94. Education and Training Services
Chapter Editor: Michael McCann
Click a link below to view table in article context.
1. Diseases affecting day-care workers & teachers
2. Hazards & precautions for particular classes
3. Summary of hazards in colleges & universities
Point to a thumbnail to see figure caption, click to see figure in article context.
95. Emergency and Security Services
Chapter Editor: Tee L. Guidotti
Table of Contents
Click a link below to view table in article context.
1. Recommendations & criteria for compensation
Point to a thumbnail to see figure caption, click to see figure in article context.
96. Entertainment and the Arts
Chapter Editor: Michael McCann
Click a link below to view table in article context.
1. Precautions associated with hazards
2. Hazards of art techniques
3. Hazards of common stones
4. Main risks associated with sculpture material
5. Description of fibre & textile crafts
6. Description of fibre & textile processes
7. Ingredients of ceramic bodies & glazes
8. Hazards & precautions of collection management
9. Hazards of collection objects
Point to a thumbnail to see figure caption, click to see the figure in the article context.
97. Health Care Facilities and Services
Chapter Editor: Annelee Yassi
Table of Contents
Health Care: Its Nature and Its Occupational Health Problems
Annalee Yassi and Leon J. Warshaw
Social Services
Susan Nobel
Home Care Workers: The New York City Experience
Lenora Colbert
Occupational Health and Safety Practice: The Russian Experience
Valery P. Kaptsov and Lyudmila P. Korotich
Ergonomics and Health Care
Hospital Ergonomics: A Review
Madeleine R. Estryn-Béhar
Strain in Health Care Work
Madeleine R. Estryn-Béhar
Case Study: Human Error and Critical Tasks: Approaches for Improved System Performance
Work Schedules and Night Work in Health Care
Madeleine R. Estryn-Béhar
The Physical Environment and Health Care
Exposure to Physical Agents
Robert M. Lewy
Ergonomics of the Physical Work Environment
Madeleine R. Estryn-Béhar
Prevention and Management of Back Pain in Nurses
Ulrich Stössel
Case Study: Treatment of Back Pain
Leon J. Warshaw
Health Care Workers and Infectious Disease
Overview of Infectious Diseases
Friedrich Hofmann
Prevention of Occupational Transmission of Bloodborne Pathogens
Linda S. Martin, Robert J. Mullan and David M. Bell
Tuberculosis Prevention, Control and Surveillance
Robert J. Mullan
Chemicals in the Health Care Environment
Overview of Chemical Hazards in Health Care
Jeanne Mager Stellman
Managing Chemical Hazards in Hospitals
Annalee Yassi
Waste Anaesthetic Gases
Xavier Guardino Solá
Health Care Workers and Latex Allergy
Leon J. Warshaw
The Hospital Environment
Buildings for Health Care Facilities
Cesare Catananti, Gianfranco Damiani and Giovanni Capelli
Hospitals: Environmental and Public Health Issues
M.P. Arias
Hospital Waste Management
M.P. Arias
Managing Hazardous Waste Disposal Under ISO 14000
Jerry Spiegel and John Reimer
Click a link below to view table in article context.
1. Examples of health care functions
2. 1995 integrated sound levels
3. Ergonomic noise reduction options
4. Total number of injuries (one hospital)
5. Distribution of nurses’ time
6. Number of separate nursing tasks
7. Distribution of nurses' time
8. Cognitive & affective strain & burn-out
9. Prevalence of work complaints by shift
10. Congenital abnormalities following rubella
11. Indications for vaccinations
12. Post-exposure prophylaxis
13. US Public Health Service recommendations
14. Chemicals’ categories used in health care
15. Chemicals cited HSDB
16. Properties of inhaled anaesthetics
17. Choice of materials: criteria & variables
18. Ventilation requirements
19. Infectious diseases & Group III wastes
20. HSC EMS documentation hierarchy
21. Role & responsibilities
22. Process inputs
23. List of activities
Point to a thumbnail to see figure caption, click to see the figure in the article context.
98. Hotels and Restaurants
Chapter Editor: Pam Tau Lee
The Nature of Office and Clerical Work
Charles Levenstein, Beth Rosenberg and Ninica Howard
Professionals and Managers
Nona McQuay
Offices: A Hazard Summary
Wendy Hord
Bank Teller Safety: The Situation in Germany
Manfred Fischer
Telework
Jamie Tessler
The Retail Industry
Adrienne Markowitz
Case Study: Outdoor Markets
John G. Rodwan, Jr.
Click a link below to view table in article context.
1. Standard professional jobs
2. Standard clerical jobs
3. Indoor air pollutants in office buildings
4. Labour statistics in the retail industry
Point to a thumbnail to see figure caption, click to see figure in article context.
Indoor Cleaning Services
Karen Messing
Barbering and Cosmetology
Laura Stock and James Cone
Laundries, Garment and Dry Cleaning
Gary S. Earnest, Lynda M. Ewers and Avima M. Ruder
Funeral Services
Mary O. Brophy and Jonathan T. Haney
Domestic Workers
Angela Babin
Case Study: Environmental Issues
Michael McCann
Click a link below to view table in article context.
1. Postures observed during dusting in a hospital
2. Dangerous chemicals used in cleaning
Point to a thumbnail to see figure caption, click to see figure in article context.
101. Public and Government Services
Chapter Editor: David LeGrande
Occupational Health and Safety Hazards in Public and Governmental Services
David LeGrande
Case Report: Violence and Urban Park Rangers in Ireland
Daniel Murphy
Inspection Services
Jonathan Rosen
Postal Services
Roxanne Cabral
Telecommunications
David LeGrande
Hazards in Sewage (Waste) Treatment Plants
Mary O. Brophy
Domestic Waste Collection
Madeleine Bourdouxhe
Street Cleaning
J.C. Gunther, Jr.
Sewage Treatment
M. Agamennone
Municipal Recycling Industry
David E. Malter
Waste Disposal Operations
James W. Platner
The Generation and Transport of Hazardous Wastes: Social and Ethical Issues
Colin L. Soskolne
Click a link below to view table in article context.
1. Hazards of inspection services
2. Hazardous objects found in domestic waste
3. Accidents in domestic waste collection (Canada)
4. Injuries in the recycling industry
Point to a thumbnail to see figure caption, click to see figure in article context.
102. Transport Industry and Warehousing
Chapter Editor: LaMont Byrd
General Profile
LaMont Byrd
Case Study: Challenges to Workers’ Health and Safety in the Transportation and Warehousing Industry
Leon J. Warshaw
Airport and Flight Control Operations
Christine Proctor, Edward A. Olmsted and E. Evrard
Case Studies of Air Traffic Controllers in the United States and Italy
Paul A. Landsbergis
Aircraft Maintenance Operations
Buck Cameron
Aircraft Flight Operations
Nancy Garcia and H. Gartmann
Aerospace Medicine: Effects of Gravity, Acceleration and Microgravity in the Aerospace Environment
Relford Patterson and Russell B. Rayman
Helicopters
David L. Huntzinger
Truck and Bus Driving
Bruce A. Millies
Ergonomics of Bus Driving
Alfons Grösbrink and Andreas Mahr
Motor Vehicle Fuelling and Servicing Operations
Richard S. Kraus
Case Study: Violence in Gasoline Stations
Leon J. Warshaw
Rail Operations
Neil McManus
Case Study: Subways
George J. McDonald
Water Transportation and the Maritime Industries
Timothy J. Ungs and Michael Adess
Storage and Transportation of Crude Oil, Natural Gas, Liquid Petroleum Products and Other Chemicals
Richard S. Kraus
Warehousing
John Lund
Case Study: US NIOSH Studies of Injuries among Grocery Order Selectors
Click a link below to view table in article context.
1. Bus driver seat measurements
2. Illumination levels for service stations
3. Hazardous conditions & administration
4. Hazardous conditions & maintenance
5. Hazardous conditions & right of way
6. Hazard control in the Railway industry
7. Merchant vessel types
8. Health hazards common across vessel types
9. Notable hazards for specific vessel types
10. Vessel hazard control & risk-reduction
11. Typical approximate combustion properties
12. Comparison of compressed & liquified gas
13. Hazards involving order selectors
14. Job safety analysis: Fork-lift operator
15. Job safety analysis: Order selector
Point to a thumbnail to see figure caption, click to see figure in article context.
Adapted from 3rd edition, “Encyclopaedia of Occupational Health and Safety”.
The scope of the teaching profession extends from the nursery school to the postgraduate institution. Teaching involves not only academic instruction but also scientific, artistic and technical training, in laboratories, art studios and workshops, and physical training on sports grounds and in gymnasia and swimming pools. In most countries almost everyone comes at some time under the influence of the profession, and the teachers themselves have backgrounds as diverse as the subjects taught. Many senior members of the profession also have administrative and managerial duties.
In addition, the development of policies and activities to promote life-long education necessitates a reassessment of the conventional concept of teachers within traditional establishments (schools, universities). Members of the teaching profession carry out their tasks using formal and informal educational methods, in basic and continuous training, in educational establishments and institutions as well as outside them.
Apart from pupils of school age and university students, new kinds of students and trainees are coming forward in ever-increasing numbers in a great many countries: young jobseekers, women wishing to return to the employment market, retired persons, migrant workers, the handicapped, community groups and so on. In particular, we find categories of persons who were formerly excluded from normal educational establishments: illiterates and the handicapped.
There is nothing new in the variety of apprenticeship facilities available, and private self-education has always existed; life-long education has always existed in one form or another. There is, however, one new factor: the growing development of formal life-long educational facilities in places not originally intended as places of education and through new means—for example, in factories, offices and leisure facilities and through associations, mass communication media and assisted self-education. This growth and spread of educational activities has resulted in an increasing number of persons engaged in teaching on a professional or voluntary basis.
Many types of activity falling within the field of education may overlap: teachers, instructors, lecturers, promoters and organizers of educational projects, educational and vocational guidance workers, career advisers, adult education specialists and administrators.
Regarding the membership of the teaching profession as represented in employment markets, one finds that in most countries they make up one of the most significant categories of the salaried workforce.
Recently, the importance of teachers’ trade unions has increased continuously, keeping pace with the ever-increasing number of teachers. The flexibility of their working hours has enabled teachers to play a significant role in the political life of many countries.
A new type of educator - those who are not exactly teachers in the previously held conception of the term - can now be found in many systems, where the school has become a centre for permanent or life-long educational facilities. These are professionals from various sectors, including handicrafts experts, artists and so on, who contribute permanently or occasionally to these educational activities.
Educational establishments are opening their doors to diverse groups and categories, turning more and more towards external and extramural activities. Two major tendencies can be observed in this connection: on the one hand, relations have been established with the industrial workforce, with industrial plants and processes; and on the other, a growing relation has been established with community development, and there is increasing interaction between institutional education and community education projects.
Universities and colleges endeavour to renew teachers’ initial training through refresher training. Apart from specifically pedagogical aspects and disciplines, they provide for educational sociology, economy and anthropology. A trend still facing many obstacles is to have future teachers acquire experience by doing training periods in community settings, in workplaces or in various educational and cultural establishments. The national service, which has become general in certain countries, is a useful experience in the field for future teachers.
The immense investments in communication and information are auspicious for different types of individual or collective self-teaching. The relation between self-teaching and teaching is an emerging problem. The change-over from the autodidactic training of those who had not attended school to the permanent self-teaching of young people and adults has not always been correctly appreciated by educational institutions.
These new educational policies and activities give rise to various problems such as hazards and their prevention. Permanent education, which is not limited to school experience, turns various places, such as the community, the workplace, the laboratory and the environment, into training premises. The teachers should be assisted in these activities, and insurance coverage should be provided. In order to prevent hazards, efforts should be made to adapt the various premises for educational activities. There are several instances where schools have been adapted to become open centres for the entire population and have been equipped so as to be not only educational institutions but also places for creative and productive activities and for meetings.
The relationship of teachers and instructors with these various periods in the lives of trainees and students, such as leisure time, working time, family life and the duration of apprenticeships, also requires a considerable effort as regards information, research and adaptation.
Relations between teachers and students’ families are also on the increase; sometimes members of families occasionally attend lectures or classes at the school. Dissimilarities between family models and educational models necessitate a great effort from teachers to reach mutual understanding from the psychological, sociological and anthropological standpoint. Family models influence the behaviour pattern of some students, who can experience sharp contradictions between family training and behavioural models and norms prevailing in the school.
However great the variety, all teaching has certain common characteristics: the teacher not only instructs in specific knowledge or skills but also seeks to convey a way of thought; he or she has to prepare the pupil for the next stage of development and stimulate the pupil’s interest and participation in the process of learning.
Entertainment and the arts have been a part of human history ever since prehistoric people drew cave paintings of animals they hunted or acted out in song and dance the success of the hunt. Every culture from earliest times has had its own style of visual and performing arts, and decorated everyday objects like clothing, pottery and furniture. Modern technology and more leisure time has led to a major part of the world’s economy being devoted to satisfying the need for people to see or own beautiful objects and to be entertained.
The entertainment industry is a miscellaneous grouping of non-commercial institutions and commercial companies that provide these cultural, amusement and recreational activities for people. By contrast, artists and craftspeople are workers who create artwork or handicrafts for their own pleasure or for sale. They usually work alone or in groups of fewer than ten people, often organized around families.
The people who make this entertainment and art possible—artists and craftspeople, actors, musicians, circus performers, park attendants, museum conservators, professional sports players, technicians and others—often face occupational hazards that can result in injuries and illnesses. This chapter will discuss the nature of those occupational hazards. It will not discuss the hazards to people doing arts and crafts as hobbies or attending these entertainment events, although in many instances the hazards will be similar.
Entertainment and the arts can be thought of as a microcosm of all industry. The occupational hazards encountered are, in most instances, similar to those found in more conventional industries, and the same types of precautions can be used, although costs may be prohibitive factors for some engineering controls in the arts and crafts. In these instances, emphasis should be on substitution of safer materials and processes. Table 1 lists standard types of precautions associated with the various hazards found in the arts and entertainment industries.
Table 1. Precautions associated with hazards in the arts and entertainment industries.
Hazard |
Precautions |
Chemical hazards |
|
General |
Training in hazards and precautions Substitution of safer materials Engineering controls Adequate storage and handling No eating, drinking or smoking in work areas Personal protective equipment Spill and leak control procedures Safe disposal of hazardous materials |
Airborne contaminants (vapours, gases, spray mists, fogs, dusts, fumes, smoke) |
Enclosure Dilution or local exhaust ventilation Respiratory protection |
Liquids |
Cover containers Gloves and other personal protective clothing Splash goggles and face shields as needed Eyewash fountain and emergency showers when needed |
Powders |
Purchasing in liquid or paste form Glove boxes Local exhaust ventilation Wet mopping or vacuuming Respiratory protection |
Solids |
Gloves |
Physical hazards |
|
Noise |
Quieter machinery Proper maintenance Sound dampening Isolation and enclosure Hearing protectors |
Ultraviolet radiation |
Enclosure Skin protection and UV goggles |
Infrared radiation |
Skin protection and infrared goggles |
Lasers |
Using lowest-power laser possible Enclosure Beam restrictions and proper emergency cutoffs Laser goggles |
Heat |
Acclimatization Light, loose clothing Rest breaks in cool areas Adequate liquid intake |
Cold |
Warm clothing Rest breaks in heated areas |
Electrical hazards |
Adequate wiring Properly grounded equipment Ground fault circuit interrupters where needed Insulated tools, gloves, etc. |
Ergonomic hazards |
Ergonomic tools, instruments, etc., of proper size Properly designed work stations Proper posture Rest breaks |
Safety hazards |
|
Machinery |
Machine guards Accessible stop switch Good maintenance |
Flying particles (e.g., grinders) |
Enclosure Eye and face protection as needed |
Slips and falls |
Clean and dry walking and working surfaces Fall protection for elevated work Guardrails and toeboards on scaffolds, catwalks, etc. |
Falling objects |
Safety hats Safety shoes |
Fire hazards |
Proper exit routes Proper fire extinguishers, sprinklers, etc. Fire drills Removal of combustible debris Fireproofing of exposed materials Proper storage of flammable liquids and compressed gases Grounding and bonding when dispensing flammable liquids Removal of sources of ignition around flammables Proper disposal of solvent- and oil-soaked rags |
Biological hazards |
|
Moulds |
Humidity control Removal of standing water Cleanup after flooding |
Bacteria, viruses |
Vaccination where appropriate Universal precautions Disinfection of contaminated materials, surfaces |
Arts and Crafts
Artists and craftspeople are usually self-employed, and the work is done in homes, studios or backyards, using small amounts of capital and equipment. Skills are often handed down from generation to generation in an informal apprenticeship system, particularly in developing countries (McCann 1996). In industrialized countries, artists and craftspeople often learn their trade in schools.
Today, arts and crafts involve millions of people across the world. In many countries, craftwork is a major part of the economy. However, few statistics are available on the number of artists and craftspeople. In the United States, estimates gathered from a variety of sources indicate there are at least 500,000 professional artists, craftspeople and art teachers. In Mexico, it has been estimated that there are 5,000 families involved in the home-based pottery industry alone. The Pan American Health Organization found that 24% of the workforce in Latin America from 1980 to 1990 were self-employed (PAHO 1994). Other studies of the informal sector have found similar or higher percentages (WHO 1976; Henao 1994). What percentage of these are artists and craftspeople is unknown.
Arts and crafts evolve with the technology available and many artists and craftspeople adopt modern chemicals and processes for their work, including plastics, resins, lasers, photography and so on (McCann 1992a; Rossol 1994). Table 2 shows the range of physical and chemical hazards found in art processes.
Table 2. Hazards of art techniques
Technique |
Material/process |
Hazard |
Airbrush |
Pigments Solvents |
Lead, cadmium, manganese, cobalt, mercury, etc. Mineral spirits, turpentine |
Batik |
Wax Dyes |
Fire, wax, decomposition fumes See Dyeing |
Ceramics |
Clay dust Glazes Slip casting Kiln firing |
Silica Silica, lead, cadmium and other toxic metals Talc, asbestiform materials Sulphur dioxide, carbon monoxide, fluorides, infrared radiation, burns |
Commercial art |
Rubber cement Permanent markers Spray adhesives Airbrushing Typography Photostats, proofs |
N-hexane, heptane, fire Xylene, propyl alcohol N-hexane, heptane, 1,1,1-trichloroethane, fire See Airbrush See Photography Alkali, propyl alcohol |
Computer art |
Ergonomics Video display |
Carpal tunnel syndrome, tendinitis, poorly designed work stations Glare, Elf radiation |
Drawing |
Spray fixatives |
N-hexane, other solvents |
Dyeing |
Dyes Mordants Dyeing assistants |
Fibre-reactive dyes, benzidine dyes, naphthol dyes, basic dyes, disperse dyes, vat dyes Ammonium dichromate, copper sulphate, ferrous sulphate, oxalic acid, etc. Acids, alkalis, sodium hydrosulphite |
Electroplating |
Gold, silver Other metals |
Cyanide salts, hydrogen cyanide, electrical hazards Cyanide salts, acids, electrical hazards |
Enamelling |
Enamels Kiln firing |
Lead, cadmium, arsenic, cobalt, etc. Infrared radiation, burns |
Fibre arts |
See also Batik, Weaving Animal fibres Synthetic fibres Vegetable fibres |
Anthrax and other infectious agents Formaldehyde Moulds, allergens, dust |
Forging |
Hammering Hot forge |
Noise Carbon monoxide, polycyclic aromatic hydrocarbons, infrared radiation, burns |
Glassblowing |
Batch process Furnaces Colouring Etching Sandblasting |
Lead, silica, arsenic, etc. Heat, infrared radiation, burns Metal fumes Hydrofluoric acid, ammonium hydrogen fluoride Silica |
Holography (see also Photography) |
Lasers Developing |
Non-ionizing radiation, electrical hazards Bromine, pyrogallol |
Intaglio |
Acid etching Solvents Aquatint Photoetching |
Hydrochloric and nitric acids, nitrogen dioxide, chlorine gas, potassium chlorate Alcohol, mineral spirits, kerosene Rosin dust, dust explosion Glycol ethers, xylene |
Jewellery |
Silver soldering Pickling baths Gold reclaiming |
Cadmium fumes, fluoride fluxes Acids, sulphur oxides Mercury, lead, cyanide |
Lapidary |
Quartz gemstones Cutting, grinding |
Silica Noise, silica |
Lithography |
Solvents Acids Talc Photolithography |
Mineral spirits, isophorone, cyclohexanone, kerosene, gasoline, methylene chloride, etc. Nitric, phosphoric, hydrofluoric, hydrochloric, etc. Asbestiform materials Dichromates, solvents |
Lost wax casting |
Investment Wax burnout Crucible furnace Metal pouring Sandblasting |
Cristobalite Wax decomposition fumes, carbon monoxide Carbon monoxide, metal fumes Metal fumes, infrared radiation, molten metal, burns Silica |
Painting |
Pigments Oil, alkyd Acrylic |
Lead, cadmium, mercury, cobalt, manganese compounds, etc. Mineral spirits, turpentine Trace amounts ammonia, formaldehyde |
Papermaking |
Fibre separation Beaters Bleaching Additives |
Boiling alkali Noise, injuries, electrical Chlorine bleach Pigments, dyes, etc. |
Pastels |
Pigment dusts |
See Painting Pigments |
Photography |
Developing bath Stop bath Fixing bath Intensifier Toning Colour processes Platinum printing |
Hydroquinone, monomethyl-p-aminophenol sulphate, alkalis Acetic acid Sulphur dioxide, ammonia Dichromates, hydrochloric acid Selenium compounds, hydrogen sulphide, uranium nitrate, sulphur dioxide, gold salts Formaldehyde, solvents, colour developers, sulphur dioxide Platinum salts, lead, acids, oxalates |
Relief printing |
Solvents Pigments |
Mineral spirits See Painting Pigments |
Screen printing |
Pigments Solvents Photoemulsions |
Lead, cadmium, manganese and other pigments Mineral spirits, toluene, xylene Ammonium dichromate |
Sculpture, clay |
See Ceramics |
|
Sculpture, lasers |
Lasers |
Non-ionizing radiation, electrical hazards |
Sculpture, neon |
Neon tubes |
Mercury, cadmium phosphors, electrical hazards, ultraviolet radiation |
Sculpture, plastics |
Epoxy resin Polyester resin Polyurethane resins Acrylic resins Plastic fabrication |
Amines, diglycidyl ethers Styrene, methyl methacrylate, methyl ethyl ketone peroxide Isocyanates, organotin compounds, amines, mineral spirits Methyl methacrylate, benzoyl peroxide Heat decomposition products (e.g., carbon monoxide, hydrogen chloride, hydrogen cyanide, etc.) |
Sculpture, stone |
Marble Soapstone Granite, sandstone Pneumatic tools |
Nuisance dust Silica, talc, asbestiform materials Silica Vibration, noise |
Stained glass |
Lead came Colourants Soldering Etching |
Lead Lead-based compounds Lead, zinc chloride fumes Hydrofluoric acid, ammonium hydrogen fluoride |
Weaving |
Looms Dyes |
Ergonomic problems See Dyeing |
Welding |
General Oxyacetylene Arc Metal fumes |
Metal fumes, burns, sparks Carbon monoxide, nitrogen oxides, compressed gases Ozone, nitrogen dioxide, fluoride and other flux fumes, ultraviolet and infrared radiation, electrical hazards Oxides of copper, zinc, lead, nickel, etc. |
Woodworking |
Machining Glues Paint strippers Paints and finishes Preservatives |
Injuries, wood dust, noise, fire Formaldehyde, epoxy, solvents Methylene chloride, toluene, methyl alcohol, etc. Mineral spirits, toluene, turpentine, ethyl alcohol, etc. Chromated copper arsenate, pentachlorophenol, creosote |
Source: Adapted from McCann 1992a.
