contagious; exclude infected  children; may cause infertility in adults;  outbreaks reportable in some countries.

 Mycoplasma  infections

 Worldwide

 Airborne  transmission after  close contact

 A major cause of primary atypical  pneumonia; mainly affects children aged 5  to 15 years.

 Pertussis  (whooping  cough)

 Worldwide

 Airborne respiratory  droplets

 Not as severe in adults; all children under  7 years should be immunized.

 Scabies

 Worldwide

 Direct skin-to-skin  contact

 Infectious skin disease caused by mites

 Streptococcus  infections

 Worldwide

 Direct person-to-person contact

 Strep throat, scarlet fever and community-acquired pneumonia are examples of  infections.

 Tuberculosis  (respiratory)

 Worldwide

 Airborne respiratory  droplets

 Highly infectious; tuberculosis screening  should be conducted for all day care  workers; a reportable disease in most  countries.

 

Teachers in specialized classes can have additional occupational hazards, including chemical exposures, machinery hazards, accidents, electrical hazards, excessive noise levels, radiation and fire, depending on the particular classroom. Figure 1 shows an industrial arts metal shop in a high school, and figure 2 shows a high school science lab with fume hoods and an emergency shower. Table 2 summarizes special precautions, particularly substitution of safer materials, for use in schools. Information on standard precautions can be found in the chapters relevant to the process (e.g., Entertainment and the arts and Safe handling of chemicals).

Figure 1. Industrial arts metal shop in a high school.

EDS025F1

Michael McCann

Figure 2. High school science laboratory with fume hoods and an emergency shower.

EDS025F2

Michael McCann

Table 2.  Hazards and precautions for particular classes.

 Class

 Activity/Subject

 Hazards

 Precautions

 Elementary Classes

  Science

 Animal  handling

 

 

 Plants

 

 Chemicals

 

 

 Equipment

 

 Bites and scratches, zoonoses,  parasites

 

 Allergies, poisonous plants

 

 Skin and eye problems, toxic  reactions, allergies

 

Electrical hazards, safety hazards

Allow only live, healthy animals. Handle animals with heavy gloves. Avoid animals which can carry disease-transmitting insects and parasites.

Avoid plants which are known to be poisonous or cause allergic reaction.

Avoid using toxic chemicals with children. Wear proper personal protective equipment when doing teacher demonstrations with toxic chemicals.

Follow standard electrical safety procedures. Ensure all equipment is properly guarded. Store all equipment, tools, etc., properly.

 Art

 Painting and  drawing

 

 Photography

 

 Textile and  fibre arts

 

 Printmaking

 

 

 

 Woodworking

 

 

 

 Ceramics

 

Pigments, solvents

 

Photochemicals

 

 

Dyes

 

Acids, solvents

 

Cutting tools

 

Tools

 

Glues

 

Silica, toxic metals, heat,

kiln fumes

Use only non-toxic art materials. Avoid solvents, acids, alkalis, spray cans, chemical dyes, etc.

Use only children’s paints. Do not use pastels, dry pigments.

Do not do photo processing. Send out film for developing or use Polaroid cameras or blueprint paper and sunlight.

Avoid synthetic dyes; use natural dyes such as onion skins, tea, spinach, etc.

Use water-based block printing inks.

Use linoleum cuts instead of woodcuts.

Use soft woods and hand tools only.

Use water-based glues.

Use wet clay only, and wet mop.

Paint pottery rather than using ceramic glazes. Do not fire kiln inside classroom.

 

Secondary Classes

Chemistry

 General

 

 

 

 

 

 Organic  chemistry

 

 

 

 

 

 

 Inorganic  chemistry

 

 Analytical  chemistry

 

 Storage

 

 

 

 

 

 

 

Solvents

 

 

 

Peroxides and explosives

 

 

Acids and bases

 

Hydrogen sulphide

 

Incompatibilities

 

 

Flammability

All school laboratories should have the following: laboratory hood if toxic, volatile chemicals are used; eyewash fountains; emergency showers (if concentrated acids, bases or other corrosive chemicals are present); first aid kits; proper fire extinguishers; protective goggles, gloves and lab coats; proper disposal receptacles and procedures; spill control kit. Avoid carcinogens, mutagens and highly toxic chemicals like mercury, lead, cadmium, chlorine gas, etc.

 

Use only in laboratory hood.

Use least toxic solvents.

Do semi-micro- or microscale experiments.

 

Do not use explosives or chemicals such as ether, which can form explosive peroxides.

 

Avoid concentrated acids and bases when possible.

 

Do not use hydrogen sulphide. Use substitutes.

 

Avoid alphabetical storage, which can place incompatible chemicals in close proximity. Store chemicals by compatible groups.

 

Store flammable and combustible liquids in approved flammable-storage cabinets.

 Biology

 Dissection

 

 

 Anaesthetizing  insects

 

 Drawing of  blood

 

 Microscopy

 

 Culturing  bacteria

Formaldehyde

 

 

Ether, cyanide

 

HIV, Hepatitis B

 

Stains

 

Pathogens

Do not dissect specimens preserved in formaldehyde. Use smaller, freeze-dried animals, training films and videotapes, etc.

 

Use ethyl alcohol for anaesthetization of insects. Refrigerate insects for counting.

 

Avoid if possible. Use sterile lancets for blood typing under close supervision.

 

Avoid skin contact with iodine and gentian violet.

 

Use sterile technique with all bacteria, assuming there could be contamination by pathogenic bacteria.

 Physical  sciences

 Radioisotopes

 

 

 Electricity  and  magnetism

 

 Lasers

Ionizing radiation

 

 

Electrical hazards

 

 

Eye and skin damage,

electrical hazards

Use radioisotopes only in “exempt” quantities not requiring a license. Only trained teachers should use these. Develop a radiation safety programme.

 

Follow standard electrical safety procedures.

 

 

Use only low-power (Class I) lasers. Never look directly into a laser beam or pass the beam across face or body. Lasers should have a key lock.

 Earth  sciences

 Geology

 

 Water  pollution

 

 

 Atmosphere

 

 

 Volcanoes

 

 Solar  observation

Flying chips

 

Infection, toxic chemicals

 

 

Mercury manometers

 

 

Ammonium dichromate

 

Infrared radiation

Crush rocks in canvas bag to prevent flying chips. Wear protective goggles.

 

Do not take sewage samples because of infection risk. Avoid hazardous chemicals in field testing of water pollution.

 

Use oil or water manometers. If mercury manometers are used for demonstration, have mercury spill control kit.

 

Do not use ammonium dichromate and magnesium to simulate volcanoes.

 

Never view sun directly with eyes or through lenses.

 Art and  Industrial  Arts

 All

 

 

 Painting and  drawing

 

 

 Photography

 

 

 Textile and  fibre arts

General

 

 

Pigments, solvents

 

 

Photochemicals, acids,

sulphur dioxide

 

Dyes, dyeing assistants,

wax fumes

Avoid most dangerous chemicals and processes. Have proper ventilation. See also precautions under Chemistry

 

Avoid lead and cadmium pigments. Avoid oil paints unless cleanup is done with vegetable oil. Use spray fixatives outside.

 

Avoid colour processing and toning. Have dilution ventilation for darkroom. Have eyewash fountain. Use water instead of acetic acid for stop bath.

 

Use aqueous liquid dyes or mix dyes in glove box. Avoid dichromate mordants.

Do not use solvents to remove wax in batik. Have ventilation if ironing out wax.

 

 Papermaking

 

 

 

 Printmaking

 

 

 

 

 

 

 

 

 

 

 Woodworking

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ceramics

 

 

 

 Sculpture

 

 

 

 

 Jewelry

 

Alkali, beaters

 

 

 

Solvents

 

 

 

Acids, potassium chlorate

 

 

 

Dichromates

 

 

Woods and wood dust

 

 

 

Machinery and tools

 

Noise

 

Glues

 

 

Paints and finishes

 

 

Lead, silica, toxic metals, kiln fumes

 

 

Silica, plastics resins, dust

 

 

 

 

Soldering fumes, acids

Do not boil lye. Use rotten or mulched plant materials, or recycle paper and cardboard. Use large blender instead of more dangerous industrial beaters to prepare paper pulp.

Use water-based instead of solvent-based silk screen inks. Clean intaglio press beds nd inking slabs with vegetable oil and dishwashing liquid instead of solvents.

Use cut paper stencils instead of lacquer stencils for silk screen printing.

 

Use ferric chloride to etch copper plates instead of Dutch mordant or nitric acid on zinc plates. If using nitric acid etching, have emergency shower and eyewash fountain and local exhaust ventilation.