The arts and crafts industry, like much of the informal sector, is almost completely unregulated and is often exempted from workers’ compensation laws and other occupational safety and health regulations. In many countries, government agencies responsible for occupational safety and health are unaware of the risks facing artists and craftspeople, and occupational health services do not reach out to this group of workers. Special attention is needed to find ways to educate artists and craftspeople about the hazards and precautions needed with their materials and processes, and to make occupational health services available to them.
Health problems and disease patterns
Few epidemiological studies have been done on workers in the visual arts. This is mostly due to the decentralized and often unregistered nature of most of these industries. Much of the data that are available come from individual case reports in the literature.
The traditional arts and crafts can result in the same occupational diseases and injuries found in larger-scale industry, as evidenced by such old terms as potter’s rot, weaver’s back and painter’s colic. The hazards of such crafts as pottery, metalworking and weaving were first described by Bernardino Ramazzini almost three centuries ago (Ramazzini 1713). Modern materials and processes also are causing occupational illnesses and injuries.
Lead poisoning is still one of the most common occupational illnesses among artists and craftspeople, with examples of lead poisoning being found in:
Other examples of occupational illnesses in the arts and crafts include:
A major problem in the arts and crafts is the prevalent lack of knowledge of hazards, materials and processes and how to work safely. Individuals who do develop occupational diseases often do not realize the connection between their illness and their exposures to hazardous materials, and are less likely to obtain proper medical assistance. In addition, whole families can be at risk—not only those adults and children actively working with the materials, but also younger children and infants who are present, since these arts and crafts are commonly done in the home (McCann et al. 1986; Knishkowy and Baker 1986).
A proportionate mortality ratio (PMR) study of 1,746 White professional artists by the United States National Cancer Institute found significant elevations in deaths of painters, and to a lesser degree for other artists, from arteriosclerotic heart disease and from cancers of all sites combined. For male painters, rates of leukaemia and cancers of the bladder, kidney and colorectum were significantly elevated. Proportionate cancer mortality rates were also elevated, but to a lesser degree. A case control study of bladder cancer patients found an overall relative risk estimate of 2.5 for artistic painters, confirming the results found in the PMR study (Miller, Silverman and Blair 1986). For other male artists, PMRs for colorectal and kidney cancer were significantly elevated.
Performing and Media Arts
Traditionally, the performing arts include theatre, dance, opera, music, storytelling and other cultural events that people would come to see. With music, the type of performance and their venue can vary widely: individuals performing music on the street, in taverns and bars, or in formalized concert halls; small musical groups playing in small bars and clubs; and large orchestras performing in large concert halls. Theatre and dance companies can be of several types, including: small informal groups associated with schools or universities; non-commercial theatres, which are usually subsidized by governments or private sponsors; and commercial theatres. Performing arts groups may also tour from one location to another.
Modern technology has seen the growth of the media arts, such as the print media, radio, television, motion pictures, videotapes and so on, which enable the performing arts, stories and other events to be recorded or broadcast. Today the media arts are a multi-billion-dollar industry.
Workers in the performing and media arts include the performers themselves—actors, musicians, dancers, reporters and others visible to the public. In addition, there are the technical crews and front office people—stage carpenters, scenic artists, electricians, special effects experts, motion picture or television camera crews, ticket sellers and others—who work backstage, behind the cameras and on other non-performing jobs.
Health effects and disease patterns
Actors, musicians, dancers, singers and other performers are also subject to occupational injuries and illnesses, which can include accidents, fire hazards, repetitive strain injuries, skin irritation and allergies, respiratory irritation, performance anxiety (stage fright) and stress. Many of these types of injuries are specific to particular groups of performers, and are discussed in separate articles. Even minor physical problems can often affect a performer’s peak performance capability, and subsequently end in lost time and even lost jobs. In recent years, the prevention, diagnosis and treatment of injuries to performers has led to the new field of arts medicine, originally an offshoot of sports medicine. (See “History of performing arts medicine” in this chapter.)
A PMR study of screen and stage actors found significant elevations for lung, oesophagus and bladder cancers in women, with the rate for stage actresses 3.8 times that of screen actresses (Depue and Kagey 1985). Male actors had significant PMR (but not proportionate cancer mortality ratio) increases for pancreatic and colon cancer; testicular cancer was twice the expected rate by both methods. PMRs for suicide and non–motor vehicle accidents were significantly elevated for both men and women, and the PMR for cirrhosis of the liver was elevated in men.
A recent survey of injuries among 313 performers in 23 Broadway shows in New York City found that 55.5% reported at least one injury, with a mean of 1.08 injuries per performer (Evans et al. 1996). For Broadway dancers, the most frequent sites of injury were the lower extremities (52%), back (22%) and neck (12%), with raked or slanted stages being a significant contributing factor. For actors, the most frequent sites of injuries were lower extremities (38%), the lower back (15%) and vocal cords (17%). The use of fogs and smoke on stage was listed as a major cause for the last.
In 1991, the United States National Institute for Occupational Safety and Health investigated the health effects of the use of smoke and fogs in four Broadway shows (Burr et al. 1994). All the shows used glycol-type fogs, although one also used mineral oil. A questionnaire survey of 134 actors in these shows with a control group of 90 actors in five shows not using fogs found significantly higher levels of symptoms in actors exposed to fogs, including upper-respiratory symptoms such as nasal symptoms and irritation of mucous membranes, and lower-respiratory symptoms such as coughing, wheezing, breathlessness and chest tightness. A follow-up study could not demonstrate a correlation between fog exposure and asthma, possibly due to the low number of responses.
The motion picture production industry has a high accident rate, and in California is classified as high risk, mostly as a result of stunts. During the 1980s, there were over 40 fatalities in American-produced motion pictures (McCann 1991). California statistics for 1980–1988 show an incidence of 1.5 fatalities per 1,000 injuries, compared to the California average of 0.5 for the same period.
A large number of studies have shown that dancers have high overuse and acute injury rates. Ballet dancers, for example, have high incidences of overuse syndrome (63%), stress fractures (26%) and major (51%) or minor (48%) problems during their professional careers (Hamilton and Hamilton 1991). One questionnaire study of 141 dancers (80 females), 18 to 37 years old, from seven professional ballet and modern dance companies in the United Kingdom, found that 118 (84%) of the dancers reported at least one dance-related injury that affected their dancing, 59 (42%) in the last six months (Bowling 1989). Seventy-four (53%) reported that they were suffering from at least one chronic injury that was giving them pain. The back, neck and ankles were the most common sites of injury.
As with dancers, musicians have a high incidence of overuse syndrome. A 1986 questionnaire survey by the International Conference of Symphony and Opera Musicians of 4,025 members from 48 American orchestras showed medical problems affecting performance in 76% of the 2,212 respondents, with severe medical problems in 36% (Fishbein 1988). The most common problem was overuse syndrome, reported by 78% of string players. A 1986 study of eight orchestras in Australia, the United States and England found a 64% occurrence of overuse syndrome, 42% of which involved a significant level of symptoms (Frye 1986).
Hearing loss among rock musicians has had significant press coverage. Hearing loss is also found, however, among classical musicians. In one study, sound level measurements at the Lyric Theatre and Concert Hall in Gothenberg, Sweden, averaged 83 to 89 dBA. Hearing tests of 139 male and female musicians from both theatres indicated that 59 musicians (43%) showed worse pure tone thresholds than would be expected for their age, with brass wind instrumentalists showing the greatest loss (Axelsson and Lindgren 1981).
A 1994-1996 study of sound level measurements in the orchestra pits of 9 Broadway shows in New York City showed average sound levels from 84 to 101 dBA, with a normal showtime of 2½ hours (Babin 1996).
The carpenters, scenic artists, electricians, camera crews and other technical support workers face, in addition to many safety hazards, a wide variety of chemical hazards from materials used in scene shops, prop shops and costume shops. Many of the same materials are used in the visual arts. However, there are no available injury or illness statistics on these workers.
Entertainment
The “Entertainment” section of the chapter covers a variety of entertainment industries that are not covered under “Arts and Crafts” and “Performing and Media Arts”, including: museums and art galleries; zoos and aquariums; parks and botanical gardens; circuses, amusement and theme parks; bullfighting and rodeos; professional sports; the sex industry; and nightlife entertainment.
Health effects and disease patterns
There are a wide variety of types of workers involved in the entertainment industry, including performers, technicians, museum conservators, animal handlers, park rangers, restaurant workers, cleaning and maintenance personnel and many more. Many of the hazards found in the arts and crafts and performing and media arts are also found among particular groups of entertainment workers. Additional hazards such as cleaning products, toxic plants, dangerous animals, AIDS, zoonoses, hazardous drugs, violence and so forth are also occupational hazards to particular groups of entertainment workers. Because of the disparateness of the various industries, there are no overall injury and illness statistics. The individual articles include relevant injury and illness statistics, where available.
Author: Madeleine R. Estryn-Béhar
Ergonomics is an applied science that deals with the adaptation of work and the workplace to the characteristics and capabilities of the worker so that he or she may perform the duties of the job effectively and safely. It addresses the worker’s physical capacities in relation to the physical requirements of the job (e.g., strength, endurance, dexterity, flexibility, ability to tolerate positions and postures, visual and auditory acuity) as well as his or her mental and emotional status in relation to the way the work is organized (e.g., work schedules, workload and work-related stress). Ideally, adaptations are made to the furniture, equipment and tools used by the worker and to the work environment to enable the worker to perform adequately without risk to himself/herself, co-workers and the public. Occasionally, it is necessary to improve the worker’s adaptation to the job through, for example, special training and the use of personal protective equipment.
Since the mid 1970s, the application of ergonomics to hospital workers has broadened. It is directed now at those involved in direct patient care (e.g., physicians and nurses), those involved in ancillary services (e.g., technicians, laboratory staff, pharmacists and social workers) and those providing support services (e.g., administrative and clerical personnel, food service staff, housekeeping staff, maintenance workers and security staff).
Extensive research has been conducted into the ergonomics of hospitalization, with most studies attempting to identify the extent to which hospital administrators should allow hospital personnel latitude in developing strategies to reconcile an acceptable workload with good quality of care. Participatory ergonomics has become increasingly widespread in hospitals in recent years. More specifically, wards have been reorganized on the basis of ergonomic analyses of activity undertaken in collaboration with medical and paramedical personnel, and participatory ergonomics has been used as the basis for the adaptation of equipment for use in health care.
In studies of hospital ergonomics, workstation analysis must extend at least to the departmental level—the distance between rooms and the amount and location of equipment are all crucial considerations.
Physical strain is one of the primary determinants of the health of HCWs and the quality of care that they dispense. This being said, the frequent interruptions that hinder care-giving and the effect of psychological factors associated with confrontations with serious illness, ageing and death must also be addressed. Accounting for all these factors is a difficult task, but approaches focusing only on single factors will fail to improve either working conditions or the quality of care. Similarly, patients’ perception of the quality of their hospital stay is determined by the effectiveness of the care they receive, their relationship with physicians and other personnel, the food and the architectural environment.
Basic to hospital ergonomics is study of the sum and interaction of personal factors (e.g., fatigue, fitness, age and training) and circumstantial factors (e.g., work organization, schedule, floor layout, furniture, equipment, communication and psychological support within the work team), which combine to affect the performance of work. Precise identification of the actual work performed by health care workers depends on ergonomic observation of entire workdays and collection of valid and objective information on the movements, postures, cognitive performance and emotional control called upon to satisfy work requirements. This helps to detect factors that may interfere with effective, safe, comfortable and healthy work. This approach also sheds light on the potential for workers’ suffering or taking pleasure in their work. Final recommendations must take the interdependence of the various professional and ancillary personnel attending the same patient into account.
These considerations lay the groundwork for further, specific research. Analysis of strain related to the use of basic equipment (e.g., beds, meal carts and mobile x-ray equipment) may help clarify the conditions of acceptable use. Measurements of lighting levels may be complemented by information on the size and contrast of medication labels, for example. Where alarms emitted by different intensive-care-unit equipment can be confused, analysis of their acoustic spectrum may prove useful. Computerization of patient charts should not be undertaken unless the formal and informal information-support structures have been analysed. The interdependence of the various elements of the work environment of any given caregiver should therefore always be borne in mind when analysing isolated factors.
Analysis of the interaction of different factors influencing care—physical strain, cognitive strain, affective strain, scheduling, ambience, architecture and hygiene protocols—is essential. It is important to adapt schedules and common work areas to the needs of the work team when attempting to improve overall patient management. Participatory ergonomics is a way of using specific information to bring about wide-ranging and relevant improvements to the quality of care and to working life. Involving all categories of personnel in key stages of the search for solution helps ensure that the modifications finally adopted will have their full support.
Working Postures
Epidemiological studies of joint and musculoskeletal disorders. Several epidemiological studies have indicated that inappropriate postures and handling techniques are associated with a doubling of the number of back, joint and muscle problems requiring treatment and time off the job. This phenomenon, discussed in greater detail elsewhere in this chapter and Encyclopaedia, is related to physical and cognitive strain.
Working conditions differ from country to country. Siegel et al. (1993) compared conditions in Germany and Norway and found that 51% of German nurses, but only 24% of Norwegian nurses, suffered lower-back pain on any given day. Working conditions in the two countries differed; however, in German hospitals, the patient-nurse ratio was twice as high and the number of adjustable-height beds half that in Norwegian hospitals, and fewer nurses had patient handling equipment (78% versus 87% in Norwegian hospitals).
Epidemiological studies of pregnancy and its outcome. Because the hospital workforce is usually predominantly female, the influence of work on pregnancy often becomes an important issue (see articles on pregnancy and work elsewhere in this Encyclopaedia). Saurel-Cubizolles et al. (1985) in France, for example, studied 621 women who returned to hospital work after giving birth and found that a higher rate of premature births were associated with heavy housekeeping chores (e.g., cleaning windows and floors), carrying heavy loads and long periods of standing. When these tasks were combined, the rate of premature births was increased: 6% when only one of these factors was involved and up to 21% when two or three were involved. These differences remained significant after adjustment for seniority, social and demographic characteristics and professional level. These factors were also associated with a higher frequency of contractions, more hospital admissions during pregnancy and, on average, longer sick leave.
In Sri Lanka, Senevirane and Fernando (1994) compared 130 pregnancies borne by 100 nursing officers and 126 by clerical workers whose jobs presumably were more sedentary; socio-economic backgrounds and use of prenatal care were similar for both groups. Odds-ratios for complications of pregnancy (2.18) and preterm delivery (5.64) were high among nursing officers.
Ergonomic Observation of Workdays
The effect of physical strain on health care workers has been demonstrated through continuous observation of workdays. Research in Belgium (Malchaire 1992), France (Estryn-Béhar and Fouillot 1990a) and Czechoslovakia (Hubacova, Borsky and Strelka 1992) has shown that health care workers spend 60 to 80% of their workday standing (see table 1). Belgian nurses were observed to spend approximately 10% of their workday bent over; Czechoslovakian nurses spent 11% of their workday positioning patients; and French nurses spent 16 to 24% of their workday in uncomfortable positions, such as stooping or squatting, or with their arms raised or loaded.
Table 1. Distribution of nurses’ time in three studies
Czechoslovakia |
Belgium |
France |
|
Authors |
Hubacova, Borsky and Strelka 1992* |
Malchaire 1992** |
Estryn-Béhar and |
Departments |
5 medical and surgical departments |
Cardiovascular surgery |
10 medical and |
Average time for the main postures and total distance walked by nurses: |
|||
Per cent working |
76% |
Morning 61% |
Morning 74% |
Including stooping, |
11% |
Morning 16% |
|
Standing flexed |
Morning 11% |
||
Distance walked |
Morning 4 km |
Morning 7 km |
|
Per cent working |
Three shifts: 47% |
Morning 38% |
Morning 24% |
Number of observations per shift:* 74 observations on 3 shifts. ** Morning: 10 observations (8 h); afternoon: 10 observations (8 h); night: 10 observations (11 h). *** Morning: 8 observations (8 h); afternoon: 10 observations (8 h); night: 9 observations (10-12 h).
In France, night-shift nurses spent somewhat more time sitting, but they end their shift by making beds and dispensing care, both of which involve work in uncomfortable positions. They are assisted in this by a nurses’ aide, but this should be contrasted with the situation during the morning shift, where these tasks are usually performed by two nurses’ aides. In general, nurses working day shifts spend less time in uncomfortable positions. Nurses’ aides were on their feet constantly, and uncomfortable positions, due largely to inadequate equipment, accounted for 31% (afternoon shift) to 46% (morning shift) of their time. Patient facilities in these French and Belgian teaching hospitals were spread out over large areas and consisted of rooms containing one to three beds. Nurses in these wards walked an average of 4 to 7 km per day.
Detailed ergonomic observation of entire workdays (Estryn-Béhar and Hakim-Serfaty 1990) is useful in revealing the interaction of the factors that determine quality of care and the manner in which work is performed. Consider the very different situations in a paediatric intensive care unit and a rheumatology ward. In paediatric resuscitation units, the nurse spends 71% of her time in patients’ rooms, and each patient’s equipment is kept on individual carts stocked by nurses’ aides. The nurses in this ward change location only 32 times per shift, walking a total of 2.5 km. They are able to communicate with physicians and other nurses in the adjoining lounge or nurses’ station through intercoms which have been installed in all the patients’ rooms.
By contrast, the nursing station in the rheumatology ward is very far from patients’ rooms, and care preparation is lengthy (38% of shift time). As a result, the nurses spend only 21% of their time in patients’ rooms and change location 128 times per shift, walking a total of 17 km. This clearly illustrates the interrelationship between physical strain, back problems and organizational and psychological factors. Because they need to move rapidly and get equipment and information, nurses only have time for hallway consultations—there is no time to sit while dispensing care, listen to patients and give patients personalized and integrated responses.
Continuous observation of 18 Dutch nurses in long-term-stay wards revealed that they spent 60% of their time performing physically demanding work with no direct contact with their patients (Engels, Senden and Hertog 1993). Housekeeping and preparation account for most of the 20% of the time described as spent in “slightly hazardous” activities. In all, 0.2% of shift time was spent in postures requiring immediate modification and 1.5% of shift time in postures requiring rapid modification. Contact with patients was the type of activity most frequently associated with these hazardous postures. The authors recommend modifying patient-handling practices and other less hazardous but more frequent tasks.
Given the physiological strain of the work of nurses’ aides, continuous measurement of heart rate is a useful complement to observation. Raffray (1994) used this technique to identify arduous housekeeping tasks and recommended not restricting personnel to this type of task for the whole day.
Electro-myographical (EMG) fatigue analysis is also interesting when body posture must remain more or less static—for example, during operations using an endoscope (Luttman et al. 1996).
Influence of architecture, equipment and organization
The inadequacy of nursing equipment, particularly beds, in 40 Japanese hospitals was demonstrated by Shindo (1992). In addition, patients’ rooms, both those lodging six to eight patients and single rooms reserved for the very ill, were poorly laid out and extremely small. Matsuda (1992) reported that these observations should lead to improvements in the comfort, safety and efficiency of nursing work.
In a French study (Saurel 1993), the size of patient rooms was problematic in 45 of 75 medium- and long-term-stay wards. The most common problems were:
The mean available area per bed for patients and nurses is at the root of these problems and decreases as the number of beds per room increases: 12.98 m2, 9.84 m2, 9.60 m2, 8.49 m2 and 7.25 m2 for rooms with one, two, three, four and more than four beds. A more accurate index of the useful area available to personnel is obtained by subtracting the area occupied by the beds themselves (1.8 to 2.0 m2) and by other equipment. The French Department of Health prescribes a useful surface area of 16 m2 for single rooms and 22 m2 for double rooms. The Quebec Department of Health recommends 17.8 m2 and 36 m2, respectively.
Turning to factors favouring the development of back problems, variable-height mechanisms were present on 55.1% of the 7,237 beds examined; of these, only 10.3% had electric controls. Patient-transfer systems, which reduce lifting, were rare. These systems were systematically used by 18.2% of the 55 responding wards, with over half the wards reporting using them “rarely” or “never”. “Poor” or “rather poor” manoeuvrability of meal carts was reported by 58.5% of 65 responding wards. There was no periodic maintenance of mobile equipment in 73.3% of 72 responding wards.
In almost half the responding wards, there were no rooms with seats that nurses could use. In many cases, this appears to have been due to the small size of the patient rooms. Sitting was usually possible only in the lounges—in 10 units, the nursing station itself had no seats. However, 13 units reported having no lounge and 4 units used the pantry for this purpose. In 30 wards, there were no seats in this room.
According to statistics for 1992 provided by the Confederation of Employees of the Health Services Employees of the United Kingdom (COHSE), 68.2% of nurses felt that there were not enough mechanical patient lifts and handling aides and 74.5% felt that they were expected to accept back problems as a normal part of their work.
In Quebec, the Joint Sectoral Association, Social Affairs Sector (Association pour la santé et la sécurité du travail, secteur afffaires sociales, ASSTAS) initiated its “Prevention-Planning-Renovation-Construction” project in 1993 (Villeneuve 1994). Over 18 months, funding for almost 100 bipartite projects, some costing several million dollars, was requested. This programme’s goal is to maximize investments in prevention by addressing health and safety concerns early in the design stage of planning, renovation and design projects.
The association completed the modification of the design specifications for patient rooms in long-term-care units in 1995. After noting that three-quarters of occupational accidents involving nurses occur in patient rooms, the association proposed new dimensions for patients’ rooms, and new rooms must now provide a minimum amount of free space around beds and accommodate patient lifts. Measuring 4.05 by 4.95 m, the rooms are more square than the older, rectangular rooms. To improve performance, ceiling-mounted patient lifts were installed, in collaboration with the manufacturer.
The association is also working on the modification of construction standards for washrooms, where many occupational accidents also occur, although to a lesser extent than in the rooms themselves. Finally, the feasibility of applying anti-skid coatings (with a coefficient of friction above the minimum standard of 0.50) on floors is being studied, since patient autonomy is best promoted by providing a non-skid surface on which neither they nor nurses can slip.
Evaluation of equipment that reduces physical strain
Proposals for improving beds (Teyssier-Cotte, Rocher and Mereau 1987) and meal carts (Bouhnik et al. 1989) have been formulated, but their impact is too limited. Tintori et al. (1994) studied adjustable-height beds with electric trunk-lifts and mechanical mattress-lifts. The trunk-lifts were judged satisfactory by the staff and patients, but the mattress-lifts were very unsatisfactory, since adjusting the beds required more than eight pedal strokes, each of which exceeded standards for foot force. Pushing a button located close to the patient’s head while talking to her or him is clearly preferable to pumping a pedal eight times from the foot of the bed (see figure 1). Because of time constraints, the mattress lift was often simply not used.
Figure 1. Electronically-operated trunk-lifts on beds effectively reduce lifting accidents
B. Floret
Van der Star and Voogd (1992) studied health care workers caring for 30 patients in a new prototype of bed over a period of six weeks. Observations of the workers’ positions, the height of work surfaces, physical interaction between nurses and patients and the size of the work space were compared to data collected on the same ward over a seven-week period prior to the introduction of the prototype. Use of the prototypes reduced the total time spent in uncomfortable positions while washing patients from 40% to 20%; for bed-making the figures were 35% and 5%. Patients also enjoyed greater autonomy and often changed positions on their own, raising their trunks or legs by means of electric control buttons.
In Swedish hospitals, each double room is equipped with ceiling-mounted patient lifts (Ljungberg, Kilbom and Goran 1989). Rigorous programmes such as the April Project evaluate the interrelation of working conditions, work organization, the establishment of a back school and the improvement of physical fitness (Öhling and Estlund 1995).
In Quebec, ASSTAS developed a global approach to the analysis of working conditions causing back problems in hospitals (Villeneuve 1992). Between 1988 and 1991, this approach led to modifications of the work environment and equipment used in 120 wards and a 30% reduction in the frequency and severity of occupational injuries. In 1994, a cost-benefit analysis performed by the association demonstrated that the systematic implementation of ceiling-mounted patient lifts would reduce occupational accidents and increase productivity, compared to the continued use of mobile, ground-based lifts (see figure 2).
Figure 2. Using ceiling-mounted patient lifts to reduce lifting accidents
Accounting for individual variation and facilitating activity
The female population in France is generally not very physically active. Of 1,505 nurses studied by Estryn-Béhar et al. (1992), 68% participated in no athletic activity, with inactivity more pronounced among mothers and unskilled personnel. In Sweden, fitness programmes for hospital personnel have been reported to be useful (Wigaeus Hjelm, Hagberg and Hellstrom 1993), but are feasible only if potential participants do not end their work day too tired to participate.
The adoption of better work postures is also conditioned by the possibility of wearing appropriate clothing (Lempereur 1992). The quality of shoes is particularly important. Hard soles are to be avoided. Anti-skid soles prevent occupational accidents caused by slips and falls, which in many countries are the second-leading cause of accidents leading to work absence. Ill-fitting overshoes or boots worn by operating room personnel to minimize the build-up of static electricity may be a hazard for falls.
Slips on level floors can be prevented by using low-slip floor surfaces that require no waxing. The risk of slips, particularly at doorways, can also be reduced by using techniques that do not leave the floor wet for long. The use of one mop per room, recommended by hygiene departments, is one such technique and has the additional advantage of reducing the handling of buckets of water.
In Vasteras County (Sweden), the implementation of several practical measures reduced painful syndromes and absenteeism by at least 25% (Modig 1992). In the archives (e.g., record or file rooms), ground- and ceiling-level shelves were eliminated, and an adjustable sliding board on which personnel can take notes while consulting the archives was installed. A reception office equipped with movable filing units, a computer and a telephone was also constructed. The height of the filing units is adjustable, allowing employees to adjust them to their own needs and facilitating the transition from sitting to standing during work.
Importance of “anti-lifting”
Manual patient-handling techniques designed to prevent back injuries have been proposed in many countries. Given the poor results of these techniques that have been reported to date (Dehlin et al. 1981; Stubbs, Buckle and Hudson 1983), more work in this area is needed.
The department of kinesiology of the University of Groningen (Netherlands) has developed an integrated patient-handling programme (Landewe and Schröer 1993) consisting of:
In the “anti-lifting” approach, the resolution of problems associated with patient transfers is based on the systematic analysis of all aspects of transfers, especially those related to patients, nurses, transfer equipment, teamwork, general working conditions and environmental and psychological barriers to the use of patient lifts (Friele and Knibbe 1993).
The application of European standard EN 90/269 of 29 May 1990 on back problems is an example of an excellent starting point for this approach. Besides requiring employers to implement appropriate work organization structures or other appropriate means, particularly mechanical equipment, to avoid manual handling of loads by workers, it also emphasizes the importance of “no-risk” handling policies that incorporate training. In practice, the adoption of appropriate postures and handling practices depends on the amount of functional space, presence of appropriate furniture and equipment, good collaboration on work organization and quality of care, good physical fitness and comfortable work clothing. The net effect of these factors is improved prevention of back problems.
Some text was adapted from the 3rd edition Encyclopaedia article “Aviation - ground personnel” authored by E. Evrard.
Commercial air transport involves the interaction of several groups including governments, airport operators, aircraft operators and aircraft manufacturers. Governments are generally involved in overall air transport regulation, oversight of aircraft operators (including maintenance and operations), manufacturing certification and oversight, air traffic control, airport facilities and security. Airport operators can either be local governments or commercial entities. They are usually responsible for the general operation of the airport. Types of aircraft operators include general airlines and commercial transport (either privately or publicly owned), cargo carriers, corporations and individual aircraft owners. Aircraft operators in general are responsible for operation and maintenance of the aircraft, training of personnel and operation of ticketing and boarding operations. Responsibility for security can vary; in some countries the aircraft operators are responsible, and in others the government or airport operators are responsible. Manufacturers are responsible for design, manufacturing and testing, and for aircraft support and improvement. There are also international agreements con- cerning international flights.
This article deals with the personnel involved with all aspects of flight control (i.e., those who control commercial aircraft from takeoff to landing and who maintain the radar towers and other facilities used for flight control) and with those airport personnel who perform maintenance on and load aircraft, handle baggage and air freight and provide passenger services. Such personnel are divided into the following categories:
Flight Control Operations
Government aviation authorities such as the Federal Aviation Administration (FAA) in the United States maintain flight control over commercial aircraft from takeoff to landing. Their primary mission involves the handling of airplanes using radar and other surveillance equipment to keep aircraft separated and on course. Flight control personnel work at airports, terminal radar approach control facilities (Tracons) and regional long-distance centres, and consist of air traffic controllers and airways facilities maintenance personnel. Airways facilities maintenance personnel maintain the airport control towers, air traffic Tracons and regional centres, radio beacons, radar towers and radar equipment, and consist of electronics technicians, engineers, electricians and facilities maintenance workers. The guidance of planes using instruments is accomplished following instrument flight rules (IFR). Planes are tracked using the General National Air Space System (GNAS) by air traffic controllers working at airport control towers, Tracons and regional centres. Air traffic controllers keep planes separated and on course. As a plane moves from one jurisdiction to another, responsibility for the plane is handed from one type of controller to another.
Regional centres, terminal radar approach control and airport control towers
Regional centres direct planes after they have reached high altitudes. A centre is the largest of the aviation authority’s facilities. Regional centre controllers hand off and receive planes to and from Tracons or other regional control centres and use radio and radar to maintain communication with aircraft. A plane flying across a country will always be under surveillance by a regional centre and passed along from one regional centre to the next.
The regional centres all overlap each other in the surveillance range and receive radar information from long-range radar facilities. Radar information is sent to these facilities via microwave links and telephone lines, thus providing a redundancy of information so that if one form of communication is lost, the other is available. Oceanic air traffic, which cannot be seen by radar, is handled by the regional centres via radio. Technicians and engineers maintain the electronic surveillance equipment and the uninterrupted power systems, which includes emergency generators and large banks of back-up batteries.
Air traffic controllers at Tracons handle planes flying at low altitudes and within 80 km of airports, using radio and radar to maintain communication with aircraft. Tracons receive radar tracking information from the airport surveillance radar (ASR). The radar tracking system identifies the plane moving in space but also queries the plane beacon and identifies the plane and its flight information. Personnel and work tasks at Tracons are similar to those at the regional centres.
Regional and approach control systems exist in two variants: non-automated or manual systems and automated systems.
With manual air traffic control systems, radio communications between controller and pilot are supplemented by information from primary or secondary radar equipment. The trace of the aeroplane can be followed as a mobile echo on display screens formed by cathode-ray tubes (see figure 1). Manual systems have been replaced by automated systems in most countries.
Figure 1. Air traffic controller at a manual local control centre radar screen.
With automated air traffic control systems, information on the aeroplane is still based on the flight plan and primary and secondary radar, but computers make it possible to present in alphanumeric form on the display screen all data concerning each aeroplane and to follow its route. Computers are also used to anticipate conflict between two or more aircraft on identical or converging routes on the basis of the flight plans and standard separations. Automation relieves the controller of many of the activities he or she carries out in a manual system, leaving more time for taking decisions.
Conditions of work are different in manual and automated control centre systems. In the manual system the screen is horizontal or sloping, and the operator leans forward in an uncomfortable position with his or her face between 30 and 50 cm from it. The perception of mobile echoes in the form of spots depends on their brightness and their contrast with the illuminance of the screen. As some mobile echoes have a very low luminous intensity, the working environment must be very weakly illuminated to ensure the greatest possible visual sensitivity to contrast.
In the automated system the electronic data display screens are vertical or almost vertical, and the operator can work in a normal sitting position with a greater reading distance. The operator has horizontally arranged keyboards within reach to regulate the presentation of the characters and symbols conveying the various types of information and can alter the shape and brightness of the characters. The lighting of the room can approach the intensity of daylight, for contrast remains highly satisfactory at 160 lux. These features of the automated system place the operator in a much better position to increase efficiency and reduce visual and mental fatigue.
Work is carried out in a huge, artificially lighted room without windows, which is filled with display screens. This closed environment, often far from the airports, allows little social contact during the work, which calls for great concentration and powers of decision. The comparative isolation is mental as well as physical, and there is hardly any opportunity of diversion. All this has been held to produce stress.
Each airport has a control tower. Controllers at airport control towers direct planes in and out of the airport, using radar, radio and binoculars to maintain communication with aircraft both while taxiing and while taking off and landing. Airport tower controllers hand off to or receive planes from controllers at Tracons. Most of the radar and other surveillance systems are located at the airports. These systems are maintained by technicians and engineers.
The walls of the tower room are transparent, for there must be perfect visibility. The working environment is thus completely different from that of regional or approach control. The air traffic controllers have a direct view of aircraft movements and other activities. They meet some of the pilots and take part in the life of the airport. The atmosphere is no longer that of a closed environment, and it offers a greater variety of interest.
Airways facilities maintenance personnel
Airways facilities and radar towers maintenance personnel consist of radar technicians, navigational and communication technicians and environmental technicians.
Radar technicians maintain and operate the radar systems, including airport and long-range radar systems. The work involves electronic equipment maintenance, calibration and troubleshooting.
Navigational and communication technicians maintain and operate the radio communications equipment and other related navigational equipment used in controlling air traffic. The work involves electronic equipment maintenance, calibration and troubleshooting.
Environmental technicians maintain and operate the aviation authority buildings (regional centres, Tracons and airport facilities, including the control towers) and equipment. The work requires running heating, ventilation and air-conditioning equipment and maintaining emergency generators, airport lighting systems, large banks of batteries in uninterrupted power supply (UPS) equipment and related electrical power equipment.
The occupational hazards for all three jobs include: noise exposure; working on or near live electrical parts including exposure to high voltage, x-ray exposure from klystron and magnitron tubes, fall hazards while working on elevated radar towers or using climbing poles and ladders to access towers and radio antenna and possibly PCBs exposure when handling older capacitors and working on utility transformers. Workers may also be exposed to microwave and radio-frequency exposure. According to a study of a group of radar workers in Australia (Joyner and Bangay 1986), personnel are not generally exposed to levels of microwave radiation exceeding 10 W/m2 unless they are working on open waveguides (microwave cables) and components utilizing waveguide slots, or working within transmitter cabinets when high-voltage arcing is occurring. The environmental technicians also work with chemicals related to building maintenance, including boiler and other related water treatment chemicals, asbestos, paints, diesel fuel and battery acid. Many of the electrical and utility cables at airports are underground. Inspection and repair work on these systems often involves confined space entry and exposure to confined space hazards—noxious or asphyxiating atmospheres, falls, electrocution and engulfment.
Airways facilities maintenance workers and other ground crews in the airport operating area are frequently exposed to jet exhaust. Several airport studies where sampling of jet engine exhaust has been conducted demonstrated similar results (Eisenhardt and Olmsted 1996; Miyamoto 1986; Decker 1994): the presence of aldehydes including butyraldehyde, acetaldehyde, acrolein, methacrolein, isobutyraldehyde, propionaldehyde, croton-aldehyde and formaldehyde. Formaldehyde was present at significantly higher concentrations then the other aldehydes, followed by acetaldehyde. The authors of these studies have concluded that the formaldehyde in the exhaust was probably the main causative factor in the eye and respiratory irritation reported by exposed persons. Depending on the study, nitrogen oxides either were not detected or were present in concentrations below 1 part per million (ppm) in the exhaust stream. They concluded that neither nitrogen oxides nor other oxides play a major role in the irritation. Jet exhaust was also found to contain 70 different hydrocarbon species with up to 13 consisting mostly of olefins (alkenes). Heavy-metal exposure from jet exhaust has been shown not to pose a health hazard for areas surrounding airports.
Radar towers should be equipped with standard railings around the stairs and platforms to prevent falls and with interlocks to prevent access to the radar dish while it is operating. Workers accessing towers and radio antennas should use approved devices for ladder climbing and personal fall protection.
Personnel work on both de-energized and energized electrical systems and equipment. Protection from electrical hazards should involve training in safe work practices, lockout/tagout procedures and the use of personal protective equipment (PPE).
The radar microwave is generated by high-voltage equipment using a klystron tube. The klystron tube generates x rays and can be a source of exposure when the panel is opened, allowing personnel to come in close proximity to it to work on it. The panel should always remain in place except when servicing the klystron tube, and work time should be kept to a minimum.
Personnel should wear the appropriate hearing protection (e.g., ear plugs and/or ear muffs) when working around noise sources such as jet planes and emergency generators.
Other controls involve training in materials handling, vehicle safety, emergency response equipment and evacuation procedures and confined space entry procedures equipment (including direct-reading air monitors, blowers and mechanical retrieval systems).
Air traffic controllers and flight services personnel
Air traffic controllers work in regional control centres, Tracons and airport control towers. This work generally involves working at a console tracking planes on radar scopes and communicating with pilots by radio. Flight services personnel provide weather information for pilots.
The hazards to air traffic controllers include possible visual problems, noise, stress and ergonomic problems. At one time there was concern about x-ray emissions from the radar screens. This, however, has not turned out to be a problem at the operating voltages used.
Standards of fitness for air traffic controllers have been recommended by the International Civil Aviation Organization (ICAO), and detailed standards are set out in national military and civil regulations, those relating to sight and hearing being particularly precise.
Visual problems
The broad, transparent surfaces of air traffic control towers at airports sometimes result in dazzling by the sun, and reflection from surrounding sand or concrete can increase the luminosity. This strain on the eyes may produce headaches, though often of a temporary nature. It may be prevented by surrounding the control tower with grass and avoiding concrete, asphalt or gravel and by giving a green tint to the transparent walls of the room. If the colour is not too strong, visual acuity and colour perception remain adequate while the excess radiation that causes dazzle is absorbed.
Until about 1960 there was a good deal of disagreement among authors on the frequency of eyestrain among controllers from viewing radar screens, but it does seem to have been high. Since then, attention given to visual refractive errors in the selection of radar controllers, their correction among serving controllers and the constant improvement of working conditions at the screen have helped to lower it considerably. Sometimes, however, eyestrain appears among controllers with excellent sight. This may be attributed to too low a level of lighting in the room, irregular illumination of the screen, the brightness of the echoes themselves and, in particular, flickering of the image. Progress in viewing conditions and insistence on higher technical specifications for new equipment are leading to a marked reduction in this source of eyestrain, or even its elimination. Strain in accommodation has also been considered until recently to be a possible cause of eyestrain among operators who have worked very close to the screen for an hour without interruption. Visual problems are becoming much less frequent and are likely to disappear or to occur only very occasionally in the automated radar system, for example, when there is a fault in a scope or where the rhythm of the images is badly adjusted.
A rational arrangement of the premises is mainly one that facilitates the adaptation of the scope readers to the intensity of the ambient lighting. In a non-automated radar station, adaptation to the semi-darkness of the scope room is achieved by spending 15 to 20 minutes in another dimly lighted room. The general lighting of the scope room, the luminous intensity of the scopes and the brightness of the spots must all be studied with care. In the automated system the signs and symbols are read under an ambient lighting of from 160 to 200 lux, and the disadvantages of the dark environment of the non-automated system are avoided. With regard to noise, despite modern sound-insulating techniques, the problem remains acute in control towers installed near the runways.
Readers of radar screens and electronic display screens are sensitive to changes in the ambient lighting. In the non-automated system the controllers must wear glasses absorbing 80% of the light for between 20 and 30 minutes before entering their workplace. In the automated system special glasses for adaptation are no longer essential, but persons particularly sensitive to the contrast between the lighting of the symbols on the display screen and that of the working environment find that glasses of medium absorptive power add to the comfort of their eyes. There is also a reduction in eyestrain. Runway controllers are well advised to wear glasses absorbing 80% of the light when they are exposed to strong sunlight.
Stress
The most serious occupational hazard for air traffic controllers is stress. The chief duty of the controller is to make decisions on the movements of aircraft in the sector he or she is responsible for: flight levels, routes, changes of course when there is conflict with the course of another aircraft or when congestion in one sector leads to delays, air traffic and so on. In non-automated systems the controller must also prepare, classify and organize the information his or her decision is based on. The data available are comparatively crude and must first be digested. In highly automated systems the instruments can help the controller in taking decisions, and he or she may then only have to analyse data produced by teamwork and presented in rational form by these instruments. Although the work may be greatly facilitated, the responsibility for approving the decision proposed to the controller remains the controller’s, and his or her activities still give rise to stress. The responsibilities of the job, pressure of work at certain hours of dense or complex traffic, increasingly crowded air space, sustained concentration, rotating shift work and awareness of the catastrophe that may result from an error all create a situation of continuous tension, which may lead to stress reactions. The fatigue of the controller may assume the three classic forms of acute fatigue, chronic fatigue or overstrain and nervous exhaustion. (See also the article “Case Studies of Air Traffic Controllers in the United States and Italy”.)
Air traffic control calls for an uninterrupted service 24 hours a day, all year long. The conditions of work of controllers thus include shift work, an irregular rhythm of work and rest and periods of work when most other people are enjoying holidays. Periods of concentration and of relaxation during working hours and days of rest during a week of work are indispensable to the avoidance of operational fatigue. Unfortunately, this principle cannot be embodied in general rules, for the arrangement of work in shifts is influenced by variables that may be legal (maximum number of consecutive hours of work authorized) or purely professional (workload depending on the hour of the day or the night), and by many other factors based on social or family considerations. With regard to the most suitable length for periods of sustained concentration during work, experiments show that there should be short breaks of at least a few minutes after periods of uninterrupted work of from half an hour to an hour-and-a-half, but that there is no need to be bound by rigid patterns to achieve the desired aim: the maintenance of the level of concentration and the prevention of operational fatigue. What is essential is to be able to interrupt the periods of work at the screen with periods of rest without interrupting the continuity of the shift work. Further study is necessary to establish the most suitable length of the periods of sustained concentration and of relaxation during work and the best rhythm for weekly and annual rest periods and holidays, with a view to drawing up more unified standards.
Other hazards
There are also ergonomic issues while working at the consoles similar to those of computer operators, and there may be indoor air quality problems. Air traffic controllers also experience tone incidents. Tone incidents are loud tones coming into the headsets. The tones are of short duration (a few seconds) and have sound levels up to 115 dBA.
In flight services work, there are hazards associated with lasers, which are used in ceilorometer equipment used to measure cloud ceiling height, as well as ergonomic and indoor air quality issues.
Other flight control services personnel
Other flight control services personnel include flight standards, security, airport facilities renovation and construction, administrative support and medical personnel.
Flight standards personnel are aviation inspectors who conduct airline maintenance and flight inspections. Flight standards personnel verify the airworthiness of the commercial airlines. They often inspect airplane maintenance hangers and other airport facilities, and they ride in the cockpits of commercial flights. They also investigate plane crashes, incidents or other aviation-related mishaps.
The hazards of the job include noise exposure from aircraft, jet fuel and jet exhaust while working in hangers and other airport areas, and potential exposure to hazardous materials and blood-borne pathogens while investigating aircraft crashes. Flight standards personnel face many of the same hazards as airport ground crews, and thus many of the same precautions apply.
Security personnel include sky marshals. Sky marshals provide internal security on airplanes and external security at airport ramps. They are essentially police and investigate criminal activities related to aircraft and airports.
Airport facilities renovation and construction personnel approve all plans for airport modifications or new construction. The personnel are usually engineers, and their work largely involves office work.
Administrative workers include personnel in accounting, management systems and logistics. Medical personnel in the flight surgeon’s office provide occupational medical services to aviation authority workers.
Air traffic controllers, flight services personnel and personnel who work in office environments should have ergonomic training on proper sitting postures and on emergency response equipment and evacuation procedures.
Airport Operations
Airport ground crews conduct maintenance on and load aircraft. Baggage handlers handle passenger baggage and air freight, whereas passenger service agents register passengers and check passenger baggage.
All loading operations (passengers, baggage, freight, fuel, supplies and so on) are controlled and integrated by a supervisor who prepares the loading plan. This plan is given to the pilot prior to take-off. When all operations have been completed and any checks or inspections considered necessary by the pilot have been made, the airport controller gives authorization for take-off.
Ground crews
Aircraft maintenance and servicing
Every aircraft is serviced every time it lands. Ground crews performing routine turnaround maintenance; conduct visual inspections, including checking the oils; perform equipment checks, minor repairs and internal and external cleaning; and refuel and restock the aircraft. As soon as the aircraft lands and arrives in the unloading bays, a team of mechanics begins a series of maintenance checks and operations which vary with the type of aircraft. These mechanics refuel the aircraft, check a number of safety systems which must be inspected after each landing, investigate the logbook for any reports or defects the flight crew may have noticed during the flight and, where necessary, make repairs. (See also the article “Aircraft Maintenance Operations” in this chapter.) In cold weather, the mechanics may have to perform additional tasks, such as de-icing of wings, landing gear, flaps and so on. In hot climates special attention is paid to the condition of the aircraft’s tyres. Once this work has been completed, the mechanics can declare the aircraft flightworthy.
More thorough maintenance inspections and aircraft overhauls are performed at specific intervals of flying hours for each aircraft.
Fuelling aircraft is one of the most potentially hazardous servicing operations. The amount of fuel to be loaded is determined on the basis of such factors as flight duration, take-off weight, flight path, weather and possible diversions.
A cleaning team cleans and services the aircraft cabins, replacing dirty or damaged material (cushions, blankets and so on), empties the toilets and refills the water tanks. This team may also disinfect or disinfest the aircraft under the supervision of public health authorities.
Another team stocks the aircraft with food and drink, emergency equipment and supplies needed for passenger comfort. Meals are prepared under high standards of hygiene to eliminate the risk of food poisoning, particularly among the flight crew. Certain meals are deep frozen to –40ºC, stored at –29ºC and reheated in flight.