 

Use diazo instead of dichromate photoemulsions. Use citric acid fountain solutions in lithography to replace dichromates.

 

Have dust collection system for woodworking machines. Avoid irritating and allergenic hardwoods, preserved woods (e.g., chromated copper arsenate treated).Clean up wood dust to remove fire hazards.

 

Have machine guards. Have key locks and panic button.

 

Reduce noise levels or wear hearing protectors.

 

Use water-based glues when possible. Avoid formaldehyde/resorcinol glues, solvent-based glues.

 

Use water-based paints and finishes. Use shellac based on ethyl alcohol rather than methyl alcohol.

 

Purchase wet clay. Do not use lead glazes. Buy prepared glazes rather than mixing dry glazes. Spray glazes only in spray booth. Fire kiln outside or have local exhaust ventilation. Wear infrared goggles when looking into hot kiln.

 

Use only hand tools for stone sculpture to reduce dust levels. Do not use sandstone, granite or soapstone, which might contain silica or asbestos. Do not use highly toxic polyester, epoxy or polyurethane resins. Have ventilation if heating plastics to remove decomposition products. Wet mop or vacuum dusts.

Avoid cadmium silver solders and fluoride fluxes. Use sodium hydrogen sulphate rather than sulphuric acid for pickling. Have local exhaust ventilation.

 

 Enameling

 

 

 Lost wax  casting

 

 

 

 Stained glass

 

 

 Welding

 

 

 

 Commercial  art

Lead, burns, infrared

radiation

 

Metal fumes, silica,

infrared radiation, heat

 

 

Lead, acid fluxes

 

 

Metal fumes, ozone, nitrogen

dioxide, electrical and fire

hazards

 

Solvents, photochemicals,

video display terminals

Use only lead-free enamels. Ventilate enameling kiln. Have heat-protective gloves and clothing, and infrared goggles.

 

Use 50/50 30-mesh sand/plaster instead of cristobalite investments. Have local exhaust ventilation for wax burnout kiln and casting operation. Wear heat-protective clothing and gloves.

 

Use copper foil technique rather than lead came. Use lead- and antimony-free solders. Avoid lead glass paints. Use acid- and rosin-free soldering fluxes.

 

Do not weld metals coated with zinc, lead paints, or alloys with hazardous metals (nickel, chromium, etc.). Weld only metals of known composition.

 

 

Use double-sided tape instead of rubber cement. Use heptane-based, not hexane rubber cements. Have spray booths for air brushing. Use water-based or alcohol-based permanent markers instead of xylene types.

See Photography section for photoprocesses.

Have proper ergonomic chairs, lighting, etc., for computers.

 Performing  Arts

 Theatre

 

 

 

 

 Dance

 

 

 

 Music

Solvents, paints, welding

fumes, isocyanates, safety,

fire

 

 

Acute injuries

Repetitive strain injuries

 

 

Musculoskeletal injuries

(e.g., carpal tunnel syndrome)

 

Noise

 

 

 

Vocal strain

Use water-based paints and dyes. Do not use polyurethane spray foams.

Separate welding from other areas. Have safe rigging procedures. Avoid pyrotechnics, firearms, fog and smoke, and other hazardous special effects.

Fireproof all stage scenery. Mark all trap doors, pits and elevations.

 

Have a proper dance floor. Avoid full schedules after period of inactivity. Assure proper warm-up before and cool-down after dance activity. Allow sufficient recovery time after injuries.

 

Use proper sized instruments. Have adequate instrument supports. Allow sufficient recovery time after injuries.

 

Keep sound levels at acceptable levels. Wear musician’s ear plugs if needed.

Position speakers to minimize noise levels. Use sound-absorbing materials on walls.

Assure adequate warm-up. Provide proper vocal training and conditioning.

 Automotive  Mechanics

 Brake drums

 

 Degreasing

 

 Car motors

 

 Welding

 

 Painting

Asbestos

 

Solvents

 

Carbon monoxide

 

 

 

Solvents, pigments

Do not clean brake drums unless approved equipment is used.

 

Use water-based detergents. Use parts cleaner

 

Have tailpipe exhaust.

 

See above.

 

Spray paint only in spray booth, or outdoors with respiratory protection.

 

 Home  Economics

 Food and  nutrition

Electrical hazards

 

Knives and other sharp utensils

 

Fire and burns

 

 

Cleaning products

Follow standard electrical safety rules.

 

Always cut away from body. Keep knives sharpened.

 

 

Have stove hoods with grease filters that exhaust to outside. Wear protective gloves with hot objects.

 

Wear goggles, gloves and apron with acidic or basic cleaning products.

 

Teachers in special education programmes can sometimes be at greater risk. Examples of hazards include violence from emotionally disturbed students and transmission of infections such as hepatitis A, B and C from institutionalized, developmentally disabled students (Clemens et al. 1992).

 


Preschool Programmes 

Child-care, which involves the physical care and often education of young children, takes many forms in different parts of the world. In many countries where extended families are common, grandparents and other female relatives care for young children when the mother has to work. In countries where the nuclear family and/or single parents predominate and the mother is working, the care of healthy children below school age often occurs in private or public day-care centres or nursery schools outside the home. In many countries - for example, Sweden - these child-care facilities are operated by municipalities. In the United States, most child-care facilities are private, although they are usually regulated by local health departments. An exception is the Head Start Program for preschool children, which is funded by the government. 

Staffing of child-care facilities usually depends on the number of children involved and the nature of the facility. For small numbers of children (usually less than 12), the child-care facility might be a home where the children include the preschool children of the caregiver. The staff can include one or more qualified adult assistants to meet staff-to-child ratio requirements. Larger, more formal child-care facilities include day-care centres and nursery schools. The staff members for these are usually required to have more education and can include a qualified director, trained teachers, nursing staff under the supervision of a physician, kitchen staff (nutrition specialists, food service managers and cooks) and other personnel, such as transportation staff and maintenance staff. The premises of the day-care centre should have such amenities as an outdoor play area, cloakroom, reception area, indoor classroom and play area, kitchen, sanitary facilities, administrative rooms, laundry room and so on.

Staff duties include supervision of children in all their activities, changing diapers of infants, emotional nurturing of the children, teaching, food preparation and service, recognition of signs of illness and/or safety hazards and many other functions. 

Day-care workers face many of the same hazards found in normal indoor environments, including indoor air pollution, poor lighting, inadequate temperature control, slips and falls and fire hazards. (See the article “Elementary and Secondary Schools”.) Stress (often resulting in burnout) and infections, however, are the major hazards for day-care workers. The lifting and carrying of children and exposure to possibly hazardous art supplies are other hazards.

Stress

Causes of stress in day-care workers include: high responsibility for the welfare of children without adequate pay and recognition; a perception of being unskilled even though many day-care workers have above-average education; image problems due to highly publicized incidents of day-care workers mistreating and abusing children, which have resulted in innocent day-care workers being fingerprinted and treated as potential criminals; and poor working conditions. The latter include low staff-to-child ratios, continual noise, lack of adequate time and facilities for meals and breaks separate from the children and inadequate mechanisms for parent-worker interaction, which can result in unnecessary and possibly unfair pressure and criticism from parents. 

Preventive measures to reduce stress in day-care workers include: higher wages and better benefits; higher staff-to-child ratios to allow job rotation, rest breaks, sick leave and better performance, with resulting increase in job satisfaction; establishing formal mechanisms for parent-worker communications and cooperation (possibly including a parent-workers health and safety committee); and improved working conditions, such as adult-size chairs, regular “quiet” times, a separate workers’ break area and so on.

Infections

Infectious diseases, such as diarrhoeal diseases, streptococcal and meningococcal infections, rubella, cytomegalovirus and respiratory infections, are major occupational hazards of day-care workers (see table 1). A study of day-care workers in Belgium found an increased risk of hepatitis A (Abdo and Chriske 1990). Up to 30% of the 25,000 cases of hepatitis A reported annually in the United States have been linked to day-care centres. Some organisms causing diarrhoeal diseases, such as Giardia lamblia, which causes giardiasis, are extremely infectious. Outbreaks can occur in day-care centres serving affluent populations as well as those serving poor areas (Polis et al. 1986). Some infections - for example, German measles and cytomegalovirus - can be especially hazardous for pregnant women, or women planning to have children, because of the risk of birth defects caused by the virus.