Ground service work includes the use of motorized and non-motorized equipment.
Baggage and air cargo loading
Baggage and cargo handlers move passenger baggage and air freight. Freight can range from fresh fruits and vegetables and live animals to radioisotopes and machinery. Because baggage and cargo handling requires physical effort and the use of mechanized equipment, workers may be more at risk for injuries and ergonomic problems.
Ground crews and baggage and freight handlers are exposed to many of the same hazards. These hazards include working outdoors in all types of weather, exposure to potential airborne contaminants from jet fuel and jet engine exhaust and exposure to prop wash and jet blast. Prop wash and jet blast can slam doors shut, knock people or unsecured equipment over, cause turboprop propellers to rotate and blow debris into engines or onto people. Ground crews are also exposed to noise hazards. A study in China showed ground crews were exposed to noise at aircraft engine hatches that exceeds 115 dBA (Wu et al. 1989). Vehicle traffic on the airport ramps and apron is very heavy, and the risk of accidents and collision is high. Fuelling operations are very hazardous, and workers may be exposed to fuel spills, leaks, fires and explosions. Workers on lifting devices, aerial baskets, platforms or access stands are at risk of falling. Job hazards also include rotating shift work carried out under pressure of time.
Strict regulations must be implemented and enforced for vehicle movement and driver training. Driver training should emphasize complying with speed limits, obeying off-limit areas and ensuring that there is adequate room for planes to manoeuvre. There should be good maintenance of ramp surfaces and efficient control of ground traffic. All vehicles authorized to operate on the airfield should be conspicuously marked so they can be readily identified by air traffic controllers. All equipment used by the ground crews should be regularly inspected and maintained. Workers on lifting devices, aerial baskets, platforms or access stands must be protected from falls either through the use of guardrails or personal fall protection equipment. Hearing protection equipment (earplugs and earmuffs) must be used for protection against noise hazards. Other PPE includes suitable work clothing depending on the weather, non-slip reinforced-toe-cap foot protection and appropriate eye, face, glove and body protection when applying de-icing fluids. Rigorous fire prevention and protection measures including bonding and grounding and prevention of electric sparking, smoking, open flames and the presence of other vehicles within 15 m of aircraft, must be implemented for refuelling operations. Fire-fighting equipment should be maintained and located in the area. Training on procedures to follow in the event of a fuel spill or fire should be conducted regularly.
Baggage and freight handlers should store and stack cargo securely and should receive training on proper lifting techniques and back postures. Extreme care should be used when entering and leaving aircraft cargo areas from carts and tractors. Appropriate protective clothing should be worn, depending on the type of cargo or baggage (such as gloves when handling live animal cargo). Baggage and freight conveyors, carousels and dispensers should have emergency shut-offs and built-in guards.
Passenger service agents
Passenger service agents issue tickets, register and check in passengers and passenger baggage. These agents may also guide passengers when boarding. Passenger service agents who sell airline tickets and check in passengers may spend all day on their feet using a video display unit (VDU). Precautions against these ergonomic hazards include resilient floor mats and seats for relief from standing, work breaks and ergonomic and anti-glare measures for the VDUs. In addition, dealing with passengers can be a source of stress, particularly when there are delays in flights or problems with making flight connections and so on. Breakdowns in the computerized airline reservations systems can also be a major source of stress.
Baggage check-in and weigh-in facilities should minimize the need for employees and passengers to lift and handle bags, and baggage conveyors, carousels and dispensers should have emergency shut-offs and built-in guards. Agents should also receive training on proper lifting techniques and back postures.
Baggage inspection systems use fluoroscopic equipment to examine baggage and other carry-on items. Shielding protects workers and the public from x-ray emissions, and if the shielding is not properly positioned, interlocks prevent the system from operating. According to an early study by the US National Institute for Occupational Safety and Health (NIOSH) and the Air Transport Association at five US airports, maximum documented whole-body x-ray exposures were considerably lower than maximum levels set by the US Food and Drug Administration (FDA) and the Occupational Safety and Health Administration (OSHA) (NIOSH 1976). Workers should wear whole-body monitoring devices to measure radiation exposures. NIOSH recommended periodic maintenance programmes to check effectiveness of shielding.
Passenger service agents and other airport personnel must be thoroughly familiar with the airport emergency evacuation plan and procedures.
Elementary and secondary schools employ many different types of personnel, including teachers, teachers’ aides, administrators, clerical personnel, maintenance personnel, cafeteria personnel, nurses and many others required to keep a school functioning. In general, school personnel face all the potential hazards found in normal indoor and office environments, including indoor air pollution, poor lighting, inadequate heating or cooling, use of office machines, slips and falls, ergonomics problems from poorly designed office furniture and fire hazards. Precautions are the standard ones developed for this type of indoor environment, although building and fire codes usually have specific requirements for schools because of the large number of children present. Other general concerns found in schools include asbestos (especially among custodial and maintenance workers), chipping lead paint, pesticides and herbicides, radon and electromagnetic fields (especially for schools built near high-voltage transmission power lines). Eye and respiratory complaints related to the painting of rooms and the tarring of school roofs while the building is occupied are also a common problem. Painting and tarring should be done when the building is not occupied.
Basic academic duties required of all teachers include: lesson preparation, which can include the development of learning strategies, copying of lecture notes and the making of visual aids such as illustrations, graphs and the like; lecturing, which requires presenting information in an organized fashion that arouses the attention and concentration of students, and can involve the use of blackboards, film projectors, overhead projectors and computers; writing, giving and grading examinations; and individual counselling of students. Most of this instruction takes place in classrooms. In addition, teachers with specialities in science, arts, vocational education, physical education and other areas will conduct much of their teaching in facilities such as laboratories, art studios, theatres, gymnasiums and the like. Teachers may also take students on class trips outside the school to locations such as museums and zoos.
Teachers also have special duties, which can include supervision of students in hallways and the cafeteria; attending meetings with administrators, parents and others; organization and supervision of after-school leisure and other activities; and other administrative duties. In addition, teachers attend conferences and other educational events in order to keep current with their field and advance their career.
There are specific hazards facing all teachers. Infectious diseases such as tuberculosis, measles and chicken pox can easily spread throughout a school. Vaccinations (both of students and teachers), tuberculosis testing and other standard public health measures are essential (see table 1). Overcrowded classrooms, classroom noise, overloaded schedules, inadequate facilities, career advancement questions, job security and general lack of control over working conditions contribute to major stress problems, absenteeism and burnout in teachers. Solutions include both institutional changes to improve working conditions and stress reduction programmes where possible. A growing problem, especially in urban environments, is violence against teachers by students and, sometimes, intruders. In the United States, many secondary-level students, especially in urban schools, carry weapons, including guns. In schools where violence is a problem, organized violence-prevention programmes are essential. Teachers’ aides face many of the same hazards.
Table 1. Infectious diseases affecting day-care workers and teachers.
Disease |
Where found |
Mode of transmission |
Comments |
Amoebiasis |
Especially tropics and subtropics |
Water and food contaminated with infected faeces |
Use good food and water sanitation. |
Chicken pox |
Worldwide |
Generally person- to-person direct contact, but also possible by airborne respiratory droplets |
Chicken pox is more serious in adults than children; risk of birth defects; reportable disease in most countries. |
Cytomegalovirus (CMV) |
Worldwide |
Airborne respiratory droplets; contact with urine, saliva or blood |
Highly contagious; risk of birth defects. |
Erythema infectiosum (Parvovirus-B- 19) |
Worldwide |
Direct person-to- person contact or airborne respiratory droplets |
Mildly contagious; risk to foetus during pregnancy. |
Gastroenteritis, bacterial (Salmonella, Shigella, Campylobacter) |
Worldwide |
Person-to-person transmission, food or water via faecal- oral route |
Use good food and water sanitation; require strict handwashing procedures; reportable disease in most countries. |
Gastroenteritis, viral (Rotaviruses) |
Worldwide |
Person-to-person transmission, food or water via faecal- oral route; also by inhalation of dust containing virus |
Use good food and water sanitation. |
German measles (rubella) |
Worldwide |
Airborne respiratory droplets; direct contact with infected people |
Risk of birth defects; all children and employees should be vaccinated; reportable disease in most countries. |
Giardiasis (intestinal parasite) |
Worldwide, but especially tropics and subtropics |
Contaminated food and water; also possible by person- to-person transmission |
Use good food and water sanitation; reportable disease in most countries. |
Hepatitis A virus |
Worldwide, but especially Mediterranean areas and developing countries |
Faecal-oral transmission, especially contaminated food and water; also possible by direct person-to-person contact |
Risk of spontaneous abortions and stillbirths; use good food and water sanitation; reportable disease in most countries. |
Hepatitis B virus |
Worldwide, especially Asia and Africa |
Sexual contact, contact of broken skin or mucous membranes with blood or other body fluids |
Higher incidence in institutionalized children (e.g., developmentally disabled); vaccination recommended in high-risk situations; use universal precautions for all exposures to blood and other body fluids; reportable disease in most countries. |
Herpes Simplex Type I and II |
Worldwide |
Contact with mucous membranes |
extremely contagious; common in adults and age group 10 to 20 years. |
Human Immune Deficiency Virus (HIV) infection |
Worldwide |
Sexual contact, contact of broken skin or mucous membranes with blood or other body fluids |
Leads to Acquired Immune Deficiency Syndrome (AIDS); use universal precautions for all exposures to blood and body fluids (e.g., nosebleeds); anonymous reporting of disease required in most countries. |
Infectious mononucleosis Epstein-Barr virus) |
Worldwide |
Airborne respiratory droplets; direct contact with saliva |
Especially common in age group 10 to 20 years. |
Influenza |
Worldwide |
Airborne respiratory droplets |
Highly contagious; high-risk individuals should get immunization shots. |
Measles |
Worldwide |
Airborne respiratory droplets |
Highly contagious, but for adults mostly a risk to non-immunized individuals working with unvaccinated children; reportable disease in most countries. |
Meningococcus meningitis bacterial) |
Mostly tropical Africa and Brazil |
Airborne respiratory droplets, especially close contact |
Reportable disease in most countries. |
Mumps |
Worldwide |
Airborne respiratory droplets and contact with saliva |
Highly contagious; exclude infected children; may cause infertility in adults; outbreaks reportable in some countries. |
Mycoplasma infections |
Worldwide |
Airborne transmission after close contact |
A major cause of primary atypical pneumonia; mainly affects children aged 5 to 15 years. |
Pertussis (whooping cough) |
Worldwide |
Airborne respiratory droplets |
Not as severe in adults; all children under 7 years should be immunized. |
Scabies |
Worldwide |
Direct skin-to-skin contact |
Infectious skin disease caused by mites |
Streptococcus infections |
Worldwide |
Direct person-to-person contact |
Strep throat, scarlet fever and community-acquired pneumonia are examples of infections. |
Tuberculosis (respiratory) |
Worldwide |
Airborne respiratory droplets |
Highly infectious; tuberculosis screening should be conducted for all day care workers; a reportable disease in most countries. |
Teachers in specialized classes can have additional occupational hazards, including chemical exposures, machinery hazards, accidents, electrical hazards, excessive noise levels, radiation and fire, depending on the particular classroom. Figure 1 shows an industrial arts metal shop in a high school, and figure 2 shows a high school science lab with fume hoods and an emergency shower. Table 2 summarizes special precautions, particularly substitution of safer materials, for use in schools. Information on standard precautions can be found in the chapters relevant to the process (e.g., Entertainment and the arts and Safe handling of chemicals).
Figure 1. Industrial arts metal shop in a high school.
Michael McCann
Figure 2. High school science laboratory with fume hoods and an emergency shower.
Michael McCann
Table 2. Hazards and precautions for particular classes.
Class |
Activity/Subject |
Hazards |
Precautions |
|||
Elementary Classes |
||||||
Science |
Animal handling
Plants
Chemicals
Equipment
|
Bites and scratches, zoonoses, parasites
Allergies, poisonous plants
Skin and eye problems, toxic reactions, allergies
Electrical hazards, safety hazards |
Allow only live, healthy animals. Handle animals with heavy gloves. Avoid animals which can carry disease-transmitting insects and parasites. Avoid plants which are known to be poisonous or cause allergic reaction. Avoid using toxic chemicals with children. Wear proper personal protective equipment when doing teacher demonstrations with toxic chemicals. Follow standard electrical safety procedures. Ensure all equipment is properly guarded. Store all equipment, tools, etc., properly. |
|||
Art |
Painting and drawing
Photography
Textile and fibre arts
Printmaking
Woodworking
Ceramics |
Pigments, solvents
Photochemicals
Dyes
Acids, solvents
Cutting tools
Tools
Glues
Silica, toxic metals, heat, kiln fumes |
Use only non-toxic art materials. Avoid solvents, acids, alkalis, spray cans, chemical dyes, etc. Use only children’s paints. Do not use pastels, dry pigments. Do not do photo processing. Send out film for developing or use Polaroid cameras or blueprint paper and sunlight. Avoid synthetic dyes; use natural dyes such as onion skins, tea, spinach, etc. Use water-based block printing inks. Use linoleum cuts instead of woodcuts. Use soft woods and hand tools only. Use water-based glues. Use wet clay only, and wet mop. Paint pottery rather than using ceramic glazes. Do not fire kiln inside classroom.
|
|||
Secondary Classes |
||||||
Chemistry |
General
Organic chemistry
Inorganic chemistry
Analytical chemistry
Storage |
Solvents
Peroxides and explosives
Acids and bases
Hydrogen sulphide
Incompatibilities
Flammability |
All school laboratories should have the following: laboratory hood if toxic, volatile chemicals are used; eyewash fountains; emergency showers (if concentrated acids, bases or other corrosive chemicals are present); first aid kits; proper fire extinguishers; protective goggles, gloves and lab coats; proper disposal receptacles and procedures; spill control kit. Avoid carcinogens, mutagens and highly toxic chemicals like mercury, lead, cadmium, chlorine gas, etc.
Use only in laboratory hood. Use least toxic solvents. Do semi-micro- or microscale experiments.
Do not use explosives or chemicals such as ether, which can form explosive peroxides.
Avoid concentrated acids and bases when possible.
Do not use hydrogen sulphide. Use substitutes.
Avoid alphabetical storage, which can place incompatible chemicals in close proximity. Store chemicals by compatible groups.
Store flammable and combustible liquids in approved flammable-storage cabinets. |
|||
Biology |
Dissection
Anaesthetizing insects
Drawing of blood
Microscopy
Culturing bacteria |
Formaldehyde
Ether, cyanide
HIV, Hepatitis B
Stains
Pathogens |
Do not dissect specimens preserved in formaldehyde. Use smaller, freeze-dried animals, training films and videotapes, etc.
Use ethyl alcohol for anaesthetization of insects. Refrigerate insects for counting.
Avoid if possible. Use sterile lancets for blood typing under close supervision.
Avoid skin contact with iodine and gentian violet.
Use sterile technique with all bacteria, assuming there could be contamination by pathogenic bacteria. |
|||
Physical sciences |
Radioisotopes
Electricity and magnetism
Lasers |
Ionizing radiation
Electrical hazards
Eye and skin damage, electrical hazards |
Use radioisotopes only in “exempt” quantities not requiring a license. Only trained teachers should use these. Develop a radiation safety programme.
Follow standard electrical safety procedures.
Use only low-power (Class I) lasers. Never look directly into a laser beam or pass the beam across face or body. Lasers should have a key lock. |
|||
Earth sciences |
Geology
Water pollution
Atmosphere
Volcanoes
Solar observation |
Flying chips
Infection, toxic chemicals
Mercury manometers
Ammonium dichromate
Infrared radiation |
Crush rocks in canvas bag to prevent flying chips. Wear protective goggles.
Do not take sewage samples because of infection risk. Avoid hazardous chemicals in field testing of water pollution.
Use oil or water manometers. If mercury manometers are used for demonstration, have mercury spill control kit.
Do not use ammonium dichromate and magnesium to simulate volcanoes.
Never view sun directly with eyes or through lenses. |
|||
Art and Industrial Arts |
All
Painting and drawing
Photography
Textile and fibre arts |
General
Pigments, solvents
Photochemicals, acids, sulphur dioxide
Dyes, dyeing assistants, wax fumes |
Avoid most dangerous chemicals and processes. Have proper ventilation. See also precautions under Chemistry
Avoid lead and cadmium pigments. Avoid oil paints unless cleanup is done with vegetable oil. Use spray fixatives outside.
Avoid colour processing and toning. Have dilution ventilation for darkroom. Have eyewash fountain. Use water instead of acetic acid for stop bath.
Use aqueous liquid dyes or mix dyes in glove box. Avoid dichromate mordants. Do not use solvents to remove wax in batik. Have ventilation if ironing out wax. |
|||
|
Papermaking
Printmaking
Woodworking
Ceramics
Sculpture
Jewelry
|
Alkali, beaters
Solvents
Acids, potassium chlorate
Dichromates
Woods and wood dust
Machinery and tools
Noise
Glues
Paints and finishes
Lead, silica, toxic metals, kiln fumes
Silica, plastics resins, dust
Soldering fumes, acids |
Do not boil lye. Use rotten or mulched plant materials, or recycle paper and cardboard. Use large blender instead of more dangerous industrial beaters to prepare paper pulp. Use water-based instead of solvent-based silk screen inks. Clean intaglio press beds nd inking slabs with vegetable oil and dishwashing liquid instead of solvents. Use cut paper stencils instead of lacquer stencils for silk screen printing.
Use ferric chloride to etch copper plates instead of Dutch mordant or nitric acid on zinc plates. If using nitric acid etching, have emergency shower and eyewash fountain and local exhaust ventilation.
Use diazo instead of dichromate photoemulsions. Use citric acid fountain solutions in lithography to replace dichromates.
Have dust collection system for woodworking machines. Avoid irritating and allergenic hardwoods, preserved woods (e.g., chromated copper arsenate treated).Clean up wood dust to remove fire hazards.
Have machine guards. Have key locks and panic button.
Reduce noise levels or wear hearing protectors.
Use water-based glues when possible. Avoid formaldehyde/resorcinol glues, solvent-based glues.
Use water-based paints and finishes. Use shellac based on ethyl alcohol rather than methyl alcohol.
Purchase wet clay. Do not use lead glazes. Buy prepared glazes rather than mixing dry glazes. Spray glazes only in spray booth. Fire kiln outside or have local exhaust ventilation. Wear infrared goggles when looking into hot kiln.
Use only hand tools for stone sculpture to reduce dust levels. Do not use sandstone, granite or soapstone, which might contain silica or asbestos. Do not use highly toxic polyester, epoxy or polyurethane resins. Have ventilation if heating plastics to remove decomposition products. Wet mop or vacuum dusts. Avoid cadmium silver solders and fluoride fluxes. Use sodium hydrogen sulphate rather than sulphuric acid for pickling. Have local exhaust ventilation. |
|||
|
Enameling
Lost wax casting
Stained glass
Welding
Commercial art |
Lead, burns, infrared radiation
Metal fumes, silica, infrared radiation, heat
Lead, acid fluxes
Metal fumes, ozone, nitrogen dioxide, electrical and fire hazards
Solvents, photochemicals, video display terminals |
Use only lead-free enamels. Ventilate enameling kiln. Have heat-protective gloves and clothing, and infrared goggles.
Use 50/50 30-mesh sand/plaster instead of cristobalite investments. Have local exhaust ventilation for wax burnout kiln and casting operation. Wear heat-protective clothing and gloves.
Use copper foil technique rather than lead came. Use lead- and antimony-free solders. Avoid lead glass paints. Use acid- and rosin-free soldering fluxes.
Do not weld metals coated with zinc, lead paints, or alloys with hazardous metals (nickel, chromium, etc.). Weld only metals of known composition.
Use double-sided tape instead of rubber cement. Use heptane-based, not hexane rubber cements. Have spray booths for air brushing. Use water-based or alcohol-based permanent markers instead of xylene types. See Photography section for photoprocesses. Have proper ergonomic chairs, lighting, etc., for computers. |
|||
Performing Arts |
Theatre
Dance
Music |
Solvents, paints, welding fumes, isocyanates, safety, fire
Acute injuries Repetitive strain injuries
Musculoskeletal injuries (e.g., carpal tunnel syndrome)
Noise
Vocal strain |
Use water-based paints and dyes. Do not use polyurethane spray foams. Separate welding from other areas. Have safe rigging procedures. Avoid pyrotechnics, firearms, fog and smoke, and other hazardous special effects. Fireproof all stage scenery. Mark all trap doors, pits and elevations.
Have a proper dance floor. Avoid full schedules after period of inactivity. Assure proper warm-up before and cool-down after dance activity. Allow sufficient recovery time after injuries.
Use proper sized instruments. Have adequate instrument supports. Allow sufficient recovery time after injuries.
Keep sound levels at acceptable levels. Wear musician’s ear plugs if needed. Position speakers to minimize noise levels. Use sound-absorbing materials on walls. Assure adequate warm-up. Provide proper vocal training and conditioning. |
|||
Automotive Mechanics |
Brake drums
Degreasing
Car motors
Welding
Painting |
Asbestos
Solvents
Carbon monoxide
Solvents, pigments |
Do not clean brake drums unless approved equipment is used.
Use water-based detergents. Use parts cleaner
Have tailpipe exhaust.
See above.
Spray paint only in spray booth, or outdoors with respiratory protection.
|
|||
Home Economics |
Food and nutrition |
Electrical hazards
Knives and other sharp utensils
Fire and burns
Cleaning products |
Follow standard electrical safety rules.
Always cut away from body. Keep knives sharpened.
Have stove hoods with grease filters that exhaust to outside. Wear protective gloves with hot objects.
Wear goggles, gloves and apron with acidic or basic cleaning products. |
Teachers in special education programmes can sometimes be at greater risk. Examples of hazards include violence from emotionally disturbed students and transmission of infections such as hepatitis A, B and C from institutionalized, developmentally disabled students (Clemens et al. 1992).
Preschool Programmes
Child-care, which involves the physical care and often education of young children, takes many forms in different parts of the world. In many countries where extended families are common, grandparents and other female relatives care for young children when the mother has to work. In countries where the nuclear family and/or single parents predominate and the mother is working, the care of healthy children below school age often occurs in private or public day-care centres or nursery schools outside the home. In many countries - for example, Sweden - these child-care facilities are operated by municipalities. In the United States, most child-care facilities are private, although they are usually regulated by local health departments. An exception is the Head Start Program for preschool children, which is funded by the government.
Staffing of child-care facilities usually depends on the number of children involved and the nature of the facility. For small numbers of children (usually less than 12), the child-care facility might be a home where the children include the preschool children of the caregiver. The staff can include one or more qualified adult assistants to meet staff-to-child ratio requirements. Larger, more formal child-care facilities include day-care centres and nursery schools. The staff members for these are usually required to have more education and can include a qualified director, trained teachers, nursing staff under the supervision of a physician, kitchen staff (nutrition specialists, food service managers and cooks) and other personnel, such as transportation staff and maintenance staff. The premises of the day-care centre should have such amenities as an outdoor play area, cloakroom, reception area, indoor classroom and play area, kitchen, sanitary facilities, administrative rooms, laundry room and so on.
Staff duties include supervision of children in all their activities, changing diapers of infants, emotional nurturing of the children, teaching, food preparation and service, recognition of signs of illness and/or safety hazards and many other functions.
Day-care workers face many of the same hazards found in normal indoor environments, including indoor air pollution, poor lighting, inadequate temperature control, slips and falls and fire hazards. (See the article “Elementary and Secondary Schools”.) Stress (often resulting in burnout) and infections, however, are the major hazards for day-care workers. The lifting and carrying of children and exposure to possibly hazardous art supplies are other hazards.
Stress
Causes of stress in day-care workers include: high responsibility for the welfare of children without adequate pay and recognition; a perception of being unskilled even though many day-care workers have above-average education; image problems due to highly publicized incidents of day-care workers mistreating and abusing children, which have resulted in innocent day-care workers being fingerprinted and treated as potential criminals; and poor working conditions. The latter include low staff-to-child ratios, continual noise, lack of adequate time and facilities for meals and breaks separate from the children and inadequate mechanisms for parent-worker interaction, which can result in unnecessary and possibly unfair pressure and criticism from parents.
Preventive measures to reduce stress in day-care workers include: higher wages and better benefits; higher staff-to-child ratios to allow job rotation, rest breaks, sick leave and better performance, with resulting increase in job satisfaction; establishing formal mechanisms for parent-worker communications and cooperation (possibly including a parent-workers health and safety committee); and improved working conditions, such as adult-size chairs, regular “quiet” times, a separate workers’ break area and so on.
Infections
Infectious diseases, such as diarrhoeal diseases, streptococcal and meningococcal infections, rubella, cytomegalovirus and respiratory infections, are major occupational hazards of day-care workers (see table 1). A study of day-care workers in Belgium found an increased risk of hepatitis A (Abdo and Chriske 1990). Up to 30% of the 25,000 cases of hepatitis A reported annually in the United States have been linked to day-care centres. Some organisms causing diarrhoeal diseases, such as Giardia lamblia, which causes giardiasis, are extremely infectious. Outbreaks can occur in day-care centres serving affluent populations as well as those serving poor areas (Polis et al. 1986). Some infections - for example, German measles and cytomegalovirus - can be especially hazardous for pregnant women, or women planning to have children, because of the risk of birth defects caused by the virus.
Sick children can spread diseases, as can children who have no overt symptoms but are carrying an illness. The most common routes of exposure are faecal-oral and respiratory. Young children usually have poor personal hygiene habits. Hand-to-mouth and toy-to-mouth contact are common. Handling contaminated toys and food is one type of entry route. Some organisms can live on inanimate objects for extended periods ranging from hours to weeks. Food can also be a vector if the food handler has contaminated hands or is ill. Inhalation of airborne respiratory droplets due to sneezing and coughing without protection such as tissues can result in transmission of infections. Such air-borne aerosols can remain suspended in the air for hours.
Day care employees working with children under the age of three years, especially if the children are not toilet-trained, are at greatest risk, particularly when changing and handling soiled diapers which are contaminated by disease-bearing organisms.
Precautions include: convenient facilities for handwashing; regular handwashing by children and staff members; changing diapers in designated areas which are regularly disinfected; disposal of soiled diapers in closed, plastic-lined receptacles which are emptied frequently; separating food preparation areas from other areas; frequent washing of toys, play areas, blankets and other items that could become contaminated; good ventilation; adequate staff-to-child ratios to allow proper implementation of a hygiene programme; a policy of excluding, isolating or restricting sick children, depending on the illness; and adequate sick-leave policies to allow sick day-care workers to stay home.
Adapted from Women’s Occupational Health Resource Center 1987
Drawing involves making marks on a surface to express a feeling, experience or vision. The most commonly used surface is paper; drawing media include dry implements such as charcoal, coloured pencils, crayons, graphite, metalpoint and pastels, and liquids such as inks, markers and paints. Painting refers to processes that apply an aqueous or non-aqueous liquid medium (“paint”) to sized, primed or sealed surfaces such as canvas, paper or panel. Aqueous media include water-colours, tempera, acrylic polymers, latex and fresco; non-aqueous media include linseed or stand oils, dryers, varnish, alkyds, encaustic or molten wax, organic solvent-based acrylics, epoxy, enamels, stains and lacquers. Paints and inks typically consists of colouring agents (pigments and dyes), a liquid vehicle (organic solvent, oil or water), binders, bulking agents, antioxidants, preservatives and stabilizers.
Prints are works of art made by transferring a layer of ink from an image on a printing surface (such as woodblock, screen, metal plate or stone) onto paper, fabric or plastic. The printmaking process involves several steps: (1) preparation of the image; (2) printing; and (3) cleanup. Multiple copies of the image can be made by repeating the printing step. In monoprints, only one print is made.
Intaglio printing involves incising lines by mechanical means (e.g., engraving, drypoint) or etching the metal plate with acid to create depressed areas in the plate, which form the image. Various solvent-containing resists and other materials such as rosin or spray paint (aquatinting) can be used to protect the part of the plate not being etched. In printing, the ink (which is linseed oil based) is rolled onto the plate, and the excess wiped off, leaving ink in the depressed areas and lines. The print is made by placing the paper on the plate and applying pressure by a printing press to transfer the ink image to the paper.
Relief printing involves the cutting away of the parts of woodblocks or linoleum that are not to be printed, leaving a raised image. Water-or linseed oil–based inks are applied to the raised image and the ink image transferred to paper.
Stone lithography involves making an image with a greasy drawing crayon or other drawing materials that will make the image receptive to the linseed oil–based ink, and treating the plate with acids to make non-image areas water receptive and ink repellent. The image is washed out with mineral spirits or other solvents, inked with a roller and then printed. Metal plate lithography can involve a preliminary counteretch that often contains dichromate salts. Metal plates may be treated with vinyl lacquers containing ketone solvents for long print runs.
Screen printing is a stencil process where a negative image is made on the fabric screen by blocking out portions of the screen. For water-based inks, the blockout materials must be water insoluble; for solvent-based inks, the reverse. Cut plastic stencils are frequently used and adhered to the screen with solvents. The prints are made by scraping ink across the screen, forcing the ink through the unblocked parts of the screen onto paper located underneath the screen, thus creating the positive image. Large print runs using solvent-based inks involve the release of large amounts of solvent vapours into the air.
Collagraphs are made using either intaglio or relief printing techniques on a textured surface or collage, which can be made of many materials glued onto the plate.
Photoprintmaking processes can use either presensitized plates (often diazo) for lithography or intaglio, or the photoemulsion can be applied directly to the plate or stone. A mixture of gum arabic and dichromates have often been used on stones (gum printing). The photographic image is transferred to the plate, and then the plate exposed to ultraviolet light (e.g., carbon arcs, xenon lights, sunlight). When developed, the non-exposed portions of the photoemulsion are washed away, and the plate then printed. The coating and developing agents can often contain hazardous solvents and alkalis. In photo screen processes, the screen can be coated with dichromate or diazo photoemulsion directly, or an indirect process can be used, which involves adhering sensitized transfer films to the screen after exposure.
In printmaking techniques using oil-based inks, the ink is cleaned up with solvents or with vegetable oil and dishwashing liquid. Solvents also have to be used for cleaning lithography rollers. For water-based inks, water is used for cleanup. For solvent-based inks, large amounts of solvents are used for cleanup, making this one of the most hazardous processes in printmaking. Photoemulsions can be removed from screens using chlorine bleach or enzyme detergents.
Artists who draw, paint or make prints face significant health and safety hazards. The major sources of hazards for these artists include acids (in lithography and intaglio), alcohols (in paint, shellac, resin and varnish thinners and removers), alkalis (in paints, dye baths, photodevelopers and film cleaners), dusts (in chalks, charcoal and pastels), gases (in aerosols, etching, lithography and photoprocesses), metals (in pigments, photochemicals and emulsions), mists and sprays (in aerosols, air-brushing and aquatinting), pigments (in inks and paints), powders (in dry pigments and photochemicals, rosin, talc and whiting), preservatives (in paints, glues, hardeners and stabilizers) and solvents (such as aliphatic, aromatic and chlorinated hydrocarbons, glycol ethers and ketones). Common routes of exposure associated with these hazards include inhalation, ingestion and skin contact.
Among the well-documented health problems of painters, drawers and printmakers are: n-hexane-induced peripheral nerve damage in art students using rubber cement and spray adhesives; solvent-induced peripheral and central nervous system damage in silk-screen artists; bone marrow suppression related to solvents and glycol ethers in lithographers; onset or aggravation of asthma following exposure to sprays, mists, dusts, moulds and gases; abnormal heart rhythms following exposure to hydrocarbon solvents such as methylene chloride, freon, toluene and 1,1,1-trichloroethane found in glues or correction fluids; acid, alkali or phenol burns or irritation of the skin, eyes and mucous membranes; liver damage induced by organic solvents; and irritation, immune reaction, rashes and ulceration of the skin following exposure to nickel, dichromates and chromates, epoxy hardeners, turpentine or formaldehyde.
Although not well-documented, painting, drawing and printmaking may be associated with an increased risk of leukaemia, kidney tumours and bladder tumours. Suspected carcinogens to which painters, drawers and printmakers may be exposed include chromates and dichromates, polychlorinated biphenyls, trichloroethylene, tannic acid, methylene chloride, glycidol, formaldehyde, and cadmium and arsenic compounds.
The most important precautions in painting, drawing and printmaking include: substitution of water-based materials for materials based on organic solvents; proper use of general dilution ventilation and local exhaust ventilation (see figure 1); proper handling, labelling, storage and disposal of paints, flammable liquids and waste solvents; appropriate use of personal protective equipment such as aprons, gloves, goggles and respirators; and avoidance of products that contain toxic metals, especially lead, cadmium, mercury, arsenic, chromates and manganese. Solvents to be avoided include benzene, carbon tetrachloride, methyl n-butyl ketone, n-hexane and trichloroethylene.
Figure 1. Silk screen printing with slot exhaust hood.
Michael McCann
Additional efforts designed to reduce the risk of adverse health effects associated with painting, drawing and printmaking include early and continuous education of young artists concerning the hazards of art materials, and laws mandating labels on art materials that warn of both short-term and long-term health and safety hazards.
Cognitive Strain
Continuous observation has revealed that nurses’ workdays are characterized by continual reorganization of their work schedules and frequent interruptions.
Belgian (Malchaire 1992) and French (Gadbois et al. 1992; Estryn-Béhar and Fouillot 1990b) studies have revealed that nurses perform 120 to 323 separate tasks during their workday (see table 1). Work interruptions are very frequent throughout the day, ranging from 28 to 78 per workday. Many of the units studied were large, short-term-stay units in which the nurses’ work consisted of a long series of spatially dispersed, short-duration tasks. Planning of work schedules was complicated by the presence of incessant technical innovation, close interdependence of the work of the various staff members and a generally haphazard approach to work organization.
Table 1. Number of separate tasks undertaken by nurses, and interruptions during each shift
Belgium |
France |
France |
|
Authors |
Malchaire 1992* |
Gadbois et al. 1992** |
Estryn-Béhar and |
Departments |
Cardiovascular |
Surgery (S) and |
Ten medical and |
Number of separate |
Morning 120/8 h |
S (day) 276/12 h |
Morning 323/8 h |
Number of |
S (day) 36/12 h |
Morning 78/8 h |
Number of hours of observation: * Morning: 80 h; afternoon: 80 h; night: 110 h. ** Surgery: 238 h; medicine: 220 h. *** Morning : 64 h; afternoon: 80 h; night: 90 h.
Gadbois et al. (1992) observed an average of 40 interruptions per workday, of which 5% were caused by patients, 40% by inadequate transmission of information, 15% by telephone calls and 25% by equipment. Ollagnier and Lamarche (1993) systematically observed nurses in a Swiss hospital and observed 8 to 32 interruptions per day, depending on the ward. On average, these interruptions represented 7.8% of the workday.
Work interruptions such as these, caused by inappropriate information supply and transmission structures, prevent workers from completing all their tasks and lead to worker dissatisfaction. The most serious consequence of this organizational deficiency is the reduction of time spent with patients (see table 2). In the first three studies cited above, nurses spent at most 30% of their time with patients on average. In Czechoslovakia, where multiple-bed rooms were common, nurses needed to change rooms less frequently, and spent 47% of their shift time with patients (Hubacova, Borsky and Strelka 1992). This clearly demonstrates how architecture, staffing levels and mental strain are all interrelated.
Table 2. Distribution of nurses’ time in three studies
Czechoslovakia |
Belgium |
France |
|
Authors |
Hubacova, Borsky and Strelka 1992* |
Malchaire 1992** |
Estryn-Béhar and |
Departments |
5 medical and surgical departments |
Cardiovascular surgery |
10 medical and |
Average time for the main postures and total distance walked by nurses: |
|||
Per cent working |
76% |
Morning 61% |
Morning 74% |
Including stooping, |
11% |
Morning 16% |
|
Standing flexed |
Morning 11% |
||
Distance walked |
Morning 4 km |
Morning 7 km |
|
Per cent working |
Three shifts: 47% |
Morning 38% |
Morning 24% |
Number of observations per shift: * 74 observations on 3 shifts. ** Morning: 10 observations (8 h); afternoon: 10 observations (8 h); night: 10 observations (11 h). *** Morning: 8 observations (8 h); afternoon: 10 observations (8 h); night: 9 observations (10-12 h).
Estryn-Béhar et al. (1994) observed seven occupations and schedules in two specialized medical wards with similar spatial organization and located in the same high-rise building. While work in one ward was highly sectorized, with two teams of a nurse and a nurses’ aide attending half of the patients, there were no sectors in the other ward, and basic care for all patients was dispensed by two nurses’ aides. There were no differences in the frequency of patient-related interruptions in the two wards, but team-related interruptions were clearly more frequent in the ward without sectors (35 to 55 interruptions compared to 23 to 36 interruptions). Nurses’ aides, morning-shift nurses and afternoon-shift nurses in the non-sectorized ward suffered 50, 70 and 30% more interruptions than did their colleagues in the sectorized one.
Sectorization thus appears to reduce the number of interruptions and the fracturing of work shifts. These results were used to plan the reorganization of the ward, in collaboration with the medical and paramedical staff, so as to facilitate sectorization of the office and the preparation area. The new office space is modular and easily divided into three offices (one for physicians and one for each of the two nursing teams), each separated by sliding glass partitions and furnished with at least six seats. Installation of two counters facing each other in the common preparation area means that nurses who are interrupted during preparation can return and find their materials in the same position and state, unaffected by their colleagues’ activities.
Reorganization of work schedules and technical services
Professional activity in technical departments is much more than the mere sum of tasks associated with each test. A study conducted in several nuclear medicine departments (Favrot-Laurens 1992) revealed that nuclear medicine technicians spend very little of their time performing technical tasks. In fact, a significant part of technicians’ time was spent coordinating activity and workload at the various workstations, transmitting information and making unavoidable adjustments. These responsibilities stem from technicians’ obligation to be knowledgeable about each test and to possess essential technical and administrative information in addition to test-specific information such as time and injection site.
Information processing necessary for the delivery of care
Roquelaure, Pottier and Pottier (1992) were asked by a manufacturer of electroencephalography (EEG) equipment to simplify the use of the equipment. They responded by facilitating the reading of visual information on controls which were excessively complicated or simply unclear. As they point out, “third-generation” machines present unique difficulties, due in part to the use of visual display units packed with barely legible information. Deciphering these screens requires complex work strategies.
On the whole, however, little attention has been paid to the need to present information in a manner that facilitates rapid decision-making in health care departments. For example, the legibility of information on medicine labels still leaves much to be desired, according to one study of 240 dry oral and 364 injectable medications (Ott et al. 1991). Ideally, labels for dry oral medication administered by nurses, who are frequently interrupted and attend several patients, should have a matte surface, characters at least 2.5 mm high and comprehensive information on the medication in question. Only 36% of the 240 medications examined satisfied the first two criteria, and only 6% all three. Similarly, print smaller than 2.5 mm was used in 63% of labels on the 364 injectable medications.
In many countries where English is not spoken, machine control panels are still labelled in English. Patient-chart software is being developed in many countries. In France, this type of software development is often motivated by a desire to improve hospital management and undertaken without adequate study of the software’s compatibility with actual working procedures (Estryn-Béhar 1991). As a result, the software may actually increase the complexity of nursing, rather than reduce cognitive strain. Requiring nurses to page through multiple screens of information to obtain the information they need to fill a prescription may increase the number of errors they make and memory lapses they suffer.
While Scandinavian and North American countries have computerized much of their patient records, it must be borne in mind that hospitals in these countries benefit from a high staff-to-patient ratio, and work interruptions and constant reshuffling of priorities are therefore less problematic there. In contrast, patient-chart software designed for use in countries with lower staff-to-patient ratios must be able to easily produce summaries and facilitate reorganization of priorities.
Human error in anaesthesia
Cooper, Newbower and Kitz (1984), in their study of the factors underlying errors during anaesthesia in the United States, found equipment design to be crucial. The 538 errors studied, largely drug administration and equipment problems, were related to the distribution of activities and the systems involved. According to Cooper, better design of equipment and monitoring apparatus would lead to a 22% reduction in errors, while complementary training of anaesthesiologists, using new technologies such as anaesthesia simulators, would lead to a 25% reduction. Other recommended strategies focus on work organization, supervision and communications.
Acoustic alarms in operating theatres and intensive-care units
Several studies have shown that too many types of alarms are used in operating theatres and intensive-care units. In one study, anaesthetists identified only 33% of alarms correctly, and only two monitors had recognition rates exceeding 50% (Finley and Cohen 1991). In another study, anaesthetists and anaesthesia nurses correctly identified alarms in only 34% of cases (Loeb et al. 1990). Retrospective analysis showed that 26% of nurses’ errors were due to similarities in alarm sounds and 20% to similarities in alarm functions. Momtahan and Tansley (1989) reported that recovery-room nurses and anaesthetists correctly identified alarms in only 35% and 22% of cases respectively. In another study by Momtahan, Hétu and Tansley (1993), 18 physicians and technicians were able to identify only 10 to 15 of 26 operating-theatre alarms, while 15 intensive-care nurses were able to identify only 8 to 14 of 23 alarms used in their unit.
De Chambost (1994) studied the acoustic alarms of 22 types of machines used in an intensive-care unit in the Paris region. Only the cardiogram alarms and those of one of the two types of automated-plunger syringes were readily identified. The others were not immediately recognized and required personnel first to investigate the source of the alarm in the patient’s room and then return with the appropriate equipment. Spectral analysis of the sound emitted by eight machines revealed significant similarities and suggests the existence of a masking effect between alarms.
The unacceptably high number of unjustifiable alarms has been the object of particular criticism. O’Carroll (1986) characterized the origin and frequency of alarms in a general intensive-care unit over three weeks. Only eight of 1,455 alarms were related to a potentially fatal situation. There were many false alarms from monitors and perfusion pumps. There was little difference between the frequency of alarms during the day and night.
Similar results have been reported for alarms used in anaesthesiology. Kestin, Miller and Lockhart (1988), in a study of 50 patients and five commonly used anaesthesia monitors, reported that only 3% indicated a real risk for the patient and that 75% of alarms were unfounded (caused by patient movement, interference and mechanical problems). On average, ten alarms were triggered per patient, equivalent to one alarm every 4.5 minutes.
A common response to false alarms is simply to disable them. McIntyre (1985) reported that 57% of Canadian anaesthetists admitted deliberately inactivating an alarm. Obviously, this could lead to serious accidents.
These studies underscore the poor design of hospital alarms and the need for alarm standardization based on cognitive ergonomics. Both Kestin, Miller and Lockhart (1988) and Kerr (1985) have proposed alarm modifications that take into account risk and the expected corrective responses of hospital personnel. As de Keyser and Nyssen (1993) have shown, the prevention of human error in anaesthesia integrates different measures—technological, ergonomic, social, organizational and training.
Technology, human error, patient safety and perceived psychological strain
Rigorous analysis of the error process is very useful. Sundström-Frisk and Hellström (1995) reported that equipment deficiencies and/or human error were responsible for 57 deaths and 284 injuries in Sweden between 1977 and 1986. The authors interviewed 63 intensive-care-unit teams involved in 155 incidents (“near-accidents”) involving advanced medical equipment; most of these incidents had not been reported to authorities. Seventy typical “near-accident” scenarios were developed. Causal factors identified included inadequate technical equipment and documentation, the physical environment, procedures, staffing levels and stress. The introduction of new equipment may lead to accidents if the equipment is poorly adapted to users’ needs and is introduced in the absence of basic changes in training and work organization.
In order to cope with forgetfulness, nurses develop several strategies for remembering, anticipating and avoiding incidents. They do still occur and even when patients are unaware of errors, near-accidents cause personnel to feel guilty. The article "Case Study: Human Error and Critical Taks" deals with some aspects of the problem.
Emotional or Affective Strain
Nursing work, especially if it forces nurses to confront serious illness and death, can be a significant source of affective strain, and may lead to burn-out, which is discussed more fully elsewhere in this Encyclopaedia. Nurses’ ability to cope with this stress depends on the extent of their support network and their possibility to discuss and improve patients’ quality of life. The following section summarizes the principal findings of Leppanen and Olkinuora’s (1987) review of Finnish and Swedish studies on stress.
In Sweden, the main motivations reported by health professionals for entering their profession were the “moral calling” of the work, its usefulness and the opportunity to exercise competence. However, almost half of nurses’ aides rated their knowledge as inadequate for their work, and one-quarter of nurses, one-fifth of registered nurses, one-seventh of physicians and one-tenth of head nurses considered themselves incompetent at managing some types of patients. Incompetence in managing psychological problems was the most commonly cited problem and was particularly prevalent among nurses’ aides, although also cited by nurses and head nurses. Physicians, on the other hand, consider themselves competent in this area. The authors focus on the difficult situation of nurses’ aides, who spend more time with patients than the others but are, paradoxically, unable to inform patients about their illness or treatment.
Several studies reveal the lack of clarity in delineating responsibilities. Pöyhönen and Jokinen (1980) reported that only 20% of Helsinki nurses were always informed of their tasks and the goals of their work. In a study conducted in a paediatric ward and an institute for disabled persons, Leppanen showed that the distribution of tasks did not allow nurses enough time to plan and prepare their work, perform office work and collaborate with team members.
Responsibility in the absence of decision-making power appears to be a stress factor. Thus, 57% of operating-room nurses felt that ambiguities concerning their responsibilities aggravated their cognitive strain; 47% of surgical nurses reported being unfamiliar with some of their tasks and felt that patients’ and nurses’ conflicting expectations were a source of stress. Further, 47% reported increased stress when problems occurred and physicians were not present.