Sick children can spread diseases, as can children who have no overt symptoms but are carrying an illness. The most common routes of exposure are faecal-oral and respiratory. Young children usually have poor personal hygiene habits. Hand-to-mouth and toy-to-mouth contact are common. Handling contaminated toys and food is one type of entry route. Some organisms can live on inanimate objects for extended periods ranging from hours to weeks. Food can also be a vector if the food handler has contaminated hands or is ill. Inhalation of airborne respiratory droplets due to sneezing and coughing without protection such as tissues can result in transmission of infections. Such air-borne aerosols can remain suspended in the air for hours.

Day care employees working with children under the age of three years, especially if the children are not toilet-trained, are at greatest risk, particularly when changing and handling soiled diapers which are contaminated by disease-bearing organisms.

Precautions include: convenient facilities for handwashing; regular handwashing by children and staff members; changing diapers in designated areas which are regularly disinfected; disposal of soiled diapers in closed, plastic-lined receptacles which are emptied frequently; separating food preparation areas from other areas; frequent washing of toys, play areas, blankets and other items that could become contaminated; good ventilation; adequate staff-to-child ratios to allow proper implementation of a hygiene programme; a policy of excluding, isolating or restricting sick children, depending on the illness; and adequate sick-leave policies to allow sick day-care workers to stay home.

Adapted from Women’s Occupational Health Resource Center 1987


 

Back

Thursday, 24 March 2011 14:48

Drawing, Painting and Printmaking

Written by

Drawing involves making marks on a surface to express a feeling, experience or vision. The most commonly used surface is paper; drawing media include dry implements such as charcoal, coloured pencils, crayons, graphite, metalpoint and pastels, and liquids such as inks, markers and paints. Painting refers to processes that apply an aqueous or non-aqueous liquid medium (“paint”) to sized, primed or sealed surfaces such as canvas, paper or panel. Aqueous media include water-colours, tempera, acrylic polymers, latex and fresco; non-aqueous media include linseed or stand oils, dryers, varnish, alkyds, encaustic or molten wax, organic solvent-based acrylics, epoxy, enamels, stains and lacquers. Paints and inks typically consists of colouring agents (pigments and dyes), a liquid vehicle (organic solvent, oil or water), binders, bulking agents, antioxidants, preservatives and stabilizers.

Prints are works of art made by transferring a layer of ink from an image on a printing surface (such as woodblock, screen, metal plate or stone) onto paper, fabric or plastic. The printmaking process involves several steps: (1) preparation of the image; (2) printing; and (3) cleanup. Multiple copies of the image can be made by repeating the printing step. In monoprints, only one print is made.

Intaglio printing involves incising lines by mechanical means (e.g., engraving, drypoint) or etching the metal plate with acid to create depressed areas in the plate, which form the image. Various solvent-containing resists and other materials such as rosin or spray paint (aquatinting) can be used to protect the part of the plate not being etched. In printing, the ink (which is linseed oil based) is rolled onto the plate, and the excess wiped off, leaving ink in the depressed areas and lines. The print is made by placing the paper on the plate and applying pressure by a printing press to transfer the ink image to the paper.

Relief printing involves the cutting away of the parts of woodblocks or linoleum that are not to be printed, leaving a raised image. Water-or linseed oil–based inks are applied to the raised image and the ink image transferred to paper.

Stone lithography involves making an image with a greasy drawing crayon or other drawing materials that will make the image receptive to the linseed oil–based ink, and treating the plate with acids to make non-image areas water receptive and ink repellent. The image is washed out with mineral spirits or other solvents, inked with a roller and then printed. Metal plate lithography can involve a preliminary counteretch that often contains dichromate salts. Metal plates may be treated with vinyl lacquers containing ketone solvents for long print runs.

Screen printing is a stencil process where a negative image is made on the fabric screen by blocking out portions of the screen. For water-based inks, the blockout materials must be water insoluble; for solvent-based inks, the reverse. Cut plastic stencils are frequently used and adhered to the screen with solvents. The prints are made by scraping ink across the screen, forcing the ink through the unblocked parts of the screen onto paper located underneath the screen, thus creating the positive image. Large print runs using solvent-based inks involve the release of large amounts of solvent vapours into the air.

Collagraphs are made using either intaglio or relief printing techniques on a textured surface or collage, which can be made of many materials glued onto the plate.

Photoprintmaking processes can use either presensitized plates (often diazo) for lithography or intaglio, or the photoemulsion can be applied directly to the plate or stone. A mixture of gum arabic and dichromates have often been used on stones (gum printing). The photographic image is transferred to the plate, and then the plate exposed to ultraviolet light (e.g., carbon arcs, xenon lights, sunlight). When developed, the non-exposed portions of the photoemulsion are washed away, and the plate then printed. The coating and developing agents can often contain hazardous solvents and alkalis. In photo screen processes, the screen can be coated with dichromate or diazo photoemulsion directly, or an indirect process can be used, which involves adhering sensitized transfer films to the screen after exposure.

In printmaking techniques using oil-based inks, the ink is cleaned up with solvents or with vegetable oil and dishwashing liquid. Solvents also have to be used for cleaning lithography rollers. For water-based inks, water is used for cleanup. For solvent-based inks, large amounts of solvents are used for cleanup, making this one of the most hazardous processes in printmaking. Photoemulsions can be removed from screens using chlorine bleach or enzyme detergents.

Artists who draw, paint or make prints face significant health and safety hazards. The major sources of hazards for these artists include acids (in lithography and intaglio), alcohols (in paint, shellac, resin and varnish thinners and removers), alkalis (in paints, dye baths, photodevelopers and film cleaners), dusts (in chalks, charcoal and pastels), gases (in aerosols, etching, lithography and photoprocesses), metals (in pigments, photochemicals and emulsions), mists and sprays (in aerosols, air-brushing and aquatinting), pigments (in inks and paints), powders (in dry pigments and photochemicals, rosin, talc and whiting), preservatives (in paints, glues, hardeners and stabilizers) and solvents (such as aliphatic, aromatic and chlorinated hydrocarbons, glycol ethers and ketones). Common routes of exposure associated with these hazards include inhalation, ingestion and skin contact.

Among the well-documented health problems of painters, drawers and printmakers are: n-hexane-induced peripheral nerve damage in art students using rubber cement and spray adhesives; solvent-induced peripheral and central nervous system damage in silk-screen artists; bone marrow suppression related to solvents and glycol ethers in lithographers; onset or aggravation of asthma following exposure to sprays, mists, dusts, moulds and gases; abnormal heart rhythms following exposure to hydrocarbon solvents such as methylene chloride, freon, toluene and 1,1,1-trichloroethane found in glues or correction fluids; acid, alkali or phenol burns or irritation of the skin, eyes and mucous membranes; liver damage induced by organic solvents; and irritation, immune reaction, rashes and ulceration of the skin following exposure to nickel, dichromates and chromates, epoxy hardeners, turpentine or formaldehyde.

Although not well-documented, painting, drawing and printmaking may be associated with an increased risk of leukaemia, kidney tumours and bladder tumours. Suspected carcinogens to which painters, drawers and printmakers may be exposed include chromates and dichromates, polychlorinated biphenyls, trichloroethylene, tannic acid, methylene chloride, glycidol, formaldehyde, and cadmium and arsenic compounds.

The most important precautions in painting, drawing and printmaking include: substitution of water-based materials for materials based on organic solvents; proper use of general dilution ventilation and local exhaust ventilation (see figure 1); proper handling, labelling, storage and disposal of paints, flammable liquids and waste solvents; appropriate use of personal protective equipment such as aprons, gloves, goggles and respirators; and avoidance of products that contain toxic metals, especially lead, cadmium, mercury, arsenic, chromates and manganese. Solvents to be avoided include benzene, carbon tetrachloride, methyl n-butyl ketone, n-hexane and trichloroethylene.

Figure 1. Silk screen printing with slot exhaust hood.

ENT030F2

Michael McCann

Additional efforts designed to reduce the risk of adverse health effects associated with painting, drawing and printmaking include early and continuous education of young artists concerning the hazards of art materials, and laws mandating labels on art materials that warn of both short-term and long-term health and safety hazards.

 

Back

Wednesday, 02 March 2011 15:23

Strain in Health Care Work

Written by

Cognitive Strain

Continuous observation has revealed that nurses’ workdays are characterized by continual reorganization of their work schedules and frequent interruptions.

Belgian (Malchaire 1992) and French (Gadbois et al. 1992; Estryn-Béhar and Fouillot 1990b) studies have revealed that nurses perform 120 to 323 separate tasks during their workday (see table 1). Work interruptions are very frequent throughout the day, ranging from 28 to 78 per workday. Many of the units studied were large, short-term-stay units in which the nurses’ work consisted of a long series of spatially dispersed, short-duration tasks. Planning of work schedules was complicated by the presence of incessant technical innovation, close interdependence of the work of the various staff members and a generally haphazard approach to work organization.

Table 1. Number of separate tasks undertaken by nurses, and interruptions during each shift

 

Belgium

France

France

Authors

Malchaire 1992*

Gadbois et al. 1992**

Estryn-Béhar and
Fouillot 1990b***

Departments

Cardiovascular
surgery

Surgery (S) and
medicine (M)

Ten medical and
surgical departments

Number of separate
tasks

Morning 120/8 h
Afternoon 213/8 h
Night 306/8 h

S (day) 276/12 h
M (day) 300/12 h

Morning 323/8 h
Afternoon 282/8 h
Night 250/10–12 h

Number of
interruptions

 

S (day) 36/12 h
M (day) 60/12 h

Morning 78/8 h
Afternoon 47/8 h
Night 28/10–12 h

Number of hours of observation: *  Morning: 80 h; afternoon: 80 h; night: 110 h.  ** Surgery: 238 h; medicine: 220 h. *** Morning : 64 h; afternoon: 80 h; night: 90 h.

Gadbois et al. (1992) observed an average of 40 interruptions per workday, of which 5% were caused by patients, 40% by inadequate transmission of information, 15% by telephone calls and 25% by equipment. Ollagnier and Lamarche (1993) systematically observed nurses in a Swiss hospital and observed 8 to 32 interruptions per day, depending on the ward. On average, these interruptions represented 7.8% of the workday.

Work interruptions such as these, caused by inappropriate information supply and transmission structures, prevent workers from completing all their tasks and lead to worker dissatisfaction. The most serious consequence of this organizational deficiency is the reduction of time spent with patients (see table 2). In the first three studies cited above, nurses spent at most 30% of their time with patients on average. In Czechoslovakia, where multiple-bed rooms were common, nurses needed to change rooms less frequently, and spent 47% of their shift time with patients (Hubacova, Borsky and Strelka 1992). This clearly demonstrates how architecture, staffing levels and mental strain are all interrelated.

Table 2. Distribution of nurses’ time in three studies

 

Czechoslovakia

Belgium

France

Authors

Hubacova, Borsky and Strelka 1992*

Malchaire 1992**

Estryn-Béhar and
Fouillot 1990a***

Departments

5 medical and surgical departments

Cardiovascular surgery

10 medical and
surgical departments

Average time for the main postures and total distance walked by nurses:

Per cent working
hours standing and
walking

76%

Morning 61%
Afternoon 77%
Night 58%

Morning 74%
Afternoon 82%
Night 66%

Including stooping,
squatting, arms
raised, loaded

11%

 

Morning 16%
Afternoon 30%
Night 24%

Standing flexed

 

Morning 11%
Afternoon 9%
Night 8%

 

Distance walked

 

Morning 4 km
Afternoon 4 km
Night 7 km

Morning 7 km
Afternoon 6 km
Night 5 km

Per cent working
hours with patients

Three shifts: 47%

Morning 38%
Afternoon 31%
Night 26%

Morning 24%
Afternoon 30%
Night 27%

Number of observations per shift: *   74 observations on 3 shifts. **  Morning: 10 observations (8 h); afternoon: 10 observations (8 h); night: 10 observations (11 h). *** Morning: 8 observations (8 h); afternoon: 10 observations (8 h); night: 9 observations (10-12 h).

Estryn-Béhar et al. (1994) observed seven occupations and schedules in two specialized medical wards with similar spatial organization and located in the same high-rise building. While work in one ward was highly sectorized, with two teams of a nurse and a nurses’ aide attending half of the patients, there were no sectors in the other ward, and basic care for all patients was dispensed by two nurses’ aides. There were no differences in the frequency of patient-related interruptions in the two wards, but team-related interruptions were clearly more frequent in the ward without sectors (35 to 55 interruptions compared to 23 to 36 interruptions). Nurses’ aides, morning-shift nurses and afternoon-shift nurses in the non-sectorized ward suffered 50, 70 and 30% more interruptions than did their colleagues in the sectorized one.

Sectorization thus appears to reduce the number of interruptions and the fracturing of work shifts. These results were used to plan the reorganization of the ward, in collaboration with the medical and paramedical staff, so as to facilitate sectorization of the office and the preparation area. The new office space is modular and easily divided into three offices (one for physicians and one for each of the two nursing teams), each separated by sliding glass partitions and furnished with at least six seats. Installation of two counters facing each other in the common preparation area means that nurses who are interrupted during preparation can return and find their materials in the same position and state, unaffected by their colleagues’ activities.

Reorganization of work schedules and technical services

Professional activity in technical departments is much more than the mere sum of tasks associated with each test. A study conducted in several nuclear medicine departments (Favrot-Laurens 1992) revealed that nuclear medicine technicians spend very little of their time performing technical tasks. In fact, a significant part of technicians’ time was spent coordinating activity and workload at the various workstations, transmitting information and making unavoidable adjustments. These responsibilities stem from technicians’ obligation to be knowledgeable about each test and to possess essential technical and administrative information in addition to test-specific information such as time and injection site.

Information processing necessary for the delivery of care

Roquelaure, Pottier and Pottier (1992) were asked by a manufacturer of electroencephalography (EEG) equipment to simplify the use of the equipment. They responded by facilitating the reading of visual information on controls which were excessively complicated or simply unclear. As they point out, “third-generation” machines present unique difficulties, due in part to the use of visual display units packed with barely legible information. Deciphering these screens requires complex work strategies.

On the whole, however, little attention has been paid to the need to present information in a manner that facilitates rapid decision-making in health care departments. For example, the legibility of information on medicine labels still leaves much to be desired, according to one study of 240 dry oral and 364 injectable medications (Ott et al. 1991). Ideally, labels for dry oral medication administered by nurses, who are frequently interrupted and attend several patients, should have a matte surface, characters at least 2.5 mm high and comprehensive information on the medication in question. Only 36% of the 240 medications examined satisfied the first two criteria, and only 6% all three. Similarly, print smaller than 2.5 mm was used in 63% of labels on the 364 injectable medications.

In many countries where English is not spoken, machine control panels are still labelled in English. Patient-chart software is being developed in many countries. In France, this type of software development is often motivated by a desire to improve hospital management and undertaken without adequate study of the software’s compatibility with actual working procedures (Estryn-Béhar 1991). As a result, the software may actually increase the complexity of nursing, rather than reduce cognitive strain. Requiring nurses to page through multiple screens of information to obtain the information they need to fill a prescription may increase the number of errors they make and memory lapses they suffer.

While Scandinavian and North American countries have computerized much of their patient records, it must be borne in mind that hospitals in these countries benefit from a high staff-to-patient ratio, and work interruptions and constant reshuffling of priorities are therefore less problematic there. In contrast, patient-chart software designed for use in countries with lower staff-to-patient ratios must be able to easily produce summaries and facilitate reorganization of priorities.

Human error in anaesthesia

Cooper, Newbower and Kitz (1984), in their study of the factors underlying errors during anaesthesia in the United States, found equipment design to be crucial. The 538 errors studied, largely drug administration and equipment problems, were related to the distribution of activities and the systems involved. According to Cooper, better design of equipment and monitoring apparatus would lead to a 22% reduction in errors, while complementary training of anaesthesiologists, using new technologies such as anaesthesia simulators, would lead to a 25% reduction. Other recommended strategies focus on work organization, supervision and communications.

Acoustic alarms in operating theatres and intensive-care units

Several studies have shown that too many types of alarms are used in operating theatres and intensive-care units. In one study, anaesthetists identified only 33% of alarms correctly, and only two monitors had recognition rates exceeding 50% (Finley and Cohen 1991). In another study, anaesthetists and anaesthesia nurses correctly identified alarms in only 34% of cases (Loeb et al. 1990). Retrospective analysis showed that 26% of nurses’ errors were due to similarities in alarm sounds and 20% to similarities in alarm functions. Momtahan and Tansley (1989) reported that recovery-room nurses and anaesthetists correctly identified alarms in only 35% and 22% of cases respectively. In another study by Momtahan, Hétu and Tansley (1993), 18 physicians and technicians were able to identify only 10 to 15 of 26 operating-theatre alarms, while 15 intensive-care nurses were able to identify only 8 to 14 of 23 alarms used in their unit.

De Chambost (1994) studied the acoustic alarms of 22 types of machines used in an intensive-care unit in the Paris region. Only the cardiogram alarms and those of one of the two types of automated-plunger syringes were readily identified. The others were not immediately recognized and required personnel first to investigate the source of the alarm in the patient’s room and then return with the appropriate equipment. Spectral analysis of the sound emitted by eight machines revealed significant similarities and suggests the existence of a masking effect between alarms.