According to three European epidemiological studies, burn-out affects approximately 25% of nurses (Landau 1992; Saint-Arnaud et al. 1992; Estryn-Béhar et al. 1990) (see table 3 ). Estryn-Béhar et al. studied 1,505 female health care workers, using a cognitive strain index that integrates information on work interruptions and reorganization and an affective strain index that integrates information on work ambience, teamwork, congruity of qualification and work, time spent talking to patients and the frequency of hesitant or uncertain responses to patients. Burn-out was observed in 12% of nurses with low, 25% of those with moderate and 39% of those with high cognitive strain. The relationship between burn-out and affective strain increases was even stronger: burn-out was observed in 16% of nurses with low, 25% of those with moderate and 64% of those with high affective strain. After adjustment by logistic multivariate regression analysis for social and demographic factors, women with a high affective strain index had an odds ratio for burn-out of 6.88 compared to those with a low index.
Table 3. Cognitive and affective strain and burn-out among health workers
Germany* |
Canada** |
France*** |
|
Number of subjects |
24 |
868 |
1,505 |
Method |
Maslach Burn-out |
Ilfeld Psychiatric |
Goldberg General |
High emotional |
33% |
20% |
26% |
Degree of burn-out, |
Morning 2.0; |
Morning 25%; |
|
Percentage suffering |
Cognitive and |
Cognitive strain: |
* Landau 1992. ** Saint Arnand et. al. 1992. *** Estryn-Béhar et al. 1990.
Saint-Arnaud et al. reported a correlation between the frequency of burn-out and the score on their composite cognitive and affective strain index. Landau’s results support these findings.
Finally, 25% of 520 nurses working in a cancer treatment centre and a general hospital in France were reported to exhibit high burn-out scores (Rodary and Gauvain-Piquard 1993). High scores were most closely associated with a lack of support. Feelings that their department did not regard them highly, take their knowledge of the patients into account or put the highest value on their patients’ quality of life were reported more frequently by nurses with high scores. Reports of being physically afraid of their patients and unable to organize their work schedule as they wished were also more frequent among these nurses. In light of these results, it is interesting to note that Katz (1983) observed a high suicide rate among nurses.
Impact of workload, autonomy and support networks
A study of 900 Canadian nurses revealed an association between workload and five indices of cognitive strain measured by the Ilfeld questionnaire: the global score, aggression, anxiety, cognitive problems and depression (Boulard 1993). Four groups were identified. Nurses with a high workload, high autonomy and good social support (11.76%) exhibited several stress-related symptoms. Nurses with a low workload, high autonomy and good social support (35.75%) exhibited the lowest stress. Nurses with high workload, little autonomy and little social support (42.09%) had a high prevalence of stress-related symptoms, while nurses with a low workload, little autonomy and little social support (10.40%) had low stress, but the authors suggest that these nurses may experience some frustration.
These results also demonstrate that autonomy and support, rather than moderating the relationship between workload and mental health, act directly on workload.
Role of head nurses
Classically, employee satisfaction with supervision has been considered to depend on the clear definition of responsibilities and on good communication and feedback. Kivimäki and Lindström (1995) administered a questionnaire to nurses in 12 wards of four medical departments and interviewed the wards’ head nurses. Wards were classified into two groups on the basis of the reported level of satisfaction with supervision (six satisfied wards and six dissatisfied wards). Scores for communication, feedback, participation in decision-making and the presence of a work climate that favours innovation were higher in “satisfied” wards. With one exception, head nurses of “satisfied” wards reported conducting at least one confidential conversation lasting one to two hours with each employee annually. In contrast, only one of the head nurses of the “dissatisfied” wards reported this behaviour.
Head nurses of the “satisfied” wards reported encouraging team members to express their opinions and ideas, discouraging team members from censuring or ridiculing nurses who made suggestions, and consistently attempting to give positive feedback to nurses expressing different or new opinions. Finally, all the head nurses in “satisfied” wards, but none of the ones in “dissatisfied” ones, emphasized their own role in creating a climate favourable to constructive criticism.
Psychological roles, relationships and organization
The structure of nurses’ affective relationships varies from team to team. A study of 1,387 nurses working regular night shifts and 1,252 nurses working regular morning or afternoon shifts revealed that shifts were extended more frequently during night shifts (Estryn-Béhar et al. 1989a). Early shift starts and late shift ends were more prevalent among night-shift nurses. Reports of a “good” or “very good” work ambience were more prevalent at night, but a “good relationship with physicians” was less prevalent. Finally, night-shift nurses reported having more time to talk to patients, although that meant that worries and uncertainties about the appropriate response to give patients, also more frequent at night, were harder to bear.
Büssing (1993) revealed that depersonalization was greater for nurses working abnormal hours.
Stress in physicians
Denial and suppression of stress are common defence mechanisms. Physicians may attempt to repress their problems by working harder, distancing themselves from their emotions or adopting the role of a martyr (Rhoads 1977; Gardner and Hall 1981; Vaillant, Sorbowale and McArthur 1972). As these barriers become more fragile and adaptive strategies break down, bouts of anguish and frustration become more and more frequent.
Valko and Clayton (1975) found that one-third of interns suffered severe and frequent episodes of emotional distress or depression, and that one-quarter of them entertained suicidal thoughts. McCue (1982) believed that a better understanding of both stress and reactions to stress would facilitate physician training and personal development and modify societal expectations. The net effect of these changes would be an improvement in care.
Avoidance behaviours may develop, often accompanied by a deterioration of interpersonal and professional relationships. At some point, the physician finally crosses the line into a frank deterioration of mental health, with symptoms which may include substance abuse, mental illness or suicide. In yet other cases, patient care may be compromised, resulting in inappropriate examinations and treatment, sexual abuse or pathological behaviour (Shapiro, Pinsker and Shale 1975).
A study of 530 physician suicides identified by the American Medical Association over a five-year period found that 40% of suicides by female physicians and less than 20% of suicides by male physicians occurred in individuals younger than 40 years (Steppacher and Mausner 1974). A Swedish study of suicide rates from 1976 to 1979 found the highest rates among some of the health professions, compared to the overall active population (Toomingas 1993). The standardized mortality ratio (SMR) for female physicians was 3.41, the highest value observed, while that for nurses was 2.13.
Unfortunately, health professionals with impaired mental health are often ignored and may even be rejected by their colleagues, who attempt to deny these tendencies in themselves (Bissel and Jones 1975). In fact, slight or moderate stress is much more prevalent among health professionals than are frank psychiatric disorders (McCue 1982). A good prognosis in these cases depends on early diagnosis and peer support (Bitker 1976).
Discussion groups
Studies on the effect of discussion groups on burn-out have been undertaken in the United States. Although positive results have been demonstrated (Jacobson and MacGrath 1983), it should be noted that these have been in institutions where there was sufficient time for regular discussions in quiet and appropriate settings (i.e., hospitals with high staff-patient ratios).
A literature review of the success of discussion groups has shown these groups to be valuable tools in wards where a high proportion of patients are left with permanent sequelae and must learn to accept modifications in their lifestyle (Estryn-Béhar 1990).
Kempe, Sauter and Lindner (1992) evaluated the merits of two support techniques for nurses near burn-out in geriatrics wards: a six-month course of 13 professional counselling sessions and a 12-month course of 35 “Balint group” sessions. The clarification and reassurance provided by the Balint group sessions were effective only if there was also significant institutional change. In the absence of such change, conflicts may even intensify and dissatisfaction increase. Despite their impending burn-out, these nurses remained very professional and sought ways of carrying on with their work. These compensatory strategies had to take into account extremely high workloads: 30% of nurses worked more than 20 hours of overtime per month, 42% had to cope with understaffing during more than two-thirds of their working hours and 83% were often left alone with unqualified personnel.
The experience of these geriatrics nurses was compared to that of nurses in oncology wards. Burnout score was high in young oncology nurses, and decreased with seniority. In contrast, burnout score among geriatrics nurses increased with seniority, attaining levels much higher than those observed in oncology nurses. This lack of decrease with seniority is due to the characteristics of the workload in geriatrics wards.
The need to act on multiple determinants
Some authors have extended their study of effective stress management to organizational factors related to affective strain.
For example, analysis of psychological and sociological factors was part of Theorell’s attempt to implement case-specific improvements in emergency, paediatric and juvenile psychiatry wards (Theorell 1993). Affective strain before and after the implementation of changes was measured through the use of questionnaires and the measurement of plasma prolactin levels, shown to mirror feelings of powerlessness in crisis situations.
Emergency-ward personnel experienced high levels of affective strain and frequently enjoyed little decisional latitude. This was attributed to their frequent confrontation with life-and-death situations, the intense concentration demanded by their work, the high number of patients they frequently attended and the impossibility of controlling the type and number of patients. On the other hand, because their contact with patients was usually short and superficial, they were exposed to less suffering.
The situation was more amenable to control in paediatric and juvenile psychiatry wards, where schedules for diagnostic procedures and therapeutic procedures were established in advance. This was reflected by a lower risk of overwork compared to emergency wards. However, personnel in these wards were confronted with children suffering from serious physical and mental disease.
Desirable organizational changes were identified through discussion groups in each ward. In emergency wards, personnel were very interested in organizational changes and recommendations concerning training and routine procedures—such as how to treat rape victims and elderly patients with no relations, how to evaluate work and what to do if a called physician doesn’t arrive—were formulated. This was followed by the implementation of concrete changes, including the creation of the position of head physician and the ensuring of the constant availability of an internist.
The personnel in juvenile psychiatry were primarily interested in personal growth. Reorganization of resources by the head physician and the county allowed one-third of the personnel to undergo psychotherapy.
In paediatrics, meetings were organized for all the personnel every 15 days. After six months, social support networks, decisional latitude and work content all had improved.
The factors identified by these detailed ergonomic, psychological and epidemiological studies are valuable indices of work organization. Studies which focus on them are quite different from in-depth studies of multi-factor interactions and instead revolve around the pragmatic characterization of specific factors.
Tintori and Estryn-Béhar (1994) identified some of these factors in 57 wards of a large hospital in the Paris region in 1993. Shift overlap of more than 10 minutes was present in 46 wards, although there was no official overlap between the night and morning shifts in 41 wards. In half the cases, these information communication sessions included nurses’ aides in all three shifts. In 12 wards, physicians participated in the morning-afternoon sessions. In the three months preceding the study, only 35 wards had held meetings to discuss patients’ prognoses, discharges and patients’ understanding of and reaction to their illnesses. In the year preceding the study, day-shift workers in 18 wards had received no training and only 16 wards had dispensed training to their night-shift workers.
Some new lounges were not used, since they were 50 to 85 metres from some of the patients’ rooms. Instead, the personnel preferred holding their informal discussions around a cup of coffee in a smaller but closer room. Physicians participated in coffee breaks in 45 day-shift wards. Nurses’ complaints of frequent work interruptions and feelings of being overwhelmed by their work are no doubt attributable in part to the dearth of seats (less than four in 42 of the 57 wards) and cramped quarters of the nursing stations, where more than nine people must spend a good part of their day.
The interaction of stress, work organization and support networks is clear in studies of the home-care unit of the hospital in Motala, Sweden (Beck-Friis, Strang and Sjöden 1991; Hasselhorn and Seidler 1993). The risk of burn-out, generally considered high in palliative care units, was not significant in these studies, which in fact revealed more occupational satisfaction than occupational stress. Turnover and work stoppages in these units were low, and personnel had a positive self-image. This was attributed to selection criteria for personnel, good teamwork, positive feedback and continuing education. Personnel and equipment costs for terminal-stage cancer hospital care are typically 167 to 350% higher than for hospital-based home care. There were more than 20 units of this type in Sweden in 1993.
United States
High levels of stress among air traffic controllers (ATCs) were first widely reported in the United States in the 1970 Corson Report (US Senate 1970), which focused on working conditions such as overtime, few regular work breaks, increasing air traffic, few vacations, poor physical work environment and “mutual resentment and antagonism” between management and labour. Such conditions contributed to ATC job actions in 1968–69. In addition, early medical research, including a major 1975–78 Boston University study (Rose, Jenkins and Hurst 1978), suggested that ATCs may face a higher risk of stress-related illness, including hypertension.
Following the 1981 US ATC strike, in which job stress was a major issue, the Department of Transportation again appointed a task force to examine stress and morale. The resulting 1982 Jones Report indicated that FAA employees in a wide variety of job titles reported negative results for job design, work organization, communication systems, supervisory leadership, social support and satisfaction. The typical form of ATC stress was an acute episodic incident (such as a near mid-air collision) along with interpersonal tensions stemming from management style. The task force reported that 6% of the ATC sample was “burned out” (having a large and debilitating loss of self-confidence in ability to do the job). This group represented 21% of those 41 years of age and older and 69% of those with 19 or more years of service.
A 1984 review by the Jones task force of its recommendations concluded that “conditions are as bad as in 1981, or perhaps a bit worse”. Major concerns were increasing traffic volume, inadequate staffing, low morale and an increasing burnout rate. Such conditions led to the re-unionization of US ATCs in 1987 with the election of the National Air Traffic Controllers Organization (NATCA) as their bargaining representative.
In a 1994 survey, New York City area ATCs reported continuing staffing shortages and concerns about job stress, shift work and indoor air quality. Recommendations for improving morale and health included transfer opportunities, early retirement, more flexible schedules, exercise facilities at work and increased staffing. In 1994, a greater proportion of Level 3 and 5 ATCs reported high burnout than ATCs in 1981 and 1984 national surveys (except for ATCs working in centres in 1984). Level 5 facilities have the highest level of air traffic, and Level 1, the lowest (Landsbergis et al. 1994). Feelings of burnout were related to having experienced a “near miss” in the past 3 years, age, years working as an ATC, working in high-traffic Level 5 facilities, poor work organization and poor supervisor and co-worker support.
Research also continues on appropriate shift schedules for ATCs, including the possibility of a 10-hour, 4-day shift schedule. The long-term health effects of the combination of rotating shifts and compressed work weeks are not known.
A collectively bargained programme to reduce ATC job stress in Italy
The company in charge of all civil air traffic in Italy (AAAV) employs 1,536 ATCs. AAAV and union representatives drew up several agreements between 1982 and 1991 to improve working conditions. These include:
1. Modernizing radio systems and automating aeronautical information, flight data processing and air traffic management. This provided for more reliable information and more time for making decisions, eliminating many risky traffic peaks and providing for a more balanced workload.
2. Reducing work hours. The operative work week is now 28 to 30 hours.
3. Changing shift schedules:
4. Reduce environmental stressors. Attempts have been made to reduce noise and provide more light.
5. Improving the ergonomics of new consoles, screens and chairs.
6. Improving physical fitness. Gyms are provided in the largest facilities.
Research during this period suggests that the programme was beneficial. The night shift was not very stressful; ATCs’ performance did not worsen significantly at the end of three shifts; only 28 ATCs were dismissed for health reasons in 7 years; and a large decline in “near misses” occurred despite major increases in air traffic.
The teaching of trades through the apprenticeship system dates at least as far back as the Roman Empire, and continues to this day in classic trades such as shoemaking, carpentry, stone masonry and so forth. Apprenticeships can be informal, where a person desiring to learn a trade finds a skilled employer willing to teach him or her in exchange for work. However, most apprenticeships are more formal and involve a written contract between the employer and the apprentice, who is bound to serve the employer for a given time in return for training. These formal apprenticeship programmes usually have standard rules regarding qualifications for completing the apprenticeship that are set by an institution such as a trade union, guild or employer organization. In some countries, trade unions and employer organizations run the apprenticeship programme directly; these programmes usually involve a combination of structured on-the-job training and classroom instruction.
In today’s technological world, however, there is a growing need for skilled labour in many areas, such as laboratory technicians, mechanics, machinists, cosmetologists, cooks, service trades and many more. The learning of these skilled trades usually takes place in vocational programmes in schools, vocational institutes, polytechnics, colleges with two-year programmes and similar institutions. These sometimes include internships in actual work settings.
Both the teachers and the students in these vocational programmes face occupational hazards from the chemicals, machinery, physical agents and other hazards associated with the particular trade or industry. In many vocational programmes, students are learning their skills using old machinery donated by industry. These machines often are not equipped with modern safety features such as proper machine guards, fast-acting brakes, noise-control measures and so forth. The teachers themselves often have not had adequate training in the hazards of the trade and appropriate precautions. Often, the schools do not have adequate ventilation and other precautions.
Apprentices often face high-risk situations because they are assigned the dirtiest and most hazardous tasks. Often they are used as a source of cheap labour. In these situations, it is even more likely that the apprentice’s employers have not had adequate training in the hazards and precautions of their trade. Informal apprenticeships are usually not regulated, and there is often no recourse for apprentices facing such exploitation or hazards.
Another common problem with both apprenticeship programmes and vocational training is age. Apprenticeship entry age is generally between 16 and 18 year of age. Vocational training can begin at elementary school. Studies have shown that young workers (aged 15 to 19 years) account for a disproportionate percentage of lost-time injury claims. In Ontario, Canada, for the year 1994, the largest proportion of injured young workers were employed in the service industry.
These statistics indicate that students entering these programmes may not understand the importance of health and safety training. Students also can have different attention spans and comprehension levels than adults, and this should be reflected in their training. Finally, extra attention is needed in sectors such as service industries, where health and safety has generally not received the attention found in other industries.
In any apprenticeship or vocational programme, there should be built-in safety and health training programmes, including hazard communication. The teachers or employers should be properly trained in the hazards and precautions, both to protect themselves and to teach the students properly. The work or training setting should have adequate precautions.
In ancient times, the art of sculpture included engraving and carving of stone, wood, bone and other materials. Later, sculpture developed and refined modelling techniques in clay and plaster, and moulding and welding techniques in metals and glass. During the last century various additional materials and techniques have been used for the art of sculpture, including plastic foams, paper, found materials and several sources of energy such as light, kinetic energy and so on. The aim of many modern sculptors is to involve the viewer actively.
Sculpture often utilizes the natural colour of the material or treats its surface to achieve a certain colour or to emphasize the natural characteristics or to modify the light reflections. Such techniques belong to the finishing touches of the art piece. Health and safety risks for artists and their assistants arise from the characteristics of the materials; from the use of tools and equipment; from the various forms of energy (mainly electricity) used for the functioning of tools; and from heat for welding and fusing techniques.
Artists’ lack of information and their focusing on the work lead to underestimating the importance of safety; this can result in serious accidents and the development of occupational diseases.
The risks are sometimes linked to the design of the workplace or to the organization of the work (e.g., carrying out many working operations at the same time). Such risks are common to all workplaces, but in the arts and crafts environment they can have more serious outcomes.
General Precautions
These include: appropriate design of the studio, considering the type of power sources employed and the placement and movement of the artistic material; segregation of hazardous operations controlled with adequate warning displays; installation of exhaust systems for control and removal of powders, gases, fumes, vapours and aerosols; use of well-fitted and convenient personal protective equipment; efficient clean-up facilities, such as showers, sinks, eye-wash fountains and so on; knowledge of the risks associated with the use of chemical substances and of the regulations that govern their use, in order to avoid or at least reduce their potential harm; keeping informed on the possible risks of accidents and on hygiene regulations and being trained in first aid and. Local ventilation to remove airborne dust is necessary at its source, when it is produced in abundance. Daily vacuum cleaning, either wet or dry, or wet mopping of the floor and of work surfaces is highly recommended.
Main Sculpturing Techniques
Stone sculpture involves carving hard and soft stones, precious stones, plaster, cement and so on. Sculpture shaping involves work on more pliable materials—plaster and clay modelling and casting, wood sculpture, metalworking, glassblowing, plastic sculpture, sculpture in other materials and mixed techniques. See also the articles “Metalworking” and “Woodworking”. Glassblowing is discussed in the chapter Glass, ceramics and related materials.
Stone sculptures
Stones used for sculpture can be divided into soft stones and hard stones. The soft stones can be worked manually with tools such as saws, chisels, hammers and rasps, as well as with electric tools.
Hard stones such as granite, and other materials, such as cement blocks, can be used to create works of art and ornaments. This involves working with electric or pneumatic tools. The final stages of the work can be partially executed by hand.
Risks
Prolonged inhalation of high quantities of certain stone dusts containing free crystalline silica, which comes out of freshly cut surfaces, can lead to silicosis. Electric and pneumatic tools can cause a higher concentration in the air of dust which is finer than that produced by manual tools. Marble, travertine and limestone are inert materials and not pathogenic to the lungs; plaster (calcium sulphate) is irritating to the skin and to the mucous membranes.
Asbestos fibre inhalation, even in small quantities, can lead to a risk of lung cancer (laryngeal, tracheal, bronchial, lung and pleural malignancies) and probably also cancer of the digestive tract and of other organ systems. Such fibres can be found as impurities in serpentine and in talc. Asbestosis (fibrosis of the lung) can be contracted only through the inhalation of high doses of asbestos fibres, which is unlikely at this type of work. See table 1 for a list of the hazards of common stones.
Table 1. Hazards of common stones.
Hazardous ingredient |
Stones |
Free crystalline silica
|
Hard stones: Granites, basalt, jasper, porphyry, onyx, pietra serena |
Soft stones: steatite (soapstone), sandstone, slate, clays, some limestone |
|
Possible asbestos contamination |
Soft stones: soapstone, serpentine |
Free silica and asbestos
|
Hard stones: marble, travertine |
Soft stones: alabaster, tufa, marble, plaster |
High noise levels can be produced by the use of pneumatic hammers, electric saws and sanders, as well as manual tools. This can result in hearing loss and other effects on the autonomic nervous system (increase of heart rate, gastric disturbances and so on), psychological problems (irritability, attention deficits and so on), as well as general health problems, including headaches.
The use of electric and pneumatic tools can provoke damage to finger micro-circulation with the possibility of Raynaud’s phenomenon, and facilitate degenerative phenomena to the upper arm.
Work in difficult positions and lifting heavy objects can produce low-back pain, muscle strains, arthritis and joint bursitis (knee, elbow).
The risk of accidents is frequently connected with the use of sharp tools moved by powerful forces (manual, electric or pneumatic). Often stone splinters are violently shot into the working environment during the breaking of stones; falling or rolling of improperly fixed blocks or surfaces also occurs. The use of water can lead to slipping on wet floors, and to electric shocks.
Pigment and colourant substances (especially of spray type) used to cover the final layer (paints, lakes) expose the worker to the risk of inhalation of toxic compounds (lead, chromium, nickel) or of irritating or allergenic compounds (acrylic or resins). This can affect the mucous membranes as well as the respiratory tract.
Inhalation of evaporating paints solvents in high quantities over the course of the working day or in lower concentrations for longer periods, can provoke acute or chronic toxic effects on the central nervous system.
Precautions
Alabaster is a safer substitute for soapstone and other hazardous soft stones.
Pneumatic or electric tools with portable dust collectors should be used. The working environment should be cleaned frequently using vacuum cleaners or wet mopping; adequate general ventilation must be provided.
The respiratory system can be protected from the inhalation of dusts, solvents and aerosol vapours through use of proper respirators. Hearing can be protected with ear plugs and eyes can be protected with proper goggles. To reduce the risk of hand accidents leather gloves (when necessary) or lighter rubber gloves, lined with cotton, should be used to prevent contact with chemical substances. Anti-slipping and safety shoes should be used to prevent damage to the feet caused by the possible fall of heavy objects. During complicated and long operations, proper clothes should be worn; ties, jewellery and clothes which could easily get stuck in the machines should not be worn. Long hair should be put up or under a cap. A shower should be taken at the end of every work period; work clothes and shoes should never be taken home.