The unacceptably high number of unjustifiable alarms has been the object of particular criticism. O’Carroll (1986) characterized the origin and frequency of alarms in a general intensive-care unit over three weeks. Only eight of 1,455 alarms were related to a potentially fatal situation. There were many false alarms from monitors and perfusion pumps. There was little difference between the frequency of alarms during the day and night.

Similar results have been reported for alarms used in anaesthesiology. Kestin, Miller and Lockhart (1988), in a study of 50 patients and five commonly used anaesthesia monitors, reported that only 3% indicated a real risk for the patient and that 75% of alarms were unfounded (caused by patient movement, interference and mechanical problems). On average, ten alarms were triggered per patient, equivalent to one alarm every 4.5 minutes.

A common response to false alarms is simply to disable them. McIntyre (1985) reported that 57% of Canadian anaesthetists admitted deliberately inactivating an alarm. Obviously, this could lead to serious accidents.

These studies underscore the poor design of hospital alarms and the need for alarm standardization based on cognitive ergonomics. Both Kestin, Miller and Lockhart (1988) and Kerr (1985) have proposed alarm modifications that take into account risk and the expected corrective responses of hospital personnel. As de Keyser and Nyssen (1993) have shown, the prevention of human error in anaesthesia integrates different measures—technological, ergonomic, social, organizational and training.

Technology, human error, patient safety and perceived psychological strain

Rigorous analysis of the error process is very useful. Sundström-Frisk and Hellström (1995) reported that equipment deficiencies and/or human error were responsible for 57 deaths and 284 injuries in Sweden between 1977 and 1986. The authors interviewed 63 intensive-care-unit teams involved in 155 incidents (“near-accidents”) involving advanced medical equipment; most of these incidents had not been reported to authorities. Seventy typical “near-accident” scenarios were developed. Causal factors identified included inadequate technical equipment and documentation, the physical environment, procedures, staffing levels and stress. The introduction of new equipment may lead to accidents if the equipment is poorly adapted to users’ needs and is introduced in the absence of basic changes in training and work organization.

In order to cope with forgetfulness, nurses develop several strategies for remembering, anticipating and avoiding incidents. They do still occur and even when patients are unaware of errors, near-accidents cause personnel to feel guilty. The article "Case Study: Human Error and Critical Taks" deals with some aspects of the problem.

Emotional or Affective Strain

Nursing work, especially if it forces nurses to confront serious illness and death, can be a significant source of affective strain, and may lead to burn-out, which is discussed more fully elsewhere in this Encyclopaedia. Nurses’ ability to cope with this stress depends on the extent of their support network and their possibility to discuss and improve patients’ quality of life. The following section summarizes the principal findings of Leppanen and Olkinuora’s (1987) review of Finnish and Swedish studies on stress.

In Sweden, the main motivations reported by health professionals for entering their profession were the “moral calling” of the work, its usefulness and the opportunity to exercise competence. However, almost half of nurses’ aides rated their knowledge as inadequate for their work, and one-quarter of nurses, one-fifth of registered nurses, one-seventh of physicians and one-tenth of head nurses considered themselves incompetent at managing some types of patients. Incompetence in managing psychological problems was the most commonly cited problem and was particularly prevalent among nurses’ aides, although also cited by nurses and head nurses. Physicians, on the other hand, consider themselves competent in this area. The authors focus on the difficult situation of nurses’ aides, who spend more time with patients than the others but are, paradoxically, unable to inform patients about their illness or treatment.

Several studies reveal the lack of clarity in delineating responsibilities. Pöyhönen and Jokinen (1980) reported that only 20% of Helsinki nurses were always informed of their tasks and the goals of their work. In a study conducted in a paediatric ward and an institute for disabled persons, Leppanen showed that the distribution of tasks did not allow nurses enough time to plan and prepare their work, perform office work and collaborate with team members.

Responsibility in the absence of decision-making power appears to be a stress factor. Thus, 57% of operating-room nurses felt that ambiguities concerning their responsibilities aggravated their cognitive strain; 47% of surgical nurses reported being unfamiliar with some of their tasks and felt that patients’ and nurses’ conflicting expectations were a source of stress. Further, 47% reported increased stress when problems occurred and physicians were not present.

According to three European epidemiological studies, burn-out affects approximately 25% of nurses (Landau 1992; Saint-Arnaud et al. 1992; Estryn-Béhar et al. 1990) (see table 3 ). Estryn-Béhar et al. studied 1,505 female health care workers, using a cognitive strain index that integrates information on work interruptions and reorganization and an affective strain index that integrates information on work ambience, teamwork, congruity of qualification and work, time spent talking to patients and the frequency of hesitant or uncertain responses to patients. Burn-out was observed in 12% of nurses with low, 25% of those with moderate and 39% of those with high cognitive strain. The relationship between burn-out and affective strain increases was even stronger: burn-out was observed in 16% of nurses with low, 25% of those with moderate and 64% of those with high affective strain. After adjustment by logistic multivariate regression analysis for social and demographic factors, women with a high affective strain index had an odds ratio for burn-out of 6.88 compared to those with a low index.

Table 3. Cognitive and affective strain and burn-out among health workers

 

Germany*

Canada**

France***

Number of subjects

24

868

1,505

Method

Maslach Burn-out
Inventory

Ilfeld Psychiatric
Symptoms Index

Goldberg General
Health Questionnaire

High emotional
exhaustion

33%

20%

26%

Degree of burn-out,
by shift

Morning 2.0;
afternoon 2.3;
split shift 3.4;
night 3.3

 

Morning 25%;
afternoon 25%;
night 29%

Percentage suffering
high emotional
exhaustion, by strain
level

 

Cognitive and
affective strain:
low 16.5%;
high 36.6%

Cognitive strain:
low 12%,
middle 25%,
high 39%
Affective strain:
low 16%,
middle 35%,
high 64%

* Landau 1992.  ** Saint Arnand et. al. 1992.  *** Estryn-Béhar et al. 1990.

Saint-Arnaud et al. reported a correlation between the frequency of burn-out and the score on their composite cognitive and affective strain index. Landau’s results support these findings.

Finally, 25% of 520 nurses working in a cancer treatment centre and a general hospital in France were reported to exhibit high burn-out scores (Rodary and Gauvain-Piquard 1993). High scores were most closely associated with a lack of support. Feelings that their department did not regard them highly, take their knowledge of the patients into account or put the highest value on their patients’ quality of life were reported more frequently by nurses with high scores. Reports of being physically afraid of their patients and unable to organize their work schedule as they wished were also more frequent among these nurses. In light of these results, it is interesting to note that Katz (1983) observed a high suicide rate among nurses.

Impact of workload, autonomy and support networks

A study of 900 Canadian nurses revealed an association between workload and five indices of cognitive strain measured by the Ilfeld questionnaire: the global score, aggression, anxiety, cognitive problems and depression (Boulard 1993). Four groups were identified. Nurses with a high workload, high autonomy and good social support (11.76%) exhibited several stress-related symptoms. Nurses with a low workload, high autonomy and good social support (35.75%) exhibited the lowest stress. Nurses with high workload, little autonomy and little social support (42.09%) had a high prevalence of stress-related symptoms, while nurses with a low workload, little autonomy and little social support (10.40%) had low stress, but the authors suggest that these nurses may experience some frustration.

These results also demonstrate that autonomy and support, rather than moderating the relationship between workload and mental health, act directly on workload.

Role of head nurses

Classically, employee satisfaction with supervision has been considered to depend on the clear definition of responsibilities and on good communication and feedback. Kivimäki and Lindström (1995) administered a questionnaire to nurses in 12 wards of four medical departments and interviewed the wards’ head nurses. Wards were classified into two groups on the basis of the reported level of satisfaction with supervision (six satisfied wards and six dissatisfied wards). Scores for communication, feedback, participation in decision-making and the presence of a work climate that favours innovation were higher in “satisfied” wards. With one exception, head nurses of “satisfied” wards reported conducting at least one confidential conversation lasting one to two hours with each employee annually. In contrast, only one of the head nurses of the “dissatisfied” wards reported this behaviour.

Head nurses of the “satisfied” wards reported encouraging team members to express their opinions and ideas, discouraging team members from censuring or ridiculing nurses who made suggestions, and consistently attempting to give positive feedback to nurses expressing different or new opinions. Finally, all the head nurses in “satisfied” wards, but none of the ones in “dissatisfied” ones, emphasized their own role in creating a climate favourable to constructive criticism.

Psychological roles, relationships and organization

The structure of nurses’ affective relationships varies from team to team. A study of 1,387 nurses working regular night shifts and 1,252 nurses working regular morning or afternoon shifts revealed that shifts were extended more frequently during night shifts (Estryn-Béhar et al. 1989a). Early shift starts and late shift ends were more prevalent among night-shift nurses. Reports of a “good” or “very good” work ambience were more prevalent at night, but a “good relationship with physicians” was less prevalent. Finally, night-shift nurses reported having more time to talk to patients, although that meant that worries and uncertainties about the appropriate response to give patients, also more frequent at night, were harder to bear.

Büssing (1993) revealed that depersonalization was greater for nurses working abnormal hours.

Stress in physicians

Denial and suppression of stress are common defence mechanisms. Physicians may attempt to repress their problems by working harder, distancing themselves from their emotions or adopting the role of a martyr (Rhoads 1977; Gardner and Hall 1981; Vaillant, Sorbowale and McArthur 1972). As these barriers become more fragile and adaptive strategies break down, bouts of anguish and frustration become more and more frequent.

Valko and Clayton (1975) found that one-third of interns suffered severe and frequent episodes of emotional distress or depression, and that one-quarter of them entertained suicidal thoughts. McCue (1982) believed that a better understanding of both stress and reactions to stress would facilitate physician training and personal development and modify societal expectations. The net effect of these changes would be an improvement in care.

Avoidance behaviours may develop, often accompanied by a deterioration of interpersonal and professional relationships. At some point, the physician finally crosses the line into a frank deterioration of mental health, with symptoms which may include substance abuse, mental illness or suicide. In yet other cases, patient care may be compromised, resulting in inappropriate examinations and treatment, sexual abuse or pathological behaviour (Shapiro, Pinsker and Shale 1975).

A study of 530 physician suicides identified by the American Medical Association over a five-year period found that 40% of suicides by female physicians and less than 20% of suicides by male physicians occurred in individuals younger than 40 years (Steppacher and Mausner 1974). A Swedish study of suicide rates from 1976 to 1979 found the highest rates among some of the health professions, compared to the overall active population (Toomingas 1993). The standardized mortality ratio (SMR) for female physicians was 3.41, the highest value observed, while that for nurses was 2.13.

Unfortunately, health professionals with impaired mental health are often ignored and may even be rejected by their colleagues, who attempt to deny these tendencies in themselves (Bissel and Jones 1975). In fact, slight or moderate stress is much more prevalent among health professionals than are frank psychiatric disorders (McCue 1982). A good prognosis in these cases depends on early diagnosis and peer support (Bitker 1976).

Discussion groups

Studies on the effect of discussion groups on burn-out have been undertaken in the United States. Although positive results have been demonstrated (Jacobson and MacGrath 1983), it should be noted that these have been in institutions where there was sufficient time for regular discussions in quiet and appropriate settings (i.e., hospitals with high staff-patient ratios).

A literature review of the success of discussion groups has shown these groups to be valuable tools in wards where a high proportion of patients are left with permanent sequelae and must learn to accept modifications in their lifestyle (Estryn-Béhar 1990).

Kempe, Sauter and Lindner (1992) evaluated the merits of two support techniques for nurses near burn-out in geriatrics wards: a six-month course of 13 professional counselling sessions and a 12-month course of 35 “Balint group” sessions. The clarification and reassurance provided by the Balint group sessions were effective only if there was also significant institutional change. In the absence of such change, conflicts may even intensify and dissatisfaction increase. Despite their impending burn-out, these nurses remained very professional and sought ways of carrying on with their work. These compensatory strategies had to take into account extremely high workloads: 30% of nurses worked more than 20 hours of overtime per month, 42% had to cope with understaffing during more than two-thirds of their working hours and 83% were often left alone with unqualified personnel.

The experience of these geriatrics nurses was compared to that of nurses in oncology wards. Burnout score was high in young oncology nurses, and decreased with seniority. In contrast, burnout score among geriatrics nurses increased with seniority, attaining levels much higher than those observed in oncology nurses. This lack of decrease with seniority is due to the characteristics of the workload in geriatrics wards.

The need to act on multiple determinants

Some authors have extended their study of effective stress management to organizational factors related to affective strain.

For example, analysis of psychological and sociological factors was part of Theorell’s attempt to implement case-specific improvements in emergency, paediatric and juvenile psychiatry wards (Theorell 1993). Affective strain before and after the implementation of changes was measured through the use of questionnaires and the measurement of plasma prolactin levels, shown to mirror feelings of powerlessness in crisis situations.

Emergency-ward personnel experienced high levels of affective strain and frequently enjoyed little decisional latitude. This was attributed to their frequent confrontation with life-and-death situations, the intense concentration demanded by their work, the high number of patients they frequently attended and the impossibility of controlling the type and number of patients. On the other hand, because their contact with patients was usually short and superficial, they were exposed to less suffering.

The situation was more amenable to control in paediatric and juvenile psychiatry wards, where schedules for diagnostic procedures and therapeutic procedures were established in advance. This was reflected by a lower risk of overwork compared to emergency wards. However, personnel in these wards were confronted with children suffering from serious physical and mental disease.

Desirable organizational changes were identified through discussion groups in each ward. In emergency wards, personnel were very interested in organizational changes and recommendations concerning training and routine procedures—such as how to treat rape victims and elderly patients with no relations, how to evaluate work and what to do if a called physician doesn’t arrive—were formulated. This was followed by the implementation of concrete changes, including the creation of the position of head physician and the ensuring of the constant availability of an internist.

The personnel in juvenile psychiatry were primarily interested in personal growth. Reorganization of resources by the head physician and the county allowed one-third of the personnel to undergo psychotherapy.

In paediatrics, meetings were organized for all the personnel every 15 days. After six months, social support networks, decisional latitude and work content all had improved.

The factors identified by these detailed ergonomic, psychological and epidemiological studies are valuable indices of work organization. Studies which focus on them are quite different from in-depth studies of multi-factor interactions and instead revolve around the pragmatic characterization of specific factors.

Tintori and Estryn-Béhar (1994) identified some of these factors in 57 wards of a large hospital in the Paris region in 1993. Shift overlap of more than 10 minutes was present in 46 wards, although there was no official overlap between the night and morning shifts in 41 wards. In half the cases, these information communication sessions included nurses’ aides in all three shifts. In 12 wards, physicians participated in the morning-afternoon sessions. In the three months preceding the study, only 35 wards had held meetings to discuss patients’ prognoses, discharges and patients’ understanding of and reaction to their illnesses. In the year preceding the study, day-shift workers in 18 wards had received no training and only 16 wards had dispensed training to their night-shift workers.

Some new lounges were not used, since they were 50 to 85 metres from some of the patients’ rooms. Instead, the personnel preferred holding their informal discussions around a cup of coffee in a smaller but closer room. Physicians participated in coffee breaks in 45 day-shift wards. Nurses’ complaints of frequent work interruptions and feelings of being overwhelmed by their work are no doubt attributable in part to the dearth of seats (less than four in 42 of the 57 wards) and cramped quarters of the nursing stations, where more than nine people must spend a good part of their day.

The interaction of stress, work organization and support networks is clear in studies of the home-care unit of the hospital in Motala, Sweden (Beck-Friis, Strang and Sjöden 1991; Hasselhorn and Seidler 1993). The risk of burn-out, generally considered high in palliative care units, was not significant in these studies, which in fact revealed more occupational satisfaction than occupational stress. Turnover and work stoppages in these units were low, and personnel had a positive self-image. This was attributed to selection criteria for personnel, good teamwork, positive feedback and continuing education. Personnel and equipment costs for terminal-stage cancer hospital care are typically 167 to 350% higher than for hospital-based home care. There were more than 20 units of this type in Sweden in 1993.

 

Back

United States

High levels of stress among air traffic controllers (ATCs) were first widely reported in the United States in the 1970 Corson Report (US Senate 1970), which focused on working conditions such as overtime, few regular work breaks, increasing air traffic, few vacations, poor physical work environment and “mutual resentment and antagonism” between management and labour. Such conditions contributed to ATC job actions in 1968–69. In addition, early medical research, including a major 1975–78 Boston University study (Rose, Jenkins and Hurst 1978), suggested that ATCs may face a higher risk of stress-related illness, including hypertension.