Pneumatic tool compressors should be placed out of the work area; noisy areas should be insulated; numerous breaks should be taken in warm areas during the working day. Pneumatic and electric tools equipped with comfortable handles (better if equipped with mechanical shock absorbers) which are able to direct the air away from the hands of the operator should be used; stretching and massage are suggested during the work period.
Sharp tools should be operated as far as possible from hands and body; broken tools should not be used.
Flammable substances (paints, solvents) must be kept far from flames, lit cigarettes and heat sources.
Sculpture shaping
The most common material used for sculpture shaping is clay (mixed with water or naturally soft clay); wax, plaster, concrete and plastic (sometimes reinforced with glass fibres) are also commonly used.
The facility with which a sculpture is shaped is directly proportional to the malleability of the material used. A tool (wood, metal, plastic) is often used.
Some materials, such as clays, can become hard after being heated in a furnace or kiln. Also, talc can be used as semi-liquid clay (slip), which can be poured into moulds and then fired in a kiln after drying.
These types of clays are similar to those used in the ceramic industry and may contain considerable amounts of free crystalline silica. See the article “Ceramics”.
Non-hardening clays, such as plasticine, contain fine particles of clays mixed with vegetable oils, preservatives and sometimes solvents. The hardening clays, also called polymer clays, are actually formed with polyvinyl chloride, with plasticizing materials such as various phthalates.
Wax is usually shaped by pouring it into a mould after it is heated, but it can also be formed with heated tools. Wax can be of natural or synthetic compounds (coloured waxes). Many types of waxes can be dissolved with solvents such as alcohol, acetone, mineral or white spirits, ligroin and carbon tetrachloride.
Plaster, concrete and papier mâché have different characteristics: it is not necessary to heat or to melt them; they are usually worked on a metal or fibreglass frame, or cast in moulds.
Plastic sculpture techniques can be divided into two main areas:
Plastics can be formed by polyester, polyurethane, amino, phenolic, acrylic, epoxy and silicon resins. During polymerization, they can be poured into moulds, applied by hand layup, printed, laminated and skimmed by using catalyzers, accelerators, hardeners, loads and pigments.
See table 2 for a list of the hazards and precautions for common sculpture shaping materials.
Table 2. Main risks associated with material used for sculpture shaping.
Materials |
Hazards and precautions |
Clays
|
Hazards: Free crystalline silica; talc can be contaminated by asbestos; during heating operations, toxic gases can be released. |
Precautions: See “Ceramics”. |
|
Plasticine
|
Hazards: Solvents and preservatives can cause irritation to skin and mucous and allergic reactions in certain individuals. |
Precautions: Susceptible individuals should find other materials. |
|
Hard clays
|
Hazards: Some hardening or polymer clay plasticizers (phthalates) are possible reproductive or carcinogen toxins. During heating operations, hydrogen chloride can be released, especially if overheated. |
Precautions: Avoid overheating or using in an oven also used for cooking. |
|
Waxes
|
Hazards: Overheated vapours are flammable and explosive. Acrolein fumes, produced by decomposition from overheating wax, are strong respiratory irritants and sensitizers. Wax solvents can be toxic by contact and inhalation; carbon tetrachloride is carcinogenic and highly toxic to the liver and kidneys. |
Precautions: Avoid open flames. Do not use electric hot plates with exposed heating elements. Heat to minimum temperature necessary. Do not use carbon tetrachloride. |
|
Finished plastics
|
Hazards: Heating, machining, cutting plastics can result in decomposition to hazardous materials such as hydrogen chloride (from polyvinyl chloride), hydrogen cyanide (from polyurethanes and amino plastics), styrene (from polystyrene) and carbon monoxide from the combustion of plastics. Solvents used for gluing plastics are also fire and health hazards. |
Precautions: Have good ventilation when working with plastics and solvents. |
|
Plastics resins
|
Hazards: Most resin monomers (e.g., styrene, methyl methacrylate, formaldehyde) are hazardous by skin contact and inhalation. Methyl ethyl ketone peroxide hardener for polyester resins can cause blindness if splashed in the eyes. Epoxy hardeners are skin and respiratory irritants and sensitizers. Isocyanates used in polyurethane resins can cause severe asthma. |
Precautions: Use all resins with proper ventilation, personal protective equipment (gloves, respirators, goggles), fire precautions and so forth. Do not spray polyurethane resins. |
|
Glassblowing |
See Glass, ceramics and related materials. |
For a long time, nurses and nursing assistants were among the only women working at night in many countries (Gadbois 1981; Estryn-Béhar and Poinsignon 1989). In addition to the problems already documented among men, these women suffer additional problems related to their family responsibilities. Sleep deprivation has been convincingly demonstrated among these women, and there is concern about the quality of care they are able to dispense in the absence of appropriate rest.
Organization of Schedules and Family Obligations
It appears that personal feelings about social and family life are at least partially responsible for the decision to accept or refuse night work. These feelings, in turn, lead workers to minimize or exaggerate their health problems (Lert, Marne and Gueguen 1993; Ramaciotti et al. 1990). Among non-professional personnel, financial compensation is the main determinant of the acceptance or refusal of night work.
Other work schedules may also pose problems. Morning-shift workers sometimes must rise before 05:00 and so lose some of the sleep that is essential for their recovery. Afternoon shifts finish between 21:00 and 23:00, limiting social and family life. Thus, often only 20% of women working in large university hospitals have work schedules in synchrony with the rest of society (Cristofari et al. 1989).
Complaints related to work schedules are more frequent among health care workers than among other employees (62% versus 39%) and indeed are among the complaints most frequently voiced by nurses (Lahaye et al. 1993).
One study demonstrated the interaction of work satisfaction with social factors, even in the presence of sleep deprivation (Verhaegen et al. 1987). In this study, nurses working only night shifts were more satisfied with their work than nurses working rotating shifts. These differences were attributed to the fact that all the night-shift nurses chose to work at night and organized their family life accordingly, while rotating-shift nurses found even rare night-shift work a disturbance of their personal and family lives. However, Estryn-Béhar et al. (1989b) reported that mothers working only night shifts were more tired and went out less frequently compared with male night-shift nurses.
In the Netherlands, the prevalence of work complaints was higher among nurses working rotating shifts than among those working only day shifts (Van Deursen et al. 1993) (see table 1).
Table 1. Prevalence of work complaints according to shift
Rotating shifts (%) |
Day shifts (%) |
|
Arduous physical work |
55.5 |
31.3 |
Arduous mental work |
80.2 |
61.9 |
Work often too tiring |
46.8 |
24.8 |
Under-staffing |
74.8 |
43.8 |
Insufficient time for breaks |
78.4 |
56.6 |
Interference of work with private life |
52.8 |
31.0 |
Dissatisfaction with schedules |
36.9 |
2.7 |
Frequent lack of sleep |
34.9 |
19.5 |
Frequent fatigue on rising |
31.3 |
17.3 |
Source: Van Deursen et al. 1993.
Sleep disturbances
On workdays, night-shift nurses sleep an average of two hours less than other nurses (Escribà Agüir et al. 1992; Estryn-Béhar et al. 1978; Estryn-Béhar et al. 1990; Nyman and Knutsson 1995). According to several studies, their quality of sleep is also poor (Schroër et al. 1993; Lee 1992; Gold et al. 1992; Estryn-Béhar and Fonchain 1986).
In their interview study of 635 Massachusetts nurses, Gold et al. (1992) found that 92.2% of nurses working alternating morning and afternoon shifts were able to maintain a nocturnal “anchor” sleep of four hours at the same schedule throughout the month, compared to only 6.3% of night-shift nurses and none of the nurses working alternating day and night shifts. The age- and seniority-adjusted odds ratio for “poor sleep” was 1.8 for night-shift nurses and 2.8 for rotating-shift nurses with night work, compared to morning- and afternoon-shift nurses. The odds ratio for taking sleep medication was 2.0 for night- and rotating-shift nurses, compared to morning- and afternoon-shift nurses.
Affective Problems and Fatigue
The prevalence of stress-related symptoms and reports of having stopped enjoying their work was higher among Finnish nurses working rotating shifts than among other nurses (Kandolin 1993). Estryn-Béhar et al. (1990) showed that night-shift nurses’ scores on the General Health Questionnaire used to evaluate mental health, compared to day-shift nurses (odds ratio of 1.6) showed poorer general health.
In another study, Estryn-Béhar et al. (1989b), interviewed a representative sample of one-quarter of night-shift employees (1,496 individuals) in 39 Paris-area hospitals. Differences appear according to sex and qualification (“qualified”=head nurses and nurses; “unqualified”=nurses’ aides and orderlies). Excessive fatigue was reported by 40% of qualified women, 37% of unqualified women, 29% of qualified men and 20% of unqualified men. Fatigue on rising was reported by 42% of qualified women, 35% of unqualified women, 28% of qualified men and 24% of unqualified men. Frequent irritability was reported by one-third of night-shift workers and by a significantly greater proportion of women. Women with no children were twice as likely to report excessive fatigue, fatigue on rising and frequent irritability than were comparable men. The increase compared to single men with no children was even more marked for women with one or two children, and greater still (a four-fold increase) for women with at least three children.
Fatigue on rising was reported by 58% of night-shift hospital workers and 42% of day-shift workers in a Swedish study using a stratified sample of 310 hospital workers (Nyman and Knutsson 1995). Intense fatigue at work was reported by 15% of day-shift workers and 30% of night-shift workers. Almost one-quarter of night-shift workers reported falling asleep at work. Memory problems were reported by 20% of night-shift workers and 9% of day-shift workers.
In Japan, the health and safety association publishes the results of medical examinations of all the country’s salaried employees. This report includes the results of 600,000 employees in the health and hygiene sector. Nurses generally work rotating shifts. Complaints concerning fatigue are highest in night-shift nurses, followed in order by evening- and morning-shift nurses (Makino 1995). Symptoms reported by night-shift nurses include sleepiness, sadness and difficulty concentrating, with numerous complaints about accumulated fatigue and disturbed social life (Akinori and Hiroshi 1985).
Sleep and Affective Disorders among Physicians
The effect of work content and duration on young physicians’ private lives, and the attendant risk of depression, has been noted. Valko and Clayton (1975) found that 30% of young residents suffered a bout of depression lasting an average of five months during their first year of residency. Of the 53 residents studied, four had suicidal thoughts and three made concrete suicide plans. Similar rates of depression have been reported by Reuben (1985) and Clark et al. (1984).
In a questionnaire study, Friedman, Kornfeld and Bigger (1971) showed that interns suffering from sleep deprivation reported more sadness, selfishness and modification of their social life than did more-rested interns. During interviews following the tests, interns suffering from sleep deprivation reported symptoms such as difficulty reasoning, depression, irritability, depersonalization, inappropriate reactions and short-term memory deficits.
In a one-year longitudinal study, Ford and Wentz (1984) evaluated 27 interns four times during their internship. During this period, four interns suffered at least one major bout of depression meeting standard criteria and 11 others reported clinical depression. Anger, fatigue and mood swings increased throughout the year and were inversely correlated with the amount of sleep the preceding week.
A literature review has identified six studies in which interns having spent one sleepless night exhibited deteriorations of mood, motivation and reasoning ability and increased fatigue and anxiety (Samkoff and Jacques 1991).
Devienne et al. (1995) interviewed a stratified sample of 220 general practitioners in the Paris area. Of these, 70 were on call at night. Most of the on-call physicians reported having had their sleep disturbed while on call and finding it particularly difficult to get back to sleep after having been awakened (men: 65%; women: 88%). Waking up in the middle of the night for reasons unrelated to service calls was reported by 22% of men and 44% of women. Having or almost having a car accident due to sleepiness related to being on call was reported by 15% of men and 19% of women. This risk was greater among physicians who were on call more than four times per month (30%) than in those on call three or four times per month (22%) or one to three times per month (10%). The day after being on call, 69% of women and 46% of men reported having difficulty concentrating and feeling less effective, while 37% of men and 31% of women reported experiencing mood swings. Accumulated sleep deficits were not recovered the day following on-call work.
Family and Social Life
A survey of 848 night-shift nurses found that over the previous month one-quarter had not gone out and had entertained no guests, and half had participated in such activities only once (Gadbois 1981). One-third reported refusing an invitation because of fatigue, and two-thirds reported going out only once, with this proportion rising to 80% among mothers.
Kurumatani et al. (1994) reviewed the time sheets of 239 Japanese nurses working rotating shifts over a total of 1,016 days and found that nurses with young children slept less and spent less time on leisure activities than did nurses without young children.
Estryn-Béhar et al. (1989b) observed that women were significantly less likely than men to spend at least one hour per week participating in team or individual sports (48% of qualified women, 29% of unqualified women, 65% of qualified men and 61% of unqualified men). Women were also less likely to frequently (at least four times per month) attend shows (13% of qualified women, 6% of unqualified women, 20% of qualified men and 13% of unqualified men). On the other hand, similar proportions of women and men practised home-based activities such as watching television and reading. Multivariate analysis showed that men with no children were twice as likely to spend at least one hour per week on athletic activities than were comparable women. This gap increases with the number of children. Child care, and not gender, influences reading habits. A significant proportion of the subjects in this study were single parents. This was very rare among qualified men (1%), less rare among unqualified men (4.5%), common in qualified women (9%) and extremely frequent in unqualified women (24.5%).
In Escribà Agüir’s (1992) study of Spanish hospital workers, incompatibility of rotating shifts with social and family life was the leading source of dissatisfaction. In addition, night-shift work (either permanent or rotating) disturbed the synchronization of their schedules with those of their spouses.
Lack of free time interferes severely with the private life of interns and residents. Landau et al. (1986) found that 40% of residents reported major conjugal problems. Of these residents, 72% attributed the problems to their work. McCall (1988) noted that residents have little time to spend on their personal relationships; this problem is particularly serious for women nearing the end of their low-risk-pregnancy years.
Irregular Shift Work and Pregnancy
Axelsson, Rylander and Molin (1989) distributed a questionnaire to 807 women employed at the hospital in Mölna, Sweden. The birth weights of children born to non-smoking women working irregular shifts were significantly lower than that of children born to non-smoking women who only worked day shifts. The difference was greatest for infants of at least grade 2 (3,489 g versus 3,793 g). Similar differences were also found for infants of at least grade 2 born to women working afternoon shifts (3,073 g) and shifts alternating every 24 hours (3,481 g).
Vigilance and Quality of Work among Night-Shift Nurses
Englade, Badet and Becque (1994) performed Holter EEGs on two groups of nine nurses. It showed that the group not allowed to sleep had attention deficits characterized by sleepiness, and in some cases even sleep of which they were unaware. An experimental group practised polyphasic sleep in an attempt to recover a little sleep during work hours, while the control group was not allowed any sleep recovery.
These results are similar to those reported by a survey of 760 California nurses (Lee 1992), in which 4.0% of night-shift nurses and 4.3% of nurses working rotating shifts reported suffering frequent attention deficits; no nurses from the other shifts mentioned lack of vigilance as a problem. Occasional attention deficits were reported by 48.9% of night-shift nurses, 39.2% of rotating-shift nurses, 18.5% of day-shift nurses and 17.5% of evening-shift nurses. Struggling to stay awake while dispensing care during the month preceding the survey was reported by 19.3% of night-shift and rotating-shift nurses, compared to 3.8% of day- and evening-shift nurses. Similarly, 44% of nurses reported having had to struggle to stay awake while driving during the preceding month, compared to 19% of day-shift nurses and 25% of evening-shift nurses.
Smith et al. (1979) studied 1,228 nurses in 12 American hospitals. The incidence of occupational accidents was 23.3 for nurses working rotating shifts, 18.0 for night-shift nurses, 16.8 for day-shift nurses and 15.7 for afternoon-shift nurses.
In an attempt to better characterize problems related to attention deficits among night-shift nurses, Blanchard et al. (1992) observed activity and incidents throughout a series of night shifts. Six wards, ranging from intensive care to chronic care, were studied. In each ward, one continuous observation of a nurse was performed on the second night (of night work) and two observations on the third or fourth nights (depending on the wards’ schedule). Incidents were not associated with serious outcomes. On the second night, the number of incidents rose from 8 in the first half of the night to 18 in the second half. On the third or fourth night, the increase was from 13 to 33 in one case and from 11 to 35 in another. The authors emphasized the role of sleep breaks in limiting risks.
Gold et al. (1992) collected information from 635 Massachusetts nurses on the frequency and consequences of attention deficits. Experiencing at least one episode of sleepiness at work per week was reported by 35.5% of rotating-shift nurses with night work, 32.4% of night-shift nurses and 20.7% of morning-shift and afternoon-shift nurses working exceptionally at night. Less than 3% of nurses working the morning and afternoon shifts reported such incidents.
The odds ratio for sleepiness while driving to and from work was 3.9 for rotating-shift nurses with night work and 3.6 for night-shift nurses, compared to morning- and afternoon-shift nurses. The odds ratio for total accidents and errors over the past year (car accidents driving to and from work, errors in medication or work procedures, occupational accidents related to sleepiness) was almost 2.00 for rotating-shift nurses with night work compared to morning- and afternoon-shift nurses.
Effect of Fatigue and Sleepiness on the Performance of Physicians
Several studies have shown that the fatigue and sleeplessness induced by night-shift and on-call work leads to deteriorations of physician performance.
Wilkinson, Tyler and Varey (1975) conducted a postal questionnaire survey of 6,500 British hospital physicians. Of the 2,452 who responded, 37% reported suffering a degradation of their effectiveness due to excessively long work hours. In response to open-ended questions, 141 residents reported committing errors due to overwork and lack of sleep. In a study performed in Ontario, Canada, 70% of 1,806 hospital physicians reported often worrying about the effect of the quantity of their work had on its quality (Lewittes and Marshall 1989). More specifically, 6% of the sample—and 10% of interns—reported often worrying about fatigue affecting the quality of care they dispensed.
Given the difficulty in performing real-time evaluations of clinical performance, several studies on the effects of sleep deprivation on physicians have relied upon neuropsychological tests.
In the majority of studies reviewed by Samkoff and Jacques (1991), residents deprived of sleep for one night exhibited little deterioration in their performance of rapid tests of manual dexterity, reaction time and memory. Fourteen of these studies used extensive test batteries. According to five tests, the effect on performance was ambiguous; according to six, a performance deficit was observed; but according to eight other tests, no deficit was observed.
Rubin et al. (1991) tested 63 medical-ward residents before and after an on-call period of 36 hours and a subsequent full day of work, using a battery of self-administered computerized behavioural tests. Physicians tested after being on call exhibited significant performance deficits in tests of visual attention, coding speed and accuracy and short-term memory. The duration of sleep enjoyed by the residents while on call was as follows: two hours at most in 27 subjects, four hours at most in 29 subjects, six hours at most in four subjects and seven hours in three subjects. Lurie et al. (1989) reported similarly brief sleep durations.
Virtually no difference has been observed in the performance of actual or simulated short-duration clinical tasks—including filling out a laboratory requisition (Poulton et al. 1978; Reznick and Folse 1987), simulated suturing (Reznick and Folse 1987), endotracheal intubation (Storer et al. 1989) and venous and arterial catheterization (Storer et al. 1989)—by sleep-deprived and control groups. The only difference observed was a slight lengthening of the time required by sleep-deprived residents to perform arterial catheterization.
On the other hand, several studies have demonstrated significant differences for tasks requiring continuous vigilance or intense concentration. For example, sleep-deprived interns committed twice as many errors when reading 20-minute ECGs as did rested interns (Friedman et al. 1971). Two studies, one relying on 50-minute VDU-based simulations (Beatty, Ahern and Katz 1977), the other on 30-minute video simulations (Denisco, Drummond and Gravenstein 1987), have reported poorer performance by anaesthesiologists deprived of sleep for one night. Another study has reported significantly poorer performance by sleep-deprived residents on a four-hour test exam (Jacques, Lynch and Samkoff 1990). Goldman, McDonough and Rosemond (1972) used closed-circuit filming to study 33 surgical procedures. Surgeons with less than two hours of sleep were reported to perform “worse” than more-rested surgeons. The duration of surgical inefficiency or indecision (i.e., of poorly planned manoeuvres) was over 30% of the total duration of the operation.
Bertram (1988) examined the charts of emergency admissions by second-year residents over a one-month period. For a given diagnosis, less information on medical histories and the results of clinical examinations was gathered as the number of hours worked and patients seen increased.
Smith-Coggins et al. (1994) analysed the EEG, mood, cognitive performance and motor performance of six emergency-ward physicians over two 24-hour periods, one with diurnal work and nocturnal sleep, the other with nocturnal work and diurnal sleep.
Physicians working at night slept significantly less (328.5 versus 496.6 minutes) and performed significantly less well. This poorer motor performance was reflected in the increased time required to perform a simulated intubation (42.2 versus 31.56 seconds) and an increased number of protocol errors.
Their cognitive performance was evaluated at five test periods throughout their shift. For each test, physicians were required to review four charts drawn from a pool of 40, rank them and list the initial procedures, the treatments and the appropriate laboratory tests. Performance deteriorated as the shift progressed for both night-shift and day-shift physicians. Night-shift physicians were less successful at providing correct responses than day-shift physicians.
Physicians working during the day rated themselves as less sleepy, more satisfied and more lucid than did night-shift physicians.
Recommendations in English-speaking countries concerning the work schedules of physicians-in-training have tended to take these results into account and now call for work-weeks of at most 70 hours and the provision of recovery periods following on-call work. In the US, following the death of a patient attributed to errors by an overworked, poorly supervised resident physician which received much media attention, New York State enacted legislation limiting work hours for hospital staff physicians and defining the role of attending physicians in supervising their activities.
Content of Night Work in Hospitals
Night work has long been undervalued. In France, nurses used to be seen as guardians, a term rooted in a vision of nurses’ work as the mere monitoring of sleeping patients, with no delivery of care. The inaccuracy of this vision became increasingly obvious as the length of hospitalization decreased and patients’ uncertainty about their hospitalization increased. Hospital stays require frequent technical interventions during the night, precisely when the nurse:patient ratio is lowest.
The importance of the amount of time spent by nurses in patients’ rooms is demonstrated by the results of a study based on continuous observation of the ergonomics of nurses’ work in each of three shifts in ten wards (Estryn-Béhar and Bonnet 1992). The time spent in rooms accounted for an average of 27% of the day and night shifts and 30% of the afternoon shift. In four of the ten wards, nurses spent more time in the rooms during the night than during the day. Blood samples were of course taken less frequently during the night, but other technical interventions such as monitoring vital signs and medication, and administering, adjusting and monitoring intravenous drips and transfusions were more frequent during the night in six of seven wards where detailed analysis was performed. The total number of technical and non-technical direct-care interventions was higher during the night in six of seven wards.
Nurses’ work postures varied from shift to shift. The percentage of time spent seated (preparation, writing, consultations, time spent with patients, breaks) was higher at night in seven of ten wards, and exceeded 40% of shift time in six wards. However, the time spent in painful postures (bent over, crouched, arms extended, carrying loads) exceeded 10% of shift time in all wards and 20% of shift time in six wards at night; in five wards the percentage of time spent in painful positions was higher at night. In fact, night-shift nurses also make beds and perform tasks related to hygiene, comfort and voiding, tasks which are all normally performed by nurses’ aides during the day.