Following the 1981 US ATC strike, in which job stress was a major issue, the Department of Transportation again appointed a task force to examine stress and morale. The resulting 1982 Jones Report indicated that FAA employees in a wide variety of job titles reported negative results for job design, work organization, communication systems, supervisory leadership, social support and satisfaction. The typical form of ATC stress was an acute episodic incident (such as a near mid-air collision) along with interpersonal tensions stemming from management style. The task force reported that 6% of the ATC sample was “burned out” (having a large and debilitating loss of self-confidence in ability to do the job). This group represented 21% of those 41 years of age and older and 69% of those with 19 or more years of service.

A 1984 review by the Jones task force of its recommendations concluded that “conditions are as bad as in 1981, or perhaps a bit worse”. Major concerns were increasing traffic volume, inadequate staffing, low morale and an increasing burnout rate. Such conditions led to the re-unionization of US ATCs in 1987 with the election of the National Air Traffic Controllers Organization (NATCA) as their bargaining representative.

In a 1994 survey, New York City area ATCs reported continuing staffing shortages and concerns about job stress, shift work and indoor air quality. Recommendations for improving morale and health included transfer opportunities, early retirement, more flexible schedules, exercise facilities at work and increased staffing. In 1994, a greater proportion of Level 3 and 5 ATCs reported high burnout than ATCs in 1981 and 1984 national surveys (except for ATCs working in centres in 1984). Level 5 facilities have the highest level of air traffic, and Level 1, the lowest (Landsbergis et al. 1994). Feelings of burnout were related to having experienced a “near miss” in the past 3 years, age, years working as an ATC, working in high-traffic Level 5 facilities, poor work organization and poor supervisor and co-worker support.

Research also continues on appropriate shift schedules for ATCs, including the possibility of a 10-hour, 4-day shift schedule. The long-term health effects of the combination of rotating shifts and compressed work weeks are not known.

A collectively bargained programme to reduce ATC job stress in Italy

The company in charge of all civil air traffic in Italy (AAAV) employs 1,536 ATCs. AAAV and union representatives drew up several agreements between 1982 and 1991 to improve working conditions. These include:

1.  Modernizing radio systems and automating aeronautical information, flight data processing and air traffic management. This provided for more reliable information and more time for making decisions, eliminating many risky traffic peaks and providing for a more balanced workload.

2.  Reducing work hours. The operative work week is now 28 to 30 hours.

3. Changing shift schedules:

  • rapid shift speed: one day on each shift
  • one night shift followed by 2 days rest
  • adjust of shift length to workload: 5 to 6 hours for morning; 7 hours for afternoon; 11 to 12 hours for night
  • short naps on the night shift
  • keeping shift rotation as regular as possible to allow better organization of personal, family and social life
  • a long break (45 to 60 minutes) for a meal during work shifts.

 

4.  Reduce environmental stressors. Attempts have been made to reduce noise and provide more light.

5.  Improving the ergonomics of new consoles, screens and chairs.

6.  Improving physical fitness. Gyms are provided in the largest facilities.

Research during this period suggests that the programme was beneficial. The night shift was not very stressful; ATCs’ performance did not worsen significantly at the end of three shifts; only 28 ATCs were dismissed for health reasons in 7 years; and a large decline in “near misses” occurred despite major increases in air traffic.

 

Back

Monday, 21 March 2011 15:19

Vocational Training and Apprenticeships

Written by

The teaching of trades through the apprenticeship system dates at least as far back as the Roman Empire, and continues to this day in classic trades such as shoemaking, carpentry, stone masonry and so forth. Apprenticeships can be informal, where a person desiring to learn a trade finds a skilled employer willing to teach him or her in exchange for work. However, most apprenticeships are more formal and involve a written contract between the employer and the apprentice, who is bound to serve the employer for a given time in return for training. These formal apprenticeship programmes usually have standard rules regarding qualifications for completing the apprenticeship that are set by an institution such as a trade union, guild or employer organization. In some countries, trade unions and employer organizations run the apprenticeship programme directly; these programmes usually involve a combination of structured on-the-job training and classroom instruction.

In today’s technological world, however, there is a growing need for skilled labour in many areas, such as laboratory technicians, mechanics, machinists, cosmetologists, cooks, service trades and many more. The learning of these skilled trades usually takes place in vocational programmes in schools, vocational institutes, polytechnics, colleges with two-year programmes and similar institutions. These sometimes include internships in actual work settings.

Both the teachers and the students in these vocational programmes face occupational hazards from the chemicals, machinery, physical agents and other hazards associated with the particular trade or industry. In many vocational programmes, students are learning their skills using old machinery donated by industry. These machines often are not equipped with modern safety features such as proper machine guards, fast-acting brakes, noise-control measures and so forth. The teachers themselves often have not had adequate training in the hazards of the trade and appropriate precautions. Often, the schools do not have adequate ventilation and other precautions.

Apprentices often face high-risk situations because they are assigned the dirtiest and most hazardous tasks. Often they are used as a source of cheap labour. In these situations, it is even more likely that the apprentice’s employers have not had adequate training in the hazards and precautions of their trade. Informal apprenticeships are usually not regulated, and there is often no recourse for apprentices facing such exploitation or hazards.

Another common problem with both apprenticeship programmes and vocational training is age. Apprenticeship entry age is generally between 16 and 18 year of age. Vocational training can begin at elementary school. Studies have shown that young workers (aged 15 to 19 years) account for a disproportionate percentage of lost-time injury claims. In Ontario, Canada, for the year 1994, the largest proportion of injured young workers were employed in the service industry.

These statistics indicate that students entering these programmes may not understand the importance of health and safety training. Students also can have different attention spans and comprehension levels than adults, and this should be reflected in their training. Finally, extra attention is needed in sectors such as service industries, where health and safety has generally not received the attention found in other industries.

In any apprenticeship or vocational programme, there should be built-in safety and health training programmes, including hazard communication. The teachers or employers should be properly trained in the hazards and precautions, both to protect themselves and to teach the students properly. The work or training setting should have adequate precautions.

 

Back

Thursday, 24 March 2011 14:53

Sculpture

Written by

In ancient times, the art of sculpture included engraving and carving of stone, wood, bone and other materials. Later, sculpture developed and refined modelling techniques in clay and plaster, and moulding and welding techniques in metals and glass. During the last century various additional materials and techniques have been used for the art of sculpture, including plastic foams, paper, found materials and several sources of energy such as light, kinetic energy and so on. The aim of many modern sculptors is to involve the viewer actively.

Sculpture often utilizes the natural colour of the material or treats its surface to achieve a certain colour or to emphasize the natural characteristics or to modify the light reflections. Such techniques belong to the finishing touches of the art piece. Health and safety risks for artists and their assistants arise from the characteristics of the materials; from the use of tools and equipment; from the various forms of energy (mainly electricity) used for the functioning of tools; and from heat for welding and fusing techniques.

Artists’ lack of information and their focusing on the work lead to underestimating the importance of safety; this can result in serious accidents and the development of occupational diseases.

The risks are sometimes linked to the design of the workplace or to the organization of the work (e.g., carrying out many working operations at the same time). Such risks are common to all workplaces, but in the arts and crafts environment they can have more serious outcomes.

General Precautions

These include: appropriate design of the studio, considering the type of power sources employed and the placement and movement of the artistic material; segregation of hazardous operations controlled with adequate warning displays; installation of exhaust systems for control and removal of powders, gases, fumes, vapours and aerosols; use of well-fitted and convenient personal protective equipment; efficient clean-up facilities, such as showers, sinks, eye-wash fountains and so on; knowledge of the risks associated with the use of chemical substances and of the regulations that govern their use, in order to avoid or at least reduce their potential harm; keeping informed on the possible risks of accidents and on hygiene regulations and being trained in first aid and. Local ventilation to remove airborne dust is necessary at its source, when it is produced in abundance. Daily vacuum cleaning, either wet or dry, or wet mopping of the floor and of work surfaces is highly recommended.

Main Sculpturing Techniques

Stone sculpture involves carving hard and soft stones, precious stones, plaster, cement and so on. Sculpture shaping involves work on more pliable materials—plaster and clay modelling and casting, wood sculpture, metalworking, glassblowing, plastic sculpture, sculpture in other materials and mixed techniques. See also the articles “Metalworking” and “Woodworking”. Glassblowing is discussed in the chapter Glass, ceramics and related materials.

Stone sculptures

Stones used for sculpture can be divided into soft stones and hard stones. The soft stones can be worked manually with tools such as saws, chisels, hammers and rasps, as well as with electric tools.

Hard stones such as granite, and other materials, such as cement blocks, can be used to create works of art and ornaments. This involves working with electric or pneumatic tools. The final stages of the work can be partially executed by hand.

Risks

Prolonged inhalation of high quantities of certain stone dusts containing free crystalline silica, which comes out of freshly cut surfaces, can lead to silicosis. Electric and pneumatic tools can cause a higher concentration in the air of dust which is finer than that produced by manual tools. Marble, travertine and limestone are inert materials and not pathogenic to the lungs; plaster (calcium sulphate) is irritating to the skin and to the mucous membranes.

Asbestos fibre inhalation, even in small quantities, can lead to a risk of lung cancer (laryngeal, tracheal, bronchial, lung and pleural malignancies) and probably also cancer of the digestive tract and of other organ systems. Such fibres can be found as impurities in serpentine and in talc. Asbestosis (fibrosis of the lung) can be contracted only through the inhalation of high doses of asbestos fibres, which is unlikely at this type of work. See table  1 for a list of the hazards of common stones.

Table 1. Hazards of common stones.

Hazardous ingredient

Stones

Free crystalline silica

 

Hard stones: Granites, basalt, jasper, porphyry, onyx, pietra serena

Soft stones: steatite (soapstone), sandstone, slate, clays, some limestone

Possible asbestos contamination

Soft stones: soapstone, serpentine

Free silica and asbestos

 

Hard stones: marble, travertine

Soft stones: alabaster, tufa, marble, plaster

 

High noise levels can be produced by the use of pneumatic hammers, electric saws and sanders, as well as manual tools. This can result in hearing loss and other effects on the autonomic nervous system (increase of heart rate, gastric disturbances and so on), psychological problems (irritability, attention deficits and so on), as well as general health problems, including headaches.

The use of electric and pneumatic tools can provoke damage to finger micro-circulation with the possibility of Raynaud’s phenomenon, and facilitate degenerative phenomena to the upper arm.

Work in difficult positions and lifting heavy objects can produce low-back pain, muscle strains, arthritis and joint bursitis (knee, elbow).

The risk of accidents is frequently connected with the use of sharp tools moved by powerful forces (manual, electric or pneumatic). Often stone splinters are violently shot into the working environment during the breaking of stones; falling or rolling of improperly fixed blocks or surfaces also occurs. The use of water can lead to slipping on wet floors, and to electric shocks.

Pigment and colourant substances (especially of spray type) used to cover the final layer (paints, lakes) expose the worker to the risk of inhalation of toxic compounds (lead, chromium, nickel) or of irritating or allergenic compounds (acrylic or resins). This can affect the mucous membranes as well as the respiratory tract.

Inhalation of evaporating paints solvents in high quantities over the course of the working day or in lower concentrations for longer periods, can provoke acute or chronic toxic effects on the central nervous system.

Precautions

Alabaster is a safer substitute for soapstone and other hazardous soft stones.

Pneumatic or electric tools with portable dust collectors should be used. The working environment should be cleaned frequently using vacuum cleaners or wet mopping; adequate general ventilation must be provided.

The respiratory system can be protected from the inhalation of dusts, solvents and aerosol vapours through use of proper respirators. Hearing can be protected with ear plugs and eyes can be protected with proper goggles. To reduce the risk of hand accidents leather gloves (when necessary) or lighter rubber gloves, lined with cotton, should be used to prevent contact with chemical substances. Anti-slipping and safety shoes should be used to prevent damage to the feet caused by the possible fall of heavy objects. During complicated and long operations, proper clothes should be worn; ties, jewellery and clothes which could easily get stuck in the machines should not be worn. Long hair should be put up or under a cap. A shower should be taken at the end of every work period; work clothes and shoes should never be taken home.

Pneumatic tool compressors should be placed out of the work area; noisy areas should be insulated; numerous breaks should be taken in warm areas during the working day. Pneumatic and electric tools equipped with comfortable handles (better if equipped with mechanical shock absorbers) which are able to direct the air away from the hands of the operator should be used; stretching and massage are suggested during the work period.

Sharp tools should be operated as far as possible from hands and body; broken tools should not be used.

Flammable substances (paints, solvents) must be kept far from flames, lit cigarettes and heat sources.

Sculpture shaping

The most common material used for sculpture shaping is clay (mixed with water or naturally soft clay); wax, plaster, concrete and plastic (sometimes reinforced with glass fibres) are also commonly used.

The facility with which a sculpture is shaped is directly proportional to the malleability of the material used. A tool (wood, metal, plastic) is often used.

Some materials, such as clays, can become hard after being heated in a furnace or kiln. Also, talc can be used as semi-liquid clay (slip), which can be poured into moulds and then fired in a kiln after drying.

These types of clays are similar to those used in the ceramic industry and may contain considerable amounts of free crystalline silica. See the article “Ceramics”.

Non-hardening clays, such as plasticine, contain fine particles of clays mixed with vegetable oils, preservatives and sometimes solvents. The hardening clays, also called polymer clays, are actually formed with polyvinyl chloride, with plasticizing materials such as various phthalates.

Wax is usually shaped by pouring it into a mould after it is heated, but it can also be formed with heated tools. Wax can be of natural or synthetic compounds (coloured waxes). Many types of waxes can be dissolved with solvents such as alcohol, acetone, mineral or white spirits, ligroin and carbon tetrachloride.

Plaster, concrete and papier mâché have different characteristics: it is not necessary to heat or to melt them; they are usually worked on a metal or fibreglass frame, or cast in moulds.

Plastic sculpture techniques can be divided into two main areas:

  • work with already polymerized materials (casting, plate or sheet). They can be heated, softened, glued, cut, refined, refurbished and so on.
  • work with non-polymerized plastic. The material is worked with monomers, obtaining a chemical reaction leading to polymerization.

 

Plastics can be formed by polyester, polyurethane, amino, phenolic, acrylic, epoxy and silicon resins. During polymerization, they can be poured into moulds, applied by hand layup, printed, laminated and skimmed by using catalyzers, accelerators, hardeners, loads and pigments.

See table 2 for a list of the hazards and precautions for common sculpture shaping materials.

Table 2. Main risks associated with material used for sculpture shaping.

Materials

Hazards and precautions

Clays

 

Hazards: Free crystalline silica; talc can be contaminated by asbestos; during heating operations, toxic gases can be released.

Precautions: See “Ceramics”.

Plasticine

 

Hazards: Solvents and preservatives can cause irritation to skin and mucous and allergic reactions in certain individuals.

Precautions: Susceptible individuals should find other materials.

Hard clays

 

Hazards: Some hardening or polymer clay plasticizers (phthalates) are possible reproductive or carcinogen toxins. During heating operations, hydrogen chloride can be released, especially if overheated.

Precautions: Avoid overheating or using in an oven also used for cooking.

Waxes

 

Hazards: Overheated vapours are flammable and explosive. Acrolein fumes, produced by decomposition from overheating wax, are strong respiratory irritants and sensitizers. Wax solvents can be toxic by contact and inhalation; carbon tetrachloride is carcinogenic and highly toxic to the liver and kidneys.

Precautions: Avoid open flames. Do not use electric hot plates with exposed heating elements. Heat to minimum temperature necessary. Do not use carbon tetrachloride.

Finished plastics

 

Hazards: Heating, machining, cutting plastics can result in decomposition to hazardous materials such as hydrogen chloride (from polyvinyl chloride), hydrogen cyanide (from polyurethanes and amino plastics), styrene (from polystyrene) and carbon monoxide from the combustion of plastics. Solvents used for gluing plastics are also fire and health hazards.

Precautions: Have good ventilation when working with plastics and solvents.

Plastics resins

 

Hazards: Most resin monomers (e.g., styrene, methyl methacrylate, formaldehyde) are hazardous by skin contact and inhalation. Methyl ethyl ketone peroxide hardener for polyester resins can cause blindness if splashed in the eyes. Epoxy hardeners are skin and respiratory irritants and sensitizers. Isocyanates used in polyurethane resins can cause severe asthma.

Precautions: Use all resins with proper ventilation, personal protective equipment (gloves, respirators, goggles), fire precautions and so forth. Do not spray polyurethane resins.

Glassblowing

See Glass, ceramics and related materials.

 

Back

Page 1 of 9

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Preface
Part I. The Body
Part II. Health Care
Part III. Management & Policy
Part IV. Tools and Approaches
Part V. Psychosocial and Organizational Factors
Part VI. General Hazards
Part VII. The Environment
Part VIII. Accidents and Safety Management
Part IX. Chemicals
Part X. Industries Based on Biological Resources
Part XI. Industries Based on Natural Resources
Part XII. Chemical Industries
Part XIII. Manufacturing Industries
Part XIV. Textile and Apparel Industries
Part XV. Transport Industries
Part XVI. Construction
Part XVII. Services and Trade
Part XVIII. Guides