Night-shift nurses may be obliged to change location very frequently. Night-shift nurses in all the wards changed location over 100 times per shift; in six wards, the number of changes of location was higher at night. However, because rounds were scheduled at 00:00, 02:00, 04:00 and 06:00, nurses did not travel greater distances, except in juvenile intensive-care wards. Nonetheless, nurses walked over six kilometres in three of the seven wards where podometry was performed.
Conversations with patients were frequent at night, exceeding 30 per shift in all wards; in five wards these conversations were more frequent at night. Conversations with physicians were much rarer and almost always brief.
Leslie et al. (1990) conducted continuous observation of 12 of 16 interns in the medical ward of a 340-bed Edinburgh (Scotland) hospital over 15 consecutive winter days. Each ward cared for approximately 60 patients. In all, 22 day shifts (08:00 to 18:00) and 18 on-call shifts (18:00 to 08:00), equivalent to 472 hours of work, were observed. The nominal duration of the interns’ work week was 83 to 101 hours, depending on whether or not they were on call during the weekends. However, in addition to the official work schedule, each intern also spent an average of 7.3 hours each week on miscellaneous hospital activities. Information on the time spent performing each of 17 activities, on a minute-by-minute basis, was collected by trained observers assigned to each intern.
The longest continuous work period observed was 58 hours (08:00 Saturday to 06:00 Monday) and the longest work period was 60.5 hours. Calculations showed that a one-week sickness leave of one intern would require the other two interns in the ward to increase their workload by 20 hours.
In practice, in wards admitting patients during on-call shifts, interns working consecutive day, on-call and night shifts worked all but 4.6 of the 34 elapsed hours. These 4.6 hours were devoted to meals and rest, but interns remained on call and available during this time. In wards that did not admit new patients during on-call shifts, interns’ workload abated only after midnight.
Due to the on-call schedules in other wards, interns spent approximately 25 minutes outside their home ward each shift. On average, they walked 3 kilometres and spent 85 minutes (32 to 171 minutes) in other wards each night shift.
Time spent filling out requests for examinations and charts, in addition, is often performed outside of their normal work hours. Non-systematic observation of this additional work over several days revealed that it accounts for approximately 40 minutes of additional work at the end of each shift (18:00).
During the day, 51 to 71% of interns’ time was spent on patient-oriented duties, compared to 20 to 50% at night. Another study, conducted in the United States, reported that 15 to 26% of work time was spent on patient-oriented duties (Lurie et al. 1989).
The study concluded that more interns were needed and that interns should no longer be required to attend other wards while on call. Three additional interns were hired. This reduced interns’ work week to an average of 72 hours, with no work, excepting on-call shifts, after 18:00. Interns also obtained a free half-day following an on-call shift and preceding a weekend when they were to be on call. Two secretaries were hired on a trial basis by two wards. Working 10 hours per week, the secretaries were able to fill out 700 to 750 documents per ward. In the opinion of both senior physicians and nurses, this resulted in more efficient rounds, since all the information had been entered correctly.
Aircraft maintenance operations are broadly distributed within and across nations and are performed by both military and civilian mechanics. Mechanics work at airports, maintenance bases, private fields, military installations and aboard aircraft carriers. Mechanics are employed by passenger and freight carriers, by maintenance contractors, by operators of private fields, by agricultural operations and by public and private fleet owners. Small airports may provide employment for a few mechanics, while major hub airports and maintenance bases may employ thousands. Maintenance work is divided between that which is necessary to maintain ongoing daily operations (line maintenance) and those procedures that periodically check, maintain and refurbish the aircraft (base maintenance). Line maintenance comprises en route (between landing and takeoff) and overnight maintenance. En route maintenance consists of operational checks and flight-essential repairs to address discrepancies noted during flight. These repairs are typically minor, such as replacing warning lights, tyres and avionic components, but may be as extensive as replacing an engine. Overnight maintenance is more extensive and includes making any repairs deferred during the day’s flights.
The timing, distribution and nature of aircraft maintenance is controlled by each airline company and is documented in its maintenance manual, which in most jurisdictions must be submitted for approval to the appropriate aviation authority. Maintenance is performed during regular checks, designated as A through D checks, specified by the maintenance manual. These scheduled maintenance activities ensure that the entire aircraft has been inspected, maintained and refurbished at appropriate intervals. Lower level maintenance checks may be incorporated into line maintenance work, but more extensive work is performed at a maintenance base. Aircraft damage and component failures are repaired as required.
Line Maintenance Operations and Hazards
En route maintenance is typically performed under a great time constraint at active and crowded flight lines. Mechanics are exposed to prevailing conditions of noise, weather and vehicular and aircraft traffic, each of which may amplify the hazards intrinsic to maintenance work. Climatic conditions may include extremes of cold and heat, high winds, rain, snow and ice. Lightning is a significant hazard in some areas.
Although the current generation of commercial aircraft engines are significantly quieter than previous models, they can still produce sound levels well above those set by regulatory authorities, particularly if the aircraft are required to use engine power in order to exit gate positions. Older jet and turboprop engines can produce sound level exposures in excess of 115 dBA. Aircraft auxiliary-power units (APUs), ground-based power and air-conditioning equipment, tugs, fuel trucks and cargo-handling equipment add to the background noise. Noise levels in the ramp or aircraft parking area are seldom below 80 dBA, thus necessitating the careful selection and routine use of hearing protectors. Protectors must be selected that provide excellent noise attenuation while being reasonably comfortable and permitting essential communication. Dual systems (ear plugs plus ear muffs) provide enhanced protection and allow accom-modation for higher and lower noise levels.
Mobile equipment, in addition to aircraft, may include baggage carts, personnel buses, catering vehicles, ground support equipment and jetways. To maintain departure schedules and customer satisfaction, this equipment must move quickly within often congested ramp areas, even under adverse ambient conditions. Aircraft engines pose the danger of ramp personel being ingested into jet engines or being struck by a propeller or exhaust blasts. Reduced visibility during night and inclement weather increase the risk that mechanics and other ramp personnel might be struck by mobile equipment. Reflective materials on work clothing help to improve visibility, but it is essential that all ramp personnel be well trained in ramp traffic rules, which must be rigorously enforced. Falls, the most frequent cause of serious injuries among mechanics, are discussed elsewhere in this Encyclopaedia.
Chemical exposures in the ramp area include de-icing fluids (usually containing ethylene or propylene glycol), oils and lubricants. Kerosene is the standard commercial jet fuel (Jet A). Hydraulic fluids containing tributyl phosphate cause severe but transient eye irritation. Fuel tank entry, while relatively rare on the ramp, must be included in a comprehensive confined- space-entry programme. Exposure to resin systems used for patching composite areas such as cargo hold panelling may also occur.
Overnight maintenance is typically performed under more controlled circumstances, either in line-service hangers or on inactive flight lines. Lighting, work stands and traction are far better than on the flight line but are likely to be inferior to those found in maintenance bases. Several mechanics may be working on an aircraft simultaneously, necessitating careful planning and coordination to control personnel movement, aircraft component activation (drives, flight control surfaces and so on) and chemical usage. Good housekeeping is essential to prevent clutter from air lines, parts and tools, and to clean spills and drips. These requirements are of even greater importance during base maintenance.
Base Maintenance Operations and Hazards
Maintenance hangars are very large structures capable of accommodating numerous aircraft. The largest hangars can simultaneously accommodate several wide-body aircraft, such as the Boeing 747. Separate work areas, or bays, are assigned to each aircraft undergoing maintenance. Specialized shops for the repair and refitting of components are associated with the hangars. Shop areas typically include sheet metal, interiors, hydraulics, plastics, wheels and brakes, electrical and avionics and emergency equipment. Separate welding areas, paint shops and non-destructive testing areas may be established. Parts-cleaning operations are likely to be found throughout the facility.
Paint hangars with high ventilation rates for workplace air contaminant controls and environmental pollution protection should be available if painting or paint stripping is to be performed. Paint strippers often contain methylene chloride and corrosives, including hydrofluoric acid. Aircraft primers typically contain a chromate component for corrosion protection. Top coats may be epoxy or polyurethane based. Toluene diisocyanate (TDI) is now seldom used in these paints, having been replaced with higher molecular weight isocyanates such as 4,4-diphenylmethane diisocyanate (MDI) or by prepolymers. These still present a risk of asthma if inhaled.
Engine maintenance may be performed within the maintenance base, at a specialized engine overhaul facility or by a sub-contractor. Engine overhaul requires the use of metalworking techniques including grinding, blasting, chemical cleaning, plating and plasma spray. Silica has in most cases been replaced with less hazardous materials in parts cleaners, but the base materials or coatings may create toxic dusts when blasted or ground. Numerous materials of worker health and environmental concern are used in metal cleaning and plating. These include corrosives, organic solvents and heavy metals. Cyanide is generally of the greatest immediate concern, requiring special emphasis in emergency preparedness planning. Plasma spray operations also merit particular attention. Finely divided metals are fed into a plasma stream generated using high-voltage electrical sources and plated onto parts with the concomitant generation of very high noise levels and light energies. Physical hazards include work at height, lifting and work in uncomfortable positions. Precautions include local exhaust ventilation, PPE, fall protection, training in proper lifting and use of mechanized lifting equipment when possible and ergonomic redesign. For example, repetitive motions involved in tasks such as wire tying may be reduced by use of specialized tools.
Military and Agricultural Applications
Military aircraft operations may present unique hazards. JP4, a more volatile jet fuel that Jet A, may be contaminated with n-hexane. Aviation gasoline, used in some propeller-driven aircraft, is highly flammable. Military aircraft engines, including those on transport aircraft, may use less noise abatement than those on commercial aircraft and may be augmented by afterburners. Aboard aircraft carriers the many hazards are significantly increased. Engine noise is augmented by steam catapults and afterburners, flight deck space is extremely limited, and the deck itself is in motion. Because of combat demands, asbestos insulation is present in some cockpits and around hot areas.
The need for lowered radar visibility (stealth) has resulted in the increased use of composite materials on fuselage, wings and flight control structures. These areas may be damaged in combat or from exposure to extremes of climate, requiring extensive repair. Repairs performed under field conditions may result in heavy exposures to resins and composite dusts. Beryllium is also common in military applications. Hydrazide may be present as part of auxiliary-power units, and anti-tank armament may include radioactive depleted uranium rounds. Precautions include appropriate PPE, including respiratory protection. Where possible, portable exhaust systems should be used.
Maintenance work on agricultural aircraft (crop dusters) may result in exposures to pesticides either as a single product or, more likely, as a mixture of products contaminating a single or multiple aircraft. Degradation products of some pesticides are more hazardous than the parent product. Dermal routes of exposure may be significant and may be enhanced by perspiration. Agricultural aircraft and external parts should be thoroughly cleaned before repair, and/or PPE, including skin and respiratory protection, should be used.
The large number and wide variety of operations and hazardous materials involved in teaching, research and support service activities present a challenge to health and safety management in colleges and universities. The very nature of research implies risk: challenging the limits of current knowledge and technology. Many research activities in science, engineering and medicine require sophisticated and expensive facilities, technology and equipment which may not be readily available or have yet to be developed. Research activities within existing facilities may also evolve and change without the facilities being modified to contain them safely. Many of the most hazardous activities are performed infrequently, periodically or on an experimental basis. Hazardous materials used in teaching and research often include some of the most dangerous substances and hazards with unavailable or poorly documented safety and toxicity data. These are commonly used in relatively small quantities under less than ideal conditions by poorly trained personnel. Health and safety hazards are not always easily recognized or readily acknowledged by highly educated academics with specialized fields of expertise who may have a poor regard for legislative or administrative controls when these are perceived to limit academic freedom.
Academic freedom is a sacred principle, fiercely guarded by academics, some of whom may be experts in their disciplines. Any legislative or institutional constraints which are perceived as encroaching on this principle will be fought and may even be disregarded. Methods for the identification and control of health and safety hazards associated with teaching and research activities cannot be readily imposed. Academics need to be persuaded that health and safety policies support and enhance the primary mission rather than confine it. Policies, where they exist, tend to protect the academic mission and the rights of individuals, rather than to conform with external regulations and standards. Liability and accountability issues affecting teachers and researchers directly may have more effect than rules.
Most health and safety legislation, standards and guidance criteria are developed for industry with large quantities of relatively few chemicals, well documented hazards, established procedures and a stable workforce within a well defined management system. The academic environment differs from industry in almost every aspect. In some jurisdictions academic institutions may even be exempt from health and safety legislation.
Academic institutions are generally hierarchical in their management systems, with academics at the top followed by non-academic professionals, technicians and support staff. Graduate students are often employed on a part-time basis to perform a variety of teaching and research functions. Academics are appointed to senior management positions for specific terms with little management experience or training. Frequent turn-over may result in a lack of continuity. Within this system, senior researchers, even within large institutions, are granted relative autonomy to manage their affairs. They are usually in control of their own budgets, facility design, purchasing, organization of work and hiring of personnel. Hazards may be overlooked or go unrecognized.
It is common practice for researchers in academic institutions to employ graduate students as research assistants in a master/apprentice relationship. These individuals are not always protected under health and safety laws. Even if covered by legislation, they are frequently reluctant to exercise their rights or to voice safety concerns to their supervisors who may also be responsible for evaluating their academic performance. Long hours under great pressure, overnight and weekend work with minimal supervision and skeleton support services are routine. Cost saving and energy conservation efforts may even reduce essential services such as security and ventilation during nights and weekends. Though students are not usually protected by health and safety legislation, due diligence requires that they are treated with the same level of care as is provided for employees.
Potential Hazards
The range of hazards can be extremely broad depending upon the size and nature of the institution, the type of academic programmes offered and the nature of research activities (see table 1). Small colleges offering only liberal arts programmes may have relatively few hazards while comprehensive universities with schools of medicine, engineering and fine arts and extensive research programmes may have a complete range, including some very serious hazards, such as toxic chemicals, biohazards, reproductive hazards, ionizing and non-ionizing radiations and various other physical agents.
Table 1. Summary of hazards in colleges and universities.
Type of hazard |
Sources |
Locations/activities |
Toxic chemicals (carcinogens, teratogens, caustics, heavy metals, asbestos, silica) |
Lab chemicals, solvents, degreasers, glues, art supplies, manometers, thermometers, photochemicals, dyes, hazardous waste |
Laboratories, art studios, workshops, health care facilities, maintenance operations, machine shops, theatres, darkrooms, engineering, hockey arenas |
Flammables and explosives |
Lab chemicals, cleaning agents, solvents, fuels |
Laboratories, maintenance operations, workshops, art studios, construction sites |
Pesticides |
Fumigation, rodent and pest control, disinfectants |
Housekeeping, groundskeeping, greenhouse, agriculture |
Biological agents |
Animal handling, cell and tissue cultures, blood and body fluids, diagnostic specimens, contaminated sharps, solid waste |
Animal care facilities, health care, housekeeping, laboratories |
Non-ionizing radiation |
Lasers, microwaves, magnets, electronics, ultraviolet light |
Laboratories, electrical operations, health care facilities, workshops, technical operations |
Ionizing radiation |
Radioisotopes, gas chromatography, x-rays, calibration, reactors, neutron generators, waste management |
Laboratories, medical facilities, engineering |
Ergonomics |
Materials handling, office work, computers |
Libraries, offices, maintenance operations, movers, truck drivers, food services |
Heat/cold |
Outdoor work, overexertion |
Groundskeeping, public safety, maintenance, field work, agriculture and forestry |
Noise |
Machinery, boilers and pressure vessels, computers, construction and maintenance, ventilation systems |
Boiler rooms, print shops, maintenance and grounds, construction operations, computer rooms, labs, machine shops, art studios |
Violence |
Internal community, external community, domestic disputes, civil disobedience |
Classrooms, places of assembly, accounts, stores, food service, personnel department, security operations |
Electrical |
Electrical equipment, construction and maintenance operations, amateur wiring jobs, special events |
Laboratories, workshops, maintenance shops, construction sites, electronic shops, residences, theatre, special events |
Compressed gases |
Laboratory equipment and operations, welding operations, coolants, ice-making equipment, construction |
Laboratories, metal shops, construction sites, machine shops, hockey arenas |
Machine hazards |
Materials handling, robots, maintenance and construction work |
Printing shops, maintenance and grounds operations, engineering, science and technical laboratories, machine shops |
Sharp objects |
Broken glass, cutting instruments, needles, lab vessels, test tubes |
Housekeeping, laboratories, health care, art studios, workshops |
Maintenance and groundskeeping, hazardous materials handling, machine and motor vehicle operations and office work are common to most institutions and comprise hazards which are covered elsewhere in this Encyclopaedia.
Workplace violence is an emerging issue of particular concern for teaching staff, front-line personnel, money handlers and security personnel.
Large institutions may be compared to small towns where a population lives and works. Issues of personal and community safety interface with occupational health and safety concerns.
Control of Hazards
Hazard identification through the usual processes of inspection and incident and injury investigation need to be preceded by careful review of proposed programmes and facilities prior to the start up of activities. The occupational and environmental risk aspects of new research projects and academic programmes should be taken into consideration in the earliest stages of the planning process. Researchers may not be aware of legislative requirements or safety standards applicable to their operations. For many projects, researchers and safety professionals need to work together to develop the safety procedures as the research proceeds and new hazards emerge.
Ideally the safety culture is incorporated into the academic mission - for example, through inclusion of relevant health and safety information into course curricula and laboratory and procedure manuals for students as well as specific health and safety information and training for employees. Hazard communication, training and supervision are critical.
In laboratories, art studios and workshops, general ventilation control needs to be augmented by local exhaust ventilation. Containment of biohazards and isolation or shielding of radioisotopes are necessary in certain cases. Personal protective equipment, while not a primary prevention method in most situation, may be the option of choice for temporary set-ups and some experimental conditions.
Hazardous materials and waste management programmes are usually required. Centralized purchasing and distribution of commonly used chemicals and micro-scale experiments in teaching prevent the storage of large volumes in individual laboratories, studios and workshops.
The maintenance of an emergency response and disaster recovery plan in anticipation of major events which overwhelm the normal response capabilities will mitigate the health and safety effects of a serious incident.
Black-and-White Processing
In black-and-white photographic processing, exposed film or paper is removed from a light-tight container in a darkroom and sequentially immersed in trays containing aqueous solutions of developer, stop bath and fixer. After a water washing and drying, the film or paper is ready for use. The developer reduces the light-exposed silver halide to metallic silver. The stop bath is a weakly acidic solution that neutralizes the alkaline developer solution and stops further reduction of the silver halide. The fixer forms a soluble complex with the unexposed silver halide, which, together with various water-soluble salts, buffers and halide ions, is subsequently removed from the emulsion in the washing process. Rolls of film are usually processed in closed canisters to which the various solutions are added.
Potential health hazards
Because of the wide variety of formulae used by various suppliers, and different methods of packaging and mixing photoprocessing chemicals, only a few generalizations can be made regarding the types of chemical hazards in black-and-white photoprocessing. The most frequent health issue is the potential for contact dermatitis, which most frequently arises from skin contact with developer solutions. Developer solutions are alkaline and usually contain hydroquinone; in some cases they may contain p-methylaminophenolsulphate (also known as Metol or KODAK ELON) as well. Developers are skin and eye irritants and may cause an allergic skin reaction in sensitive individuals. Acetic acid is the principal hazardous component in most stop baths. Although concentrated stop baths are strongly acidic and may cause skin and eye burns following direct contact, the working-strength solutions are usually slight to moderate skin and eye irritants. Fixers contain photographic hypo (sodium thiosulphate) and various sulphite salts (e.g., sodium metabisulphite), and present a low health hazard.
In addition to potential skin and eye hazards, gases or vapours emitted from some photoprocessing solutions may present an inhalation hazard, as well as contribute to unpleasant odours, especially in poorly ventilated areas. Some photochemicals (e.g., fixers) may emit gases such as ammonia or sulphur dioxide resulting from the degradation of ammonium or sulphite salts, respectively. These gases may be irritating to the upper respiratory tract and eyes. In addition, acetic acid emitted from stop baths may also be irritating to the upper respiratory tract and eyes. The irritant effect of these gases or vapours is concentration dependent and is usually observed only at concentrations that exceed occupational exposure limits. However, because of a wide variation in individual susceptibility, some individuals (e.g., persons with pre-existing medical conditions such as asthma) may experience effects at concentrations below occupational exposure limits. Some of these chemicals may be detectable by odour because of the chemical’s low odour threshold. Although the odour of a chemical is not necessarily indicative of a health hazard, strong odours or odours that are increasing in intensity may indicate that the ventilation system is inadequate and should be reviewed.
Risk management
The key to working safely with photoprocessing chemicals is to understand the potential health hazards of exposure and to manage the risk to an acceptable level. Recognition and control of potential hazards begins with reading and understanding product labels and safety data sheets.
Avoiding skin contact is an important goal in darkroom safety. Neoprene gloves are particularly useful in reducing skin contact, especially in mixing areas where more concentrated solutions are encountered. Gloves should be of sufficient thickness to prevent tears and leaks, and should be inspected and cleaned frequently—preferably thorough washing of the outer and inner surfaces with a non-alkaline hand cleaner. In addition to gloves, tongs may also be used to prevent skin contact; barrier creams are not appropriate for use with photochemicals because they are not impervious to all photochemicals and may contaminate processing solutions. A protective apron, smock or lab coat should be worn in the darkroom, and frequent laundering of work clothing is desirable. Protective goggles also should be used, especially in areas where concentrated photochemicals are handled.
If photoprocessing chemicals contact the skin, the affected area should be flushed as rapidly as possible with copious amounts of water. Because materials such as developers are alkaline, washing with a non-alkaline hand cleaner (pH of 5.0 to 5.5) may aid in reducing the potential to develop dermatitis. Clothing should be changed immediately if there is any contamination with chemicals, and spills or splashes should be immediately cleaned up. Hand-washing facilities and provisions for rinsing the eyes are particularly important in the mixing and processing areas. If concentrated or glacial acetic acid is used, emergency shower facilities should be available.
Adequate ventilation is also a key factor to safety in the darkroom. The amount of ventilation required varies according to room conditions and processing chemicals. General room ventilation (e.g., 4.25 m3/min supply and 4.8 m3/min exhaust, equivalent to ten air changes per hour in a 3 x 3 x 3 m room), with a minimum outside air replenishment rate of 0.15 m3/min/m2 floor area, is usually adequate for photographers who undertake basic black-and-white photoprocessing. The exhaust air should be discharged outside the building to avoid redistributing potential air contaminants. Special procedures such as toning (which involves the replacement of silver by silver sulphide, selenium or other metals), intensifying (which involves making parts of the image darker by the use of chemicals such as potassium dichromate or potassium chlorochromate) and mixing operations (where concentrated solutions or powders are handled) may require supplementary local exhaust ventilation or respiratory protection.
Colour Processing
There are a number of colour processes that are more complex and also involve the use of potentially hazardous chemicals. Colour processing is described in the chapter Printing, photography, and reproduction industries. As with black-and-white photoprocessing, avoiding skin and eye contact and providing adequate ventilation are key factors to safety in colour processing.
" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